RU2458152C2 - Устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере - Google Patents

Устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере Download PDF

Info

Publication number
RU2458152C2
RU2458152C2 RU2010110906/02A RU2010110906A RU2458152C2 RU 2458152 C2 RU2458152 C2 RU 2458152C2 RU 2010110906/02 A RU2010110906/02 A RU 2010110906/02A RU 2010110906 A RU2010110906 A RU 2010110906A RU 2458152 C2 RU2458152 C2 RU 2458152C2
Authority
RU
Russia
Prior art keywords
input
converter
unit
level
shunt
Prior art date
Application number
RU2010110906/02A
Other languages
English (en)
Other versions
RU2010110906A (ru
Inventor
Валерий Иванович Веревкин (RU)
Валерий Иванович Веревкин
Михаил Всеволодович Оборин (RU)
Михаил Всеволодович Оборин
Сергей Владимирович Седых (RU)
Сергей Владимирович Седых
Ольга Михайловна Исмагилова (RU)
Ольга Михайловна Исмагилова
Владимир Михайлович Брагин (RU)
Владимир Михайлович Брагин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Кузбасская государственная педагогическая академия"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Кузбасская государственная педагогическая академия" filed Critical Государственное образовательное учреждение высшего профессионального образования "Кузбасская государственная педагогическая академия"
Priority to RU2010110906/02A priority Critical patent/RU2458152C2/ru
Publication of RU2010110906A publication Critical patent/RU2010110906A/ru
Application granted granted Critical
Publication of RU2458152C2 publication Critical patent/RU2458152C2/ru

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

Изобретение относится к измерительной технике. Техническим результатом является повышение точности измерения уровня шлакометаллической эмульсии в кислородном конвертере по поведению импеданса (активного электрического сопротивления) в переходе «фурма-корпус конвертера». Для этого устройство содержит контролирующий орган и источник переменного тока. Устройство снабжено переменным резистором, шунтом, измерителем импеданса, конденсатором и усилителем переменного напряжения, а контролирующий орган содержит сглаживатель, узел вычитания, блок измерения уровня, блок задания опорного сигнала. При этом фурма через конденсатор, шунт, источник переменного тока и переменный резистор электрически соединена с заземленным основанием конвертера и первым входом измерителя импеданса, а шунт соединен со вторым входом измерителя импеданса, выход которого через усилитель переменного напряжения соединен с входом контролирующего органа, который через сглаживатель соединен с первым входом узла вычитания, выход блока задания опорного сигнала соединен со вторым входом узла вычитания, а его выход соединен с входом блока измерения уровня. 1 ил.

Description

Изобретение относится к измерительной технике, в частности к устройствам для измерения уровня шлакометаллической эмульсии в конвертере.
Изобретение может быть применено при измерении уровня шлакометаллической эмульсии (ШМЭ) в ходе продувки стали в кислородном конвертере. Оперативное измерение уровня ШМЭ позволяет своевременно принимать меры, необходимые для предотвращения переливов шлакометаллической эмульсии через горловину кислородного конвертера, а также правильно управлять процессом продувки стали с учетом поведения шлака.
Известно устройство для реализации способа контроля уровня ванны в кислородном конвертере, включающее микрофон, установленный вблизи горловины конвертера, усилитель, узкополосный фильтр и вычислительное устройство, преобразующие полученный сигнал от микрофона и передающие его на вторичный прибор. При этом уровень ванны определяют по логарифму отношения звуковых давлений на частотах 1,8-2,2 и 3,3-3,7 кГц, соотносящихся между собой по определенному математическому выражению (патент SU 357230 МПК 7, С21С 5/30. Способ контроля уровня ванны в кислородном конвертере. Явойский В.И., Колясин С.М., Окороков Б.Н., Голятин В.Н., Пропой А.И., Симсарьян Р.А., Серветник В.М., Колесник В.Д. - Заявл. 19.05.1969. Опубл. 31.10.1972. Бюл. №33).
Недостатком устройства является низкая точность задания уровня ванны, что объясняется прежде всего недостаточной информативностью звуковых давлений и их известным соотношением для оперативной оценки уровня ванны в кислородном конвертере. Кроме того, звуковое давление зашумляется звуками от двигающихся кранов, параллельно работающих конвертеров, систем загрузки и т.п. Установка микрофона вблизи горловины конвертера приводит к его быстрому загрязнению и повреждению.
Также известно устройство для реализации способа контроля уровня металлической ванны при электрошлаковом процессе, включающее контактный шунт и электрически связанный с ним контролирующий орган, причем перед контролирующим органом установлены эмиттерный повторитель и усилитель постоянного тока. С целью повышения надежности контроля в качестве контрольного сигнала используют изменение потенциала, возникающего на участке шунт-металл от протекающего через шлаки сварного тока (патент SU 1217609 МПК 7, В23K 25/00. Способ контроля уровня металлической ванны при электрошлаковом процессе. Бурдыкин В.К., Ситников И.И., Покровский Г.Т., Шалаев А.А., Рабинович А.Я., Камбаров В.А. - Заявл. 04.03.1980. Опубл. 15.03.1986. Бюл. №10).
К недостатку способа относится то, что он не предназначен для измерения уровня шлакометаллической эмульсии (смеси шлака, металла и газа) по ходу продувки стали в кислородном конвертере. Для реализации конвертерного процесса в конвертерной установке внешний источник электрического тока не используется. Таким образом отсутствует внешний источник для создания потенциала, возникающего на участке шунт-металл. Вместе с тем за счет физико-химических явлений, имеющих место в шлаке, металле, газовой фазе и на границах взаимодействия в конвертерной ванне, формируется собственный источник электрического напряжения. Численное значение возникающей разности потенциалов трудно предсказуемо и зависит от большого числа факторов. Его использование в качестве источника тока для создания разности потенциалов на участке шунт-металл затруднительно. Введение шунта в контакт со шлаком и металлом через стенку конвертера нетехнологично, так как существенно снижает стойкость футеровки и затрудняет обслуживание конвертера.
Наиболее близким к предлагаемому является устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере, раскрытое в патенте Австрии №234127, 10.06.1964, которое содержит источник переменного тока и контролирующий орган. Уровень ванны измеряют контролирующим органом по взаимодействию фурмы со шлакометаллической эмульсией.
К недостатку устройства относится то, что оно не учитывает наличие в шлаке, металле, газовой фазе и на границах взаимодействия в конвертерной ванне собственного источника электрического напряжения. Создаваемое этим источником напряжение является помехой, снижает точность измерения уровня ШМЭ. Оно имеет постоянную полярность либо носит низкочастотный характер - изменяется 1-3 раза по направлению за весь период продувки плавки и переменно по величине. Причем численное значение возникающей разности потенциалов трудно предсказуемо и зависит от большого числа факторов. Увеличение тока за счет изменения характеристик источника переменного тока с целью повышения соотношения уровня полезного сигнала к уровню помехи (и увеличения за счет этого точности измерения уровня ШМЭ) является малоэффективным, поскольку внутреннее сопротивление источника тока мало и практически не влияет на многократно большее общее электрическое сопротивление первичной измерительной цепи устройства. В этих условиях измеряемый сигнал оказывается не только зашумленным, но и слабым по величине, что значительно снижает точность измерения уровня ШМЭ в кислородном конвертере.
Целью изобретения является повышение точности измерения уровня шлакометаллической эмульсии в кислородном конвертере по поведению импеданса (активного электрического сопротивления) в переходе «фурма-корпус конвертера».
Поставленная цель достигается тем, что устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере, оснащенном фурмой, содержащее контролирующий орган и источник переменного тока, дополнительно снабжено переменным резистором, шунтом, измерителем импеданса, конденсатором и усилителем переменного напряжения, а контролирующий орган содержит сглаживатель, узел вычитания, блок измерения уровня, блок задания опорного сигнала, при этом фурма через конденсатор, шунт, источник переменного тока и переменный резистор электрически соединена с заземленным основанием конвертера и первым входом измерителя импеданса, а шунт соединен со вторым входом измерителя импеданса, выход которого через усилитель переменного напряжения соединен с входом контролирующего органа, который через сглаживатель соединен с первым входом узла вычитания, выход блока задания опорного сигнала соединен со вторым входом узла вычитания, а его выход соединен с входом блока измерения уровня.
На фиг.1 приведено устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере.
На фиг.1 обозначено: 1 - корпус кислородного конвертера; 2 - цапфа кислородного конвертера; 3 - основание кислородного конвертера; 4 - фурма; 5 - конденсатор; 6 - источник переменного тока; 7 - переменный резистор; 8 - измеритель импеданса, 10 - контролирующий орган; 11 - сглаживатель; 12 - узел вычитания; 13 - блок измерения уровня; 14 - блок задания опорного сигнала; 15 - шунт.
Фурма 4 через конденсатор 5, источник переменного тока 6, шунт 15 и переменный резистор 7 электрически соединена с заземленным основанием кислородного конвертера 3. В свою очередь основание кислородного конвертера конструктивно несет на себе опирающийся на цапфы 2 корпус кислородного конвертера 1. Сигнал, снимаемый между основанием кислородного конвертера 3 и фурмой 4, поступает на первый, а с шунта 15 - на второй входы измерителя импеданса 8, выход которого через усилитель переменного напряжения 9 соединен с входом контролирующего органа 10, а от этого входа через сглаживатель 11 - с первым входом узла вычитания 12, выход блока задания опорного сигнала соединен со вторым входом узла вычитания 12, его выход соединен с входом блока измерения 13, второй вход которого соединен с выходом контролирующего органа и всего устройства.
В качестве технической базы устройства используются, например, следующие элементы: конденсатор 5 - электролитический конденсатор марки К50-15; источник переменного тока 6 типа ВС; шунт 15 - постоянное сопротивление типа МЛТ; переменный резистор 7 - типа СП; измеритель импеданса 8, усилитель переменного напряжения 9 - на микросхеме К140УД8, сглаживатель 11 - на базе пассивных RC-цепей потенциального типа; узел вычитания 12 - на резисторах типа СП; блок измерения уровня 13 - потенциометр марки КСП-4; блок задания опорного сигнала 14 марки МТД SVV-10/4-Р.
Сущность работы устройства заключается в следующем.
Корпус кислородного конвертера 1 выполнен в виде стальной обечайки. Изнутри она футерована огнеупорным кирпичом. Жидкие сталь и шлак, располагающиеся в конвертере, обладают достаточно высокой электропроводностью. Это относится и к самому кислородному конвертеру.
В ходе продувки стали шлакометаллическая эмульсия (ШМЭ) может увеличиваться в объеме и ее верхний уровень поднимается в направлении горловины конвертера. При этом часть фурменной трубы оказывается погруженной в ШМЭ. Чем выше уровень ШМЭ, тем значительнее глубина погружения фурмы в ШМЭ.
В ходе продувки кислород поднимается вдоль стенок фурменной трубы, оттесняя ШМЭ к периферии конвертера. Спонтанное поведение ШМЭ в объеме конвертера обуславливает ее периодическое касание фурменной трубы. Одновременно может происходить касание в целом ряде областей фурменной трубы. Чем больше таких касаний происходит одновременно, чем выше суммарная площадь единовременных контактов ШМЭ с фурменной трубой, тем общая электропроводимость контактов выше. Если сделать развертку поверхности фурменной трубы, то схематично процесс образования контактов можно представить в виде параллельного по высоте фурменной трубы образования связей ШМЭ с ее поверхностью.
По мере подъема уровня ШМЭ в кислородном конвертере длина погруженной в ШМЭ фурменной трубы, а значит (при прочих равных условиях) суммарная площадь одновременно возникающих контактов растет, а электропроводность контактов увеличивается. Эта зависимость положена в основу данного изобретения. По величине сглаженного по времени импеданса множества контактов (электросопротивления контактов фурменной трубы с ШМЭ) устройство позволяет измерить уровень ШМЭ.
Устройство работает следующим образом.
В ходе продувки шлакометаллическая эмульсия поднимается в направлении горловины конвертера. Под действием источника переменного тока 6 создает переменный ток по цепи: источник переменного тока 6 - шунт 15 - переменный резистор 7 - основание кислородного конвертера 3 - цапфы 2 - корпус кислородного конвертера 1 - футеровка конвертера - металлическая ванна - шлакометаллическая эмульсия - фурма 4 - конденсатор 5 - источник переменного тока 6. Конденсатор 5 фильтрует постоянную составляющую тока, которая образуется в самом конвертере в результате протекающих в нем физико-химических процессов взаимодействия газа, шлака, металла, фурмы, футеровки и корпуса кислородного конвертера в процессе продувки стали. Шунт 15 выдает напряжение, пропорциональное переменной составляющей тока. Между основанием кислородного конвертера 3 и фурмой 4 создается падение напряжение только от переменного тока, создаваемого источником 6. Это падение напряжения, а также напряжение с шунта 15 поступает в измеритель импеданса 8, где по закону Ома для участка цепи находится величина импеданса:
Figure 00000001
где U - падение напряжения на конвертере - между основанием кислородного конвертера 3 и фурмой 4; J - падение напряжения на шунте, эквивалентное силе тока, протекающего по этому шунту.
Сигнал импеданса с измерителя импеданса 8 усиливается усилителем переменного тока 9 и передается в контролирующий орган 10. В нем сглаживатель 11 сглаживает усиленный сигнал импеданса. Это позволяет выделить низкочастотную составляющую усиленного сигнала импеданса. В результате фильтруются малозначимые колебания импеданса, связанные с периодичностью образующихся и разрывающихся контактов ШМЭ с фурмой. Тем самым сопротивления имеющихся в каждый данный момент времени контактов усредняются. Сглаживание позволяет в усиленном сигнале импеданса выделить неслучайную составляющую, характеризующую уровень ШМЭ.
Узел вычитания 12 из полученного таким образом сигнала фактического значения импеданса вычитает сигнал опорного значения импеданса, формируемый в блоке 14 задания опорного сигнала. Под опорным значением импеданса понимается сигнал фактического значения импеданса, заранее найденный при минимальном уровне ШМЭ.
Разность сигналов фактического и опорного значений импеданса представляет собой сигнал отклонения фактического значения импеданса в каждый данный момент времени продувки стали от его опорного значения. Полученная в узле вычитания 12 разность оказывается очищенной от начального значения сигнала импеданса, описываемого сигналом опорного значения импеданса.
Блок измерения уровня 13 по поступившему на первый вход сигналу импеданса, очищенному от начального значения, измеряет уровень ШМЭ.
Введение конденсатора 5 позволило отфильтровать постоянную по направлению составляющую электрического тока, возникающую вследствие физико-химических процессов взаимодействия газа, шлака, металла, фурмы, футеровки и корпуса кислородного конвертера в процессе продувки стали.
Наличие источника переменного тока 6 позволило пропустить в переходе фурма-корпус кислородного конвертера электрический ток переменного направления, создать тем самым падение напряжения между основанием кислородного конвертера 3 и фурмой 4 и снять с шунта 15 падение напряжения, эквивалентное силе тока, зависящего от уровня ШМЭ.
Введение переменного резистора 7 позволило настроить устройство путем изменения силы тока, пропускаемого через конвертер.
Шунт 15 представляет собой датчик тока.
Введение измерителя импеданса 8 позволило получить сигнал импеданса замкнутой электрической цепи: основание кислородного конвертера 3 - цапфы 2 - корпус кислородного конвертера 1 - футеровка конвертера - металлическая ванна - шлакометаллическая эмульсия - фурма 4. Для измерения используется соотношение (1). Результат измерения представляет собой сигнал переменного напряжения, соответствующий величине полного импеданса названной электрической цепи.
Использование усилителя 9 переменного напряжения позволило усилить сигнал переменного напряжения, соответствующий величине полного импеданса названной электрической цепи.
Введение сглаживателя 11 позволило отфильтровать малозначимые колебания импеданса, связанные с периодичностью образующихся и разрывающихся контактов ШМЭ с фурмой и выделить неслучайную составляющую, характеризующую уровень ШМЭ.
Введение узла вычитания 12 позволило из усиленного сигнала полного импеданса замкнутой цепи вычесть сигнал опорного значения импеданса, очистив тем самым первый из них от начального значения импеданса замкнутой цепи.
Введение блока задания опорного сигнала 14 позволило задать сигнал опорного значения импеданса.
Введение блока измерения уровня позволило измерить уровень ШМЭ.
Номинальное значение сопротивления переменного резистора 7 устанавливают экспериментально. Для его выбора в ходе продувки металла добиваются получения номинального падения напряжения между основанием кислородного конвертера 3 и фурмой 4 не ниже 20-30 мB. При этом положение движка резистора должно соответствовать максимальному значению сопротивления. В ходе последующей настройки устройства допускается снижение сопротивления переменного резистора 7 на 15-20% для последующей коррекции работы устройства.
Шунт 6 представляет собой манганиновое сопротивление, численное значение которого выбирается исходя из требования получения номинального падения напряжения в 25 мВ на выходе шунта при силе тока, обеспечивающей номинальное значение падения напряжения между основанием кислородного конвертера 3 и фурмой 4.
Коэффициент усиления усилителя переменного тока 9, исполняющего роль согласующего звена, устанавливают исходя из требования согласования номинальных значений напряжений фактического и опорного сигналов, поступающих соответственно на первый и второй входы узла вычитания 12.
Сглаживатель 11 настраивается таким образом, чтобы, начиная с конца первого периода продувки, изменение состояния конвертерного процесса от выносов металла (интенсивного разбрызгивания жидкого металла через горловину конвертера) до выбросов ШМЭ (переливов ШМЭ через горловину конвертера) приводило к возрастанию сглаженного напряжения на выходе сглаживателя в 1,5-1,7 раза.
Устройство может быть использовано для измерения уровня ШМЭ широкой номенклатуры конвертеров и технологий производства сталей и сплавов.

Claims (1)

  1. Устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере, оснащенном фурмой, содержащее контролирующий орган и источник переменного тока, отличающееся тем, что оно снабжено переменным резистором, шунтом, измерителем импеданса, конденсатором и усилителем переменного напряжения, а контролирующий орган содержит сглаживатель, узел вычитания, блок измерения уровня, блок задания опорного сигнала, при этом фурма через конденсатор, шунт, источник переменного тока и переменный резистор электрически соединена с заземленным основанием конвертера и первым входом измерителя импеданса, а шунт соединен со вторым входом измерителя импеданса, выход которого через усилитель переменного напряжения соединен с входом контролирующего органа, который через сглаживатель соединен с первым входом узла вычитания, выход блока задания опорного сигнала соединен со вторым входом узла вычитания, а его выход соединен с входом блока измерения уровня.
RU2010110906/02A 2010-03-22 2010-03-22 Устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере RU2458152C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010110906/02A RU2458152C2 (ru) 2010-03-22 2010-03-22 Устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010110906/02A RU2458152C2 (ru) 2010-03-22 2010-03-22 Устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере

Publications (2)

Publication Number Publication Date
RU2010110906A RU2010110906A (ru) 2011-09-27
RU2458152C2 true RU2458152C2 (ru) 2012-08-10

Family

ID=44803630

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010110906/02A RU2458152C2 (ru) 2010-03-22 2010-03-22 Устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере

Country Status (1)

Country Link
RU (1) RU2458152C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT234127B (de) * 1962-07-25 1964-06-10 Bot Brassert Oxygen Technik Ag Verfahren zur Betriebsregelung von Blasverfahren in Abhängigkeit vom Schäumungsgrad der Schlacke
FR1559912A (ru) * 1968-03-07 1969-03-14
US3967501A (en) * 1974-06-19 1976-07-06 Armco Steel Corporation Slag level detection system
SU1217609A1 (ru) * 1980-03-04 1986-03-15 Предприятие П/Я Р-6564 Способ контрол уровн металлической ванны при электрошлаковом процессе

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT234127B (de) * 1962-07-25 1964-06-10 Bot Brassert Oxygen Technik Ag Verfahren zur Betriebsregelung von Blasverfahren in Abhängigkeit vom Schäumungsgrad der Schlacke
FR1559912A (ru) * 1968-03-07 1969-03-14
US3967501A (en) * 1974-06-19 1976-07-06 Armco Steel Corporation Slag level detection system
SU1217609A1 (ru) * 1980-03-04 1986-03-15 Предприятие П/Я Р-6564 Способ контрол уровн металлической ванны при электрошлаковом процессе

Also Published As

Publication number Publication date
RU2010110906A (ru) 2011-09-27

Similar Documents

Publication Publication Date Title
KR101176735B1 (ko) 전기 아크로, 전기 아크로 제어 방법, 및 전기 아크로의 포말형 슬래그의 높이 결정 방법
KR101141995B1 (ko) 금속 용기 내의 용융 금속욕 버블링을 제어하는 방법 및상기 방법을 실시하는 장치
KR930007114B1 (ko) 복수 주파수 자계를 이용한 전자기 유량계
ID28879A (id) Teknik derau elektrokimia untuk korosi
RU2458152C2 (ru) Устройство для измерения уровня шлакометаллической эмульсии в кислородном конвертере
KR101612902B1 (ko) 슬래그 폼의 모니터링을 위한 음향 신호의 측정 장치 및 방법
ATE374939T1 (de) Verfahren zur bestimmung einer restbetriebsdauer einer potentiometrischen messsonde, vorrichtung zur durchführung des verfahrens und ihre verwendung
Vicente et al. Magnetic field-based arc stability sensor for electric arc furnaces
NO20060996L (no) Fremgangsmate og apparatur for a kontrollere metallseparasjon
CA2925349C (en) Measurement of electrical variables on a dc furnace
CN114018187A (zh) 转炉炼钢渣厚检测方法、装置及电子设备
JPH0363804A (ja) 液体金属を処理する電気炉内のアークの不安定性を測定するための方法及び装置
JP4760013B2 (ja) 溶鉱炉内溶融物レベル計測方法および装置
JP3891564B2 (ja) 溶鋼の減圧脱炭法における脱炭処理時間の制御方法
SU779398A1 (ru) Устройство дл контрол скорости обезуглероживани в ванне металлургического агрегата
KR100554144B1 (ko) 엘에프 승온조업방법
KR20130066723A (ko) 유도코일을 이용한 전기로 내 고철량 실시간 측정장치
SU1177353A1 (ru) устройство для контроля УРОВНЯ ВАННЫ В КОНВЕРТОРЕ
KR100733330B1 (ko) 제강 전기로의 전극봉 제어방법
RU2026360C1 (ru) Устройство определения момента слива металла из конвертера
SU1082832A1 (ru) Устройство дл контрол параметров конверторного процесса
SU357230A1 (ru) СПОСОБ КОНТРОЛЯ УРОВНЯ ВАННЫ В КИСЛОРОДНОМ КОНВЕРТЕРЕ":::f-'-':'-^V/; USif'k I
JP2007245208A (ja) 鋳型内溶鋼温度測定方法
JPH0642184Y2 (ja) ガス温度測定装置
KR19990015927A (ko) 고로 냉각설비의 냉각수 누수 검지장치 및 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120323