RU2458861C1 - Tubular or combined corundum nanofibre and method of its production - Google Patents

Tubular or combined corundum nanofibre and method of its production Download PDF

Info

Publication number
RU2458861C1
RU2458861C1 RU2011114097/05A RU2011114097A RU2458861C1 RU 2458861 C1 RU2458861 C1 RU 2458861C1 RU 2011114097/05 A RU2011114097/05 A RU 2011114097/05A RU 2011114097 A RU2011114097 A RU 2011114097A RU 2458861 C1 RU2458861 C1 RU 2458861C1
Authority
RU
Russia
Prior art keywords
fiber
corundum
aluminum
nanofibre
tube
Prior art date
Application number
RU2011114097/05A
Other languages
Russian (ru)
Inventor
Николай Евгеньевич Староверов (RU)
Николай Евгеньевич Староверов
Original Assignee
Николай Евгеньевич Староверов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Евгеньевич Староверов filed Critical Николай Евгеньевич Староверов
Priority to RU2011114097/05A priority Critical patent/RU2458861C1/en
Application granted granted Critical
Publication of RU2458861C1 publication Critical patent/RU2458861C1/en

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Inorganic Fibers (AREA)

Abstract

FIELD: nanotechnology.
SUBSTANCE: invention relates to nanotechnology. Nanofibre is a tube made of corundum with nanothickness of walls or any fiber, covered with such tube. Corundum nanofibre is obtained by metallisation of any fiber with nanolayer of aluminium followed by oxidation of aluminium to the corundum and with the subsequent removal of the substance of the original fiber or without removing it.
EFFECT: obtained corundum nanofiber has superior strength and excellent thermal insulation properties.
7 cl

Description

Известны способы получения волокна из какого-либо вещества путем выдавливания его в расплавленном состоянии через фильеры, например, стекловолокна, см. пат. СССР 291438. Однако таким путем получить волокно наноразмера невозможно.Known methods for producing fiber from any substance by extruding it in the molten state through spinnerets, for example, fiberglass, see US Pat. USSR 291438. However, it is impossible to obtain a nanoscale fiber in this way.

Получение трубчатого волокнаObtaining tubular fiber

Любое волокно /как можно более тонкое/ покрывается слоем алюминия нанотолщины, а затем алюминий окисляется до корунда.Any fiber (as thin as possible) is covered with a layer of aluminum of a nano-thickness, and then aluminum is oxidized to corundum.

В качестве материала исходного волокна могут быть выбраны материалы, отвечающие одному из двух качеств: либо дешевизна, например капрон, вискоза, либо способность вытягиваться в как можно более тонкие нити, например фторопласты Ф-1, Ф-2, Ф-3.As the material of the initial fiber, materials that meet one of two qualities can be selected: either cheapness, for example, capron, viscose, or the ability to be drawn into as thin yarns as possible, for example F-1, F-2, F-3 fluoroplastics.

Покрытие волокна алюминием можно осуществить путем осаждения паров алюминия в вакууме. Возможно, с применением электростатики.Coating the fiber with aluminum can be accomplished by vapor deposition of aluminum in a vacuum. Perhaps using electrostatics.

Окисление алюминия можно проводить либо в атмосфере кислорода, озона или их смеси, либо в жидкой среде, например в растворе перекиси водорода.Oxidation of aluminum can be carried out either in an atmosphere of oxygen, ozone or a mixture thereof, or in a liquid medium, for example in a solution of hydrogen peroxide.

После окончания окисления алюминия исходное волокно может быть удалено из образовавшейся корундовой нанотрубочки путем постепенного нагрева ограниченных отрезков волокна /до нескольких метров, уже в виде ткани/ в вакууме до температуры кипения материала исходного волокна. Этот материал постепенно испарится с торцов нанотрубочки. Диаметр получившейся нанотрубочки будет значительно больше наноразмеров, но наносвойства материала в данном случае определяются не диаметром трубочки, а толщиной ее стенок. А этот размер может быть сколь угодно малым, вплоть до мономолекулярного.After the end of the oxidation of aluminum, the initial fiber can be removed from the formed corundum nanotube by gradually heating limited segments of the fiber / up to several meters, already in the form of fabric / in vacuum to the boiling point of the source fiber material. This material will gradually evaporate from the ends of the nanotube. The diameter of the resulting nanotube will be much larger than the nanoscale, but the nanosized material in this case is determined not by the diameter of the tube, but by the thickness of its walls. And this size can be arbitrarily small, right down to monomolecular.

Полученное трубчатое корундовое нановолокно будет обладать превосходной прочностью /корунд по прочности уступает только алмазу, а в наносостоянии, возможно, и превосходит его/ и очень хорошими теплоизоляционными свойствами как в вакууме, так и в атмосфере.The obtained tubular corundum nanofiber will have excellent strength / corundum is second only to diamond in strength, and in the nanostate it may surpass it / and very good thermal insulation properties both in vacuum and in the atmosphere.

Возможен также вариант удаления исходного волокна путем ускоренного нагрева. В этом случае трубочка будет лопаться вдоль, что незначительно скажется на ее прочности и теплопроводности.It is also possible to remove the original fiber by accelerated heating. In this case, the tube will burst along, which will slightly affect its strength and thermal conductivity.

Или же вещество исходного волокна, если оно не мешает назначению корундового нановолокна, может остаться в трубочке. Например, если корундовое нановолокно предназначено для работы на прочность в композитных материалах, то исходное высокомодульное высокопрочное волокно типов "Зайлон", "Вектран-2000", "Спектра", стекловолокно, углеволокно, кевлар только повысит прочность композита.Or, the substance of the original fiber, if it does not interfere with the purpose of the corundum nanofiber, can remain in the tube. For example, if corundum nanofiber is designed to work for strength in composite materials, the original high-modulus high-strength fiber of the Zylon, Vectran-2000, Spectra, fiberglass, carbon fiber, Kevlar types will only increase the strength of the composite.

Следует отметить, что исходное волокно может быть в пластичном состоянии, пропущено через валки и иметь сплющенную форму. Нановолкно такой формы будет иметь повышенную прочность на сгибах.It should be noted that the original fiber can be in a plastic state, passed through rolls and have a flattened shape. A nanofiber of this shape will have increased flexural strength.

Claims (7)

1. Трубчатое или комбинированное корундовое нановолокно, представляющее собой трубку из корунда с нанотолщиной стенок или любое волокно, покрытое такой трубкой.1. A tubular or combined corundum nanofiber, which is a tube of corundum with a wall thickness or any fiber coated with such a tube. 2. Способ получения волокна по п.1, состоящий в металлизации любого волокна нанослоем алюминия с последующим окислением алюминия до корунда и с последующим удалением вещества первоначального волокна или без его удаления.2. The method of producing fiber according to claim 1, which consists in metallizing any fiber with an aluminum layer followed by oxidation of aluminum to corundum and subsequent removal of the substance of the original fiber or without its removal. 3. Способ по п.2, отличающийся тем, что исходным волокном является капрон, или кевлар, или зайлон, или вектран, или спектра, или вискозное волокно, или углеволокно.3. The method according to claim 2, characterized in that the initial fiber is kapron, or Kevlar, or Zylon, or Vectran, or spectrum, or viscose fiber, or carbon fiber. 4. Способ по п.2, отличающийся тем, что металлизация происходит путем осаждения паров алюминия в вакууме.4. The method according to claim 2, characterized in that the metallization occurs by the deposition of aluminum vapor in a vacuum. 5. Способ по п.2, отличающийся тем, что окисление алюминия производится в атмосфере кислорода, или озона, или их смеси, или в растворе перекиси водорода.5. The method according to claim 2, characterized in that the oxidation of aluminum is carried out in an atmosphere of oxygen, or ozone, or a mixture thereof, or in a solution of hydrogen peroxide. 6. Способ по п.2, отличающийся тем, что исходное волокно удаляется путем нагрева в вакууме.6. The method according to claim 2, characterized in that the source fiber is removed by heating in vacuum. 7. Способ по п.2, отличающийся тем, что исходное волокно предварительно пропускается через валки. 7. The method according to claim 2, characterized in that the source fiber is previously passed through the rolls.
RU2011114097/05A 2011-04-11 2011-04-11 Tubular or combined corundum nanofibre and method of its production RU2458861C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011114097/05A RU2458861C1 (en) 2011-04-11 2011-04-11 Tubular or combined corundum nanofibre and method of its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011114097/05A RU2458861C1 (en) 2011-04-11 2011-04-11 Tubular or combined corundum nanofibre and method of its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2012106391/03A Division RU2012106391A (en) 2012-02-21 2012-02-21 METHOD FOR OBTAINING CORUNDUM NANOFIBER (OPTIONS) AND DEVICE FOR ITS IMPLEMENTATION

Publications (1)

Publication Number Publication Date
RU2458861C1 true RU2458861C1 (en) 2012-08-20

Family

ID=46936607

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011114097/05A RU2458861C1 (en) 2011-04-11 2011-04-11 Tubular or combined corundum nanofibre and method of its production

Country Status (1)

Country Link
RU (1) RU2458861C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516823C2 (en) * 2012-09-05 2014-05-20 Николай Евгеньевич Староверов Corundum microfilm and method of its obtaining (versions)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312791A (en) * 1992-08-21 1994-05-17 Saint Gobain/Norton Industrial Ceramics Corp. Process for the preparation of ceramic flakes, fibers, and grains from ceramic sols
RU21913U1 (en) * 1996-04-25 2002-02-27 Самсунг Электроникс Ко., Лтд. DEVICE FOR MANUFACTURE OF METAL-COVERED OPTICAL FIBER AND METALIZED OPTICAL FIBER (OPTIONS)
CN1473761A (en) * 2003-07-10 2004-02-11 复旦大学 Process for preparing aluminium oxide nano fibre
RU2308378C2 (en) * 2005-12-14 2007-10-20 Николай Евгеньевич Староверов Composite material working in bending and the method of its manufacture
US20100009187A1 (en) * 2006-09-28 2010-01-14 Clariant Finance (Bvi) Limited Polycrystalline Corundum Fibers And Method For The Production Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312791A (en) * 1992-08-21 1994-05-17 Saint Gobain/Norton Industrial Ceramics Corp. Process for the preparation of ceramic flakes, fibers, and grains from ceramic sols
RU21913U1 (en) * 1996-04-25 2002-02-27 Самсунг Электроникс Ко., Лтд. DEVICE FOR MANUFACTURE OF METAL-COVERED OPTICAL FIBER AND METALIZED OPTICAL FIBER (OPTIONS)
CN1473761A (en) * 2003-07-10 2004-02-11 复旦大学 Process for preparing aluminium oxide nano fibre
RU2308378C2 (en) * 2005-12-14 2007-10-20 Николай Евгеньевич Староверов Composite material working in bending and the method of its manufacture
US20100009187A1 (en) * 2006-09-28 2010-01-14 Clariant Finance (Bvi) Limited Polycrystalline Corundum Fibers And Method For The Production Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516823C2 (en) * 2012-09-05 2014-05-20 Николай Евгеньевич Староверов Corundum microfilm and method of its obtaining (versions)

Similar Documents

Publication Publication Date Title
Sharma et al. Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites
Lu et al. State of the art of carbon nanotube fibers: opportunities and challenges
JP5658567B2 (en) Orderly aligned carbon nanotube article processed from superacid solution and method for producing the same
Su et al. Temperature effect on electrospinning of nanobelts: the case of hafnium oxide
US20150075667A1 (en) Carbon macrotubes and methods for making the same
CN106637568B (en) Composite conducting fiber and preparation method thereof
JP6253116B2 (en) Method for producing carbon nanotube drawn yarn
CN101905878A (en) Liner structure of carbon nano tube and preparation method thereof
TWI521108B (en) Method for producing flame-resistant fiber bundle and mfthod for producing carbon fiber bundle
JP6685909B2 (en) Porous carbon nanofiber and method for producing the same
Liu et al. A modified spray-winding approach to enhance the tensile performance of array-based carbon nanotube composite films
CN103614810B (en) A kind of preparation method of carbon back composite fibre
CN103850114A (en) Method for electro-enhancement of carbon nano tube fiber
WO2019235315A1 (en) Separation membrane
Yin et al. A review on strategies for the fabrication of graphene fibres with graphene oxide
CN106435827A (en) Ceramic/resin/graphene quantum dot composite fibers and preparation method thereof
TW201700403A (en) Graphite sheet and method for preparing same
RU2458861C1 (en) Tubular or combined corundum nanofibre and method of its production
JP6366860B2 (en) Manufacturing method of high tensile strength nanofiber yarn
Wang et al. Shampoo assisted aligning of carbon nanotubes toward strong, stiff and conductive fibers
Jee et al. Effects of wet-spinning conditions on structures, mechanical and electrical properties of multi-walled carbon nanotube composite fibers
WO2020149352A1 (en) Carbon membrane for fluid separation use
Hu et al. Preparation and characterization of luminescent polyimide/glass composite fiber
CN102181964A (en) Method for preparing polyacrylonitrile based carbon fiber
Liu et al. Glassy carbon nanofibers from electrospun cellulose nanofiber

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20131016