RU2458338C2 - Nano-semiconductor gas sensor - Google Patents
Nano-semiconductor gas sensor Download PDFInfo
- Publication number
- RU2458338C2 RU2458338C2 RU2010131326/28A RU2010131326A RU2458338C2 RU 2458338 C2 RU2458338 C2 RU 2458338C2 RU 2010131326/28 A RU2010131326/28 A RU 2010131326/28A RU 2010131326 A RU2010131326 A RU 2010131326A RU 2458338 C2 RU2458338 C2 RU 2458338C2
- Authority
- RU
- Russia
- Prior art keywords
- sensor
- carbon monoxide
- semiconductor base
- substrate
- nano
- Prior art date
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей оксида углерода и других газов. Изобретение может быть использовано в экологии.The invention relates to the field of gas analysis, in particular to detecting devices used for recording and measuring the content of trace amounts of carbon monoxide and other gases. The invention can be used in ecology.
Известен датчик (детектор) по теплопроводности, действие которого основано на различии теплопроводности паров вещества и газа-носителя (Вяхирев Д.А., Шушукова А.Ф. Руководство по газовой хроматографии. М.: Высш. школа, 1987. - 287 с.).A known sensor (detector) for thermal conductivity, the action of which is based on the difference in thermal conductivity of the vapor of the substance and the carrier gas (Vyakhirev D.A., Shushukova A.F. Guide to gas chromatography. M .: Higher school, 1987. - 287 p. )
Однако такой датчик (детектор) чувствителен только к веществам с теплопроводностью, близкой к теплопроводности газа-носителя.However, such a sensor (detector) is sensitive only to substances with thermal conductivity close to the thermal conductivity of the carrier gas.
Известен также полупроводниковый газовый датчик на основе оксида индия (In2O3), легированного оксидами щелочных металлов (Vamaura Hiroyuki, Tamaki Jun, Moriya Koji, Miura Norio, Vamazoe Noboru // J. Electrochem. Soc. - 1996. - V.43. N2. P.36-37). Он позволяет детектировать 6,7-0,05 Па СО во влажном воздухе при 300°С.Also known is a semiconductor gas sensor based on indium oxide (In 2 O 3 ) doped with alkali metal oxides (Vamaura Hiroyuki, Tamaki Jun, Moriya Koji, Miura Norio, Vamazoe Noboru // J. Electrochem. Soc. - 1996. - V.43 . N2. P.36-37). It allows you to detect 6.7-0.05 Pa WITH in moist air at 300 ° C.
Недостатком данного устройства является его недостаточная чувствительность для контроля содержания оксида углерода, высокая рабочая температура - 300°С и трудоемкость его изготовления.The disadvantage of this device is its lack of sensitivity to control the content of carbon monoxide, a high working temperature of 300 ° C and the complexity of its manufacture.
Ближайшим техническим решением к изобретению является газовый датчик, состоящий из непроводящей подложки и поликристаллической пленки антимонида индия, легированного селенидом цинка, с нанесенными на ее поверхность металлическими электродами (патент РФ №2206083. М. Кл. 7G 01 №27/12).The closest technical solution to the invention is a gas sensor, consisting of a non-conductive substrate and a polycrystalline film of indium antimonide doped with zinc selenide, with metal electrodes deposited on its surface (RF patent No. 2206083. M. Cl. 7G 01 No. 27/12).
Недостатком известного устройства является его недостаточная чувствительность при контроле микропримесей оксида углерода. Кроме того, конструкция датчика предполагает при его изготовлении операции легирования и напыления металлических электродов.A disadvantage of the known device is its lack of sensitivity in the control of trace amounts of carbon monoxide. In addition, the design of the sensor involves the manufacture of alloying and deposition of metal electrodes during its manufacture.
Задачей изобретения является создание датчика, позволяющего, при повышенной чувствительности и технологичности его изготовления, определять содержание микропримесей оксида углерода в газовых смесях при комнатной температуре.The objective of the invention is to provide a sensor that allows, with increased sensitivity and manufacturability of its manufacture, to determine the content of trace amounts of carbon monoxide in gas mixtures at room temperature.
Поставленная задача решена за счет того, что в известном газовом датчике, содержащем полупроводниковое основание и подложку, согласно изобретению, полупроводниковое основание выполнено в виде наноразмерной пленки теллурида кадмия, а подложкой служит электродная площадка пьезокварцевого резонатора.The problem is solved due to the fact that in the known gas sensor containing a semiconductor base and a substrate, according to the invention, the semiconductor base is made in the form of a nanoscale film of cadmium telluride, and the substrate is an electrode pad of a piezoelectric crystal.
Сущность изобретения поясняется чертежами, где представлены на фиг.1 - конструкция заявляемого датчика, на фиг.2 - кривая зависимости величины адсорбции оксида углерода от температуры, на фиг.3 - градуировочная кривая зависимости изменения частоты колебания пьезокварцевого резонатора с нанесенной полупроводниковой наноразмерной пленкой (Δf) в процессе адсорбции при комнатной температуре от начального давления СО (РСО). Последняя наглядно демонстрирует его чувствительность.The invention is illustrated by drawings, in which Fig. 1 shows the design of the inventive sensor, Fig. 2 shows a curve of the temperature dependence of the adsorption of carbon monoxide, Fig. 3 shows a calibration curve for the variation in the frequency of oscillations of a piezoelectric crystal with a deposited semiconductor nanoscale film (Δf ) in the process of adsorption at room temperature from the initial pressure of CO (P CO ). The latter clearly demonstrates its sensitivity.
Датчик состоит из полупроводникового основания 1, выполненного в виде наноразмерной пленки теллурида кадмия, нанесенной на электродную площадку 2 пьезокварцевого резонатора 3 (фиг.1).The sensor consists of a
Принцип работы такого датчика основан на адсорбционно-десорбционных процессах, протекающих на полупроводниковой пленке, нанесенной на электродную площадку пьезокварцевого резонатора, и вызывающих изменение его массы, и соответственно, частоты колебаний (Δf).The principle of operation of such a sensor is based on adsorption-desorption processes occurring on a semiconductor film deposited on the electrode pad of a piezoelectric crystal and causing a change in its mass and, accordingly, the vibration frequency (Δf).
Работа датчика осуществляется следующим образом.The operation of the sensor is as follows.
Датчик помещают в находящуюся при комнатной температуре камеру (ею может быть обычная стеклянная трубка), через которую пропускают (или в которой выдерживают) анализируемый на содержание СО газ. При контакте пропускаемого газа с поверхностью полупроводниковой пленки CdTe происходит избирательная адсорбция молекул СО, увеличение массы композиции «пленка-кварцевый резонатор» и изменение частоты колебания последнего. По величине изменения частоты с помощью градуировочных кривых можно определить содержание оксида углерода в исследуемой среде.The sensor is placed in a chamber at room temperature (it can be an ordinary glass tube) through which the gas analyzed for CO content is passed (or in which it is held). Upon contact of the transmitted gas with the surface of the CdTe semiconductor film, selective adsorption of CO molecules occurs, the mass of the film-quartz resonator composition increases, and the vibration frequency of the latter changes. The magnitude of the frequency change using calibration curves can determine the content of carbon monoxide in the test medium.
Из анализа приведенной на фиг.3 типичной градуировочной кривой, полученной с помощью заявляемого датчика и выражающей зависимость изменения частоты (Δf) от содержания оксида углерода (РСО), следует: заявляемый датчик позволяет определять содержание оксида углерода с чувствительностью, в несколько раз превышающей чувствительность известных датчиков. Кроме того, существенно упрощается технология изготовления датчика, т.к. отпадает необходимость в легировании и нанесении электродов.From the analysis of a typical calibration curve shown in FIG. 3, obtained using the inventive sensor and expressing the dependence of the frequency change (Δf) on the carbon monoxide content (P CO ), the inventive sensor allows you to determine the carbon monoxide content with a sensitivity several times higher than the sensitivity known sensors. In addition, the manufacturing technology of the sensor is significantly simplified, there is no need for alloying and applying electrodes.
Малые габариты устройства (рабочий объем менее 0,2 см3) в сочетании с малой массой пленки-адсорбента позволяют снизить постоянную датчика по времени до 10-20 мс.Small dimensions of the device (working volume less than 0.2 cm 3 ) in combination with a small mass of the adsorbent film can reduce the sensor constant in time to 10-20 ms.
Конструкция заявляемого датчика позволяет также улучшить и другие характеристики: быстродействие, регенерируемость, способность работать не только в статическом, но и динамическом режиме.The design of the inventive sensor can also improve other characteristics: speed, regenerability, the ability to work not only in static but also in dynamic mode.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010131326/28A RU2458338C2 (en) | 2010-07-26 | 2010-07-26 | Nano-semiconductor gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010131326/28A RU2458338C2 (en) | 2010-07-26 | 2010-07-26 | Nano-semiconductor gas sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010131326A RU2010131326A (en) | 2012-02-10 |
RU2458338C2 true RU2458338C2 (en) | 2012-08-10 |
Family
ID=45853015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010131326/28A RU2458338C2 (en) | 2010-07-26 | 2010-07-26 | Nano-semiconductor gas sensor |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2458338C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2526226C1 (en) * | 2013-02-08 | 2014-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" | Semiconductor gas analyser |
RU2637791C1 (en) * | 2016-07-12 | 2017-12-08 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" | Semiconductor sensor of carbon oxide |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2178558C1 (en) * | 2000-04-20 | 2002-01-20 | Омский государственный технический университет | Gas transducer |
RU2178559C2 (en) * | 1999-11-29 | 2002-01-20 | Омский государственный технический университет | Semiconductor gas transducer |
WO2008039165A2 (en) * | 2005-07-20 | 2008-04-03 | Nanomix, Inc. | Carbon dioxide nanosensor, and respiratory co2 monitors |
-
2010
- 2010-07-26 RU RU2010131326/28A patent/RU2458338C2/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2178559C2 (en) * | 1999-11-29 | 2002-01-20 | Омский государственный технический университет | Semiconductor gas transducer |
RU2178558C1 (en) * | 2000-04-20 | 2002-01-20 | Омский государственный технический университет | Gas transducer |
WO2008039165A2 (en) * | 2005-07-20 | 2008-04-03 | Nanomix, Inc. | Carbon dioxide nanosensor, and respiratory co2 monitors |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2526226C1 (en) * | 2013-02-08 | 2014-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" | Semiconductor gas analyser |
RU2637791C1 (en) * | 2016-07-12 | 2017-12-08 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" | Semiconductor sensor of carbon oxide |
Also Published As
Publication number | Publication date |
---|---|
RU2010131326A (en) | 2012-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2398219C1 (en) | Semiconductor gas analyser | |
RU2281485C1 (en) | Semiconductor gas sensor | |
RU2526225C1 (en) | Gas sensor | |
RU2530455C1 (en) | Nanosemiconductor gas sensor | |
RU2565361C1 (en) | Semiconductor carbon monoxide gas analyser | |
RU2350936C1 (en) | Semiconducting gas analyser | |
RU2395799C1 (en) | Gas analyser of carbon oxide | |
RU2422811C1 (en) | Nano-semiconductor gas sensor | |
RU2400737C2 (en) | Ammonia trace contaminant detector | |
RU2326371C1 (en) | Carbon monoxide transducer | |
RU2469300C1 (en) | Semiconductor gas analyser | |
RU2548049C1 (en) | Semi-conductor gas analyser of carbon monoxide | |
RU2423688C1 (en) | Nano-semiconductor gas analyser | |
RU2458338C2 (en) | Nano-semiconductor gas sensor | |
RU2652646C1 (en) | Ammonia trace contaminant sensor | |
RU2350937C1 (en) | Detector of carbon oxide | |
RU2613482C1 (en) | Ammonia semiconductor sensor | |
RU2649654C2 (en) | Co sensor | |
RU2631010C2 (en) | Semiconductive analyzer of carbon oxide | |
RU2603337C1 (en) | Semiconductor gas sensor of trace impurities of oxygen | |
RU2700036C1 (en) | Carbon monoxide gas monomer | |
RU2666189C1 (en) | Carbon monoxide sensor | |
RU2637791C1 (en) | Semiconductor sensor of carbon oxide | |
RU2610349C1 (en) | Semiconductor gas sensor for oxygen trace substances | |
RU2464553C1 (en) | Semiconductor gas analyser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150727 |