RU2459271C2 - Способ многоканальной передачи оптических сигналов - Google Patents

Способ многоканальной передачи оптических сигналов Download PDF

Info

Publication number
RU2459271C2
RU2459271C2 RU2010119726/08A RU2010119726A RU2459271C2 RU 2459271 C2 RU2459271 C2 RU 2459271C2 RU 2010119726/08 A RU2010119726/08 A RU 2010119726/08A RU 2010119726 A RU2010119726 A RU 2010119726A RU 2459271 C2 RU2459271 C2 RU 2459271C2
Authority
RU
Russia
Prior art keywords
laser
receiving
radiation
transmitting
axis
Prior art date
Application number
RU2010119726/08A
Other languages
English (en)
Other versions
RU2010119726A (ru
Inventor
Юрий Леонтьевич Козирацкий (RU)
Юрий Леонтьевич Козирацкий
Павел Евгеньевич Кулешов (RU)
Павел Евгеньевич Кулешов
Олег Викторович Кусакин (RU)
Олег Викторович Кусакин
Алексей Викторович Кусакин (RU)
Алексей Викторович Кусакин
Дмитрий Владимирович Прохоров (RU)
Дмитрий Владимирович Прохоров
Павел Рудольфович Ляхов (RU)
Павел Рудольфович Ляхов
Виктор Вячеславович Плеве (RU)
Виктор Вячеславович Плеве
Original Assignee
Федеральное государственное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2010119726/08A priority Critical patent/RU2459271C2/ru
Publication of RU2010119726A publication Critical patent/RU2010119726A/ru
Application granted granted Critical
Publication of RU2459271C2 publication Critical patent/RU2459271C2/ru

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

Изобретение относится к лазерным системам связи. Техническим результатом является повышение устойчивости передачи информации нескольким абонентам за счет дублирования основного оптического канала дополнительными каналами. В способе устанавливают лазерные приемные устройства на удалении с расположением в стороне относительно рассматриваемой оси распространения пучка излучения передающего лазерного средства, приемное устройство осуществляет прием рассеянного атмосферой излучения передающего лазерного устройства, приемные антенны лазерных приемных устройств ориентируют в направлении оси пучка передающего лазерного устройства, а передаваемую лазерным передающим устройством информацию выделяют каждым из лазерных приемных устройств по изменению величины амплитуды переднего и заднего фронтов выходного импульса фотоприемника. 3 ил.

Description

Изобретение относится к области оптико-электронных систем и может быть использовано в лазерных (оптических) системах связи.
Наиболее близким по технической сущности и достигаемому результату (прототипом) (см., например, Аджалов В.И. Патент №21977783, Россия, H04B 10/00, заявлен 15.03.2001, опубликован 27.03.2003. Способ организации доступа к сети передачи пакетов данных. - М.: РОСПАТЕНТ, 2003) является способ организации доступа к сети передачи пакетов данных, основанный на перенацеливании пучка излучения лазерного передающего устройства в направление соответствующего приемного устройства. Недостатком способа является сложность юстировки и, соответственно, возможность потери части передаваемой информации абонентами (приемными устройствами), обусловленной рассогласованием ориентации приемной и передающей оптических антенн (особенно в подвижной линии связи).
Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение устойчивости передачи информации нескольким абонентам за счет дублирования основного оптического канала дополнительными каналами менее критичными к ориентации диаграмм направленности оптических антенн.
Технический результат достигается тем, что в известном способе многоканальной передачи оптических сигналов, основанном на нацеливании потока излучения лазерного передающего устройства в направлении одного из N лазерных приемных устройств, установке N-1 лазерных приемных устройств на удалениях, позволяющих им осуществлять прием рассеянного атмосферой излучения передающего лазерного устройства, ориентации приемных антенн N-1 лазерных приемных устройств в направлении оси пучка передающего лазерного средства, выделении передаваемой лазерным передающим устройством информации каждым из N-1 лазерным приемным устройством по изменению величины амплитуды переднего и заднего фронтов выходного импульса фотоприемника.
Сущность изобретения заключается в применении определенного количества приемных устройств, устанавливаемых на определенном удалении относительно направления распространения оптического излучения передающего устройства. Выбор дальности размещения приемных устройств определяется энергетической доступностью рассеянной атмосферой составляющей излучения передающего устройства. При этом изменения величины выходного сигнала приемного устройства будет «повторять» информационный характер амплитудной модуляции излучения передающего устройства. Это дает возможность принимать информацию, передаваемую по оптическому каналу связи нескольким абонентам, использующим в силу свойств распространения оптического излучения в атмосфере приемные устройства, менее критичные к юстировке оптических приемопередающих антенн.
На основе теории рассеяния и переноса рассеянного излучения в атмосфере (см., например, Козирацкий Ю.Л., Козирацкий А.Ю., Кусакин А.В. и др. Оценка энергетических и временных характеристик рассеянного импульсного лазерного излучения. - Журнал Антенны, №4, 2007, стр.16-19) применительно к импульсному оптическому сигналу с внутренней амплитудной модуляцией разработана имитационная модель, подтверждающая возможность приема рассеянного излучения с сохранением закона модуляции в выходном сигнале приемного устройства. На фигуре 1 представлена геометрическая схема рассеяния в направлении приемного устройства 2 оптического импульса генерируемого передающим устройством 1 (с - скорость распространения лазерного излучения в атмосфере, τu - длительность оптического импульса, γ - направление приема излучения (направление ориентации диаграммы направленности оптической антенны приемного устройства), lнабл - длина участка наблюдения приемным устройством лазерного пучка (определяется углом поля зрения формирующей оптики β). Ось распространения излучения предающего устройства 1 сориентирована с координатной осью z. Приемное устройство 2 располагается в стороне относительно рассматриваемой оси. При этом ширина диаграммы направленности приемного устройства 2 намного шире длительности передаваемого импульса и диаметра сечения лазерного пучка. Это обеспечивает попадание полного пространственно-временного объема лазерного импульса в поле зрения приемного устройства 2. А также снимает ограничения по строгой юстировке приемной антенны устройства 2 в направление оси лазерного пучка, формируемого передающим устройством 1.
Для анализа процесса рассеяния интенсивность импульсного оптического излучения передающего устройства 1 можно представить в виде:
Figure 00000001
где αΣ - суммарный показатель ослабления лазерного излучения на дальности z, I0 - интенсивность лазерного излучения на выходе лазерного устройства, ΔIм - изменение интенсивности лазерного излучения по закону амплитудной модуляции, wмод - частота модулирующего сигнала.
В процессе распространения импульса по оси z в зависимости от нахождения в поле зрения формирующей оптики приемника наблюдается изменение величины потока мощности рассеянного излучения в направлении приемного устройства 2, которое можно разбить на три этапа. Первый этап по мере приближения импульса к границе поля зрения приемника характеризуется ростом потока мощности в приемной плоскости устройства 2. Второй этап характеризуется относительным постоянством потока мощности в приемной плоскости устройства 2, так как весь объем подсвеченного импульсом рассеивающего образования находится в поле зрения формирующей оптики приемника. Третий этап по мере выхода импульса из поля зрения приемного устройства 2 характеризуется спадом потока мощности рассеянного излучения в приемной плоскости приемника.
Интенсивность рассеянного излучения элементарным объемом в направлении приемного устройства можно представить в упрощенном виде (см., например, Козирацкий Ю.Л., Козирацкий А.Ю., Кусакин А.В. и др. Оценка энергетических и временных характеристик рассеянного импульсного лазерного излучения. - Журнал Антенны, №4, 2007, стр.16-19)
Figure 00000002
где f(θ) - индикатриса рассеяния в направлении приемного устройства 2; σ - объемный коэффициент рассеяния; Snp - площадь приемника; Vp - рассеивающий объем аэрозольного образования.
Тогда выходной сигнал приемника будет иметь вид (см., например, Гильярди P.M., Карп Ш. Оптическая связь. - М.: Связь, 1978, стр.47-53)
Figure 00000003
где α - константа пропорциональности.
В результате имитационного моделирования процесса рассеяния модулированного импульсного излучения передающего устройства 1 получена зависимость нормированных значений выходного сигнала фотодетектора приемного устройства 2 от времени нахождения импульса в поле зрения формирующей оптики (Фиг.2). Расчеты проводились со следующими исходными данными: расстояние до начала наблюдения l0=1000 м; τu=10-6 c; расстояние от оси лазерного излучения до приемника по перпендикулярному направлению H=2000 м; направление приема излучения γ=90°; угол обзора приемника β=50°; длина волны излучения λ=1.06 мкм; мощность передатчика P=106 Bт; площадь приемника S=10-2 м2; коэффициент объемного рассеяния
Figure 00000004
; m=0,3 - значение глубины модуляции передаваемого сигнала при амплитудной модуляции; значения индикатрисы рассеяния выбирались для стандартных погодных условий. Характер хода зависимостей показывает, что на начальном и конечном этапах формирования импульса выходного сигнала фотодетектора происходят изменения его амплитуды, которые отражают модулирующую составляющую излучения предающего устройства 1. Модуляционные изменения амплитуды переднего и заднего фронтов выходного импульса фотодетектора позволяют детектировать передаваемую информацию передающим устройством 1.
На фигуре 3 представлена блок-схема устройства. Блок-схема устройства содержит лазерное передающее устройство 1, приемное устройство лазерного излучения основного канала 2, N-1-e количество приемных устройств лазерного излучения N-1-x дополнительных каналов 3.
Устройство работает следующим образом. Лазерное передающее устройство 1 передает информацию по основному оптическому каналу приемному устройству лазерного излучения основного канала 2. Установленные на энергетически доступном расстоянии приемные устройства лазерного излучения дополнительных каналов 3 также приминают информацию, передаваемую по основному каналу путем регистрации рассеянного в атмосфере излучения передающего устройства 1. При этом приемные устройства дополнительных каналов осуществляют выделение информации по переднему и заднему фронтам выходных сигналов фотоприемников путем их сверки по времени, что обеспечивает дополнительное усиление.
Таким образом, у заявляемого способа появляются свойства, заключающиеся в возможности организации дополнительных каналов передачи информации, менее критичных к ориентации диаграмм направленности оптических антенн за счет приема рассеянного аэрозольным образованием оптического излучения. Тем самым предлагаемый авторами способ устраняет недостатки прототипа, особенно проявляющиеся при организации подвижной линии оптической связи.
Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ многоканальной передачи оптических сигналов, основанный на нацеливании потока излучения лазерного передающего устройства в направлении одного из N лазерных приемных устройств, установке N-1 лазерных приемных устройств на удалениях, позволяющих им осуществлять прием рассеянного атмосферой излучения передающего лазерного устройства, ориентации приемных антенн N-1 лазерных приемных устройств в направлении оси пучка передающего лазерного средства, выделении передаваемой лазерным передающим устройством информации каждым из N-1 лазерным приемным устройством по изменению величины амплитуды переднего и заднего фронтов выходного импульса фотоприемника.
Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые оптические и электротехнические узлы и устройства.

Claims (1)

  1. Способ многоканальной передачи оптических сигналов, основанный на нацеливании потока излучения лазерного передающего устройства в направлении одного из N лазерных приемных устройств, отличающийся тем, что устанавливают N-1 лазерные приемные устройства на удалении с расположением в стороне относительно рассматриваемой оси распространения пучка излучения передающего лазерного средства, при этом ширина диаграммы направленности приемного устройства намного шире длительности передаваемого импульса и диаметра сечения лазерного пучка, позволяющим им осуществлять прием рассеянного атмосферой излучения передающего лазерного устройства, приемные антенны N-1 лазерных приемных устройств ориентируют в направлении оси пучка передающего лазерного устройства, а передаваемую лазерным передающим устройством информацию выделяют каждым из N-1 лазерным приемным устройством по изменению величины амплитуды переднего и заднего фронтов выходного импульса фотоприемника.
RU2010119726/08A 2010-05-17 2010-05-17 Способ многоканальной передачи оптических сигналов RU2459271C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010119726/08A RU2459271C2 (ru) 2010-05-17 2010-05-17 Способ многоканальной передачи оптических сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010119726/08A RU2459271C2 (ru) 2010-05-17 2010-05-17 Способ многоканальной передачи оптических сигналов

Publications (2)

Publication Number Publication Date
RU2010119726A RU2010119726A (ru) 2011-11-27
RU2459271C2 true RU2459271C2 (ru) 2012-08-20

Family

ID=45317500

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010119726/08A RU2459271C2 (ru) 2010-05-17 2010-05-17 Способ многоканальной передачи оптических сигналов

Country Status (1)

Country Link
RU (1) RU2459271C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709022C2 (ru) * 2018-03-12 2019-12-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Способ генерации электромагнитного излучения в широком диапазоне радиосвязи
RU2752790C1 (ru) * 2020-09-29 2021-08-05 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ и устройство многоканальной приемо-передачи оптических сигналов на основе формирования секторных диаграмм направленности и угломерной системы слежения

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2155450C1 (ru) * 1999-06-21 2000-08-27 Государственное унитарное предприятие Государственный Рязанский приборный завод - дочернее предприятие государственного унитарного предприятия Военно-промышленного комплекса "МАПО" Устройство двусторонней оптической связи
RU2178954C1 (ru) * 2001-03-01 2002-01-27 Септре Коммуникейшинс Лимитед Беспроводная дуплексная оптическая система связи
US6456408B1 (en) * 1998-03-26 2002-09-24 Lucent Technologies Inc. Method and apparatus for controlling the optical power of a optical transmission signal
RU2197783C2 (ru) * 2001-03-15 2003-01-27 Аджалов Владимир Исфандеярович Способ организации доступа к сетям передачи пакетов данных
RU2312371C1 (ru) * 2006-07-06 2007-12-10 Владимир Миронович Вишневский Способ беспроводной связи через атмосферную оптическую линию и система беспроводной оптической связи
RU2383909C2 (ru) * 2007-06-25 2010-03-10 Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт) Способ обращения волнового фронта когерентного оптического излучения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456408B1 (en) * 1998-03-26 2002-09-24 Lucent Technologies Inc. Method and apparatus for controlling the optical power of a optical transmission signal
RU2155450C1 (ru) * 1999-06-21 2000-08-27 Государственное унитарное предприятие Государственный Рязанский приборный завод - дочернее предприятие государственного унитарного предприятия Военно-промышленного комплекса "МАПО" Устройство двусторонней оптической связи
RU2178954C1 (ru) * 2001-03-01 2002-01-27 Септре Коммуникейшинс Лимитед Беспроводная дуплексная оптическая система связи
RU2197783C2 (ru) * 2001-03-15 2003-01-27 Аджалов Владимир Исфандеярович Способ организации доступа к сетям передачи пакетов данных
RU2312371C1 (ru) * 2006-07-06 2007-12-10 Владимир Миронович Вишневский Способ беспроводной связи через атмосферную оптическую линию и система беспроводной оптической связи
RU2383909C2 (ru) * 2007-06-25 2010-03-10 Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт) Способ обращения волнового фронта когерентного оптического излучения

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709022C2 (ru) * 2018-03-12 2019-12-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала флота Советского Союза Н.Г. Кузнецова" Способ генерации электромагнитного излучения в широком диапазоне радиосвязи
RU2752790C1 (ru) * 2020-09-29 2021-08-05 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ и устройство многоканальной приемо-передачи оптических сигналов на основе формирования секторных диаграмм направленности и угломерной системы слежения

Also Published As

Publication number Publication date
RU2010119726A (ru) 2011-11-27

Similar Documents

Publication Publication Date Title
Davydov et al. Fiber-optics system for the radar station work control
Abtahi et al. All-optical 500-Mb/s UWB transceiver: An experimental demonstration
EP3058329B1 (en) A method of characterizing a multimode optical fiber link and corresponding methods of fabricating multimode optical fiber links and of selecting multimode optical fibers from a batch of multimode optical fibers
KR20020066390A (ko) 레이더 설치방향 조정방법, 레이더 설치방향 조정장치 및레이더 장치
WO2014024196A4 (en) Friend or foe identification system and method
CN102857294A (zh) 地面到geo卫星激光通信中信号衰落的抑制方法及装置
CN104502911A (zh) 一种穿墙成像雷达的墙壁参数估计方法
CN103116164B (zh) 外差脉冲压缩式多功能激光雷达及其控制方法
US10393867B2 (en) Photonic hybrid receive antenna
Lin et al. Preliminary characterization of coverage for water-to-air visible light communication through wavy water surface
US10122444B2 (en) Method for characterizing performance of a multimode fiber optical link and corresponding methods for fabricating a multimode optical fiber link showing improved performance and for improving performance of a multimode optical fiber link
US20190204443A1 (en) Optical ranging method, phase difference of light measurement system and optical ranging light source
WO2019241582A1 (en) Approaches, apparatuses and methods for lidar applications based on- mode-selective frequency conversion
Mao et al. Demonstration of In-Car Doppler Laser Radar at 1.55$\mu\hbox {m} $ for Range and Speed Measurement
RU2459271C2 (ru) Способ многоканальной передачи оптических сигналов
US11815421B2 (en) Acoustic mode propagation speed measurement method and acoustic mode propagation speed measurement device
CN112698356A (zh) 基于多孔径收发的无盲区脉冲相干测风激光雷达系统
Siddamal et al. Split step method in the analysis and modeling of optical fiber communication system
CN105445749A (zh) 一种基于波长分割的多脉冲激光测距系统和方法
CN104316205A (zh) 一种宽带调频脉冲激光波形测试装置
Sahu et al. Improving the link availability of an underwater wireless optical communication system using chirped pulse compression technique
KR101203951B1 (ko) 마하젠더 센서를 이용한 emp의 방향탐지기
RU2295832C1 (ru) Система связи с глубокопогруженными подводными объектами
CN112654884B (zh) 雷达系统、信号处理方法及装置
Rashkin et al. Experimental validation of an undersea free space laser network simulator in turbid coastal conditions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130518