RU2457100C2 - Способ релаксации остаточных напряжений - Google Patents

Способ релаксации остаточных напряжений Download PDF

Info

Publication number
RU2457100C2
RU2457100C2 RU2010118995/02A RU2010118995A RU2457100C2 RU 2457100 C2 RU2457100 C2 RU 2457100C2 RU 2010118995/02 A RU2010118995/02 A RU 2010118995/02A RU 2010118995 A RU2010118995 A RU 2010118995A RU 2457100 C2 RU2457100 C2 RU 2457100C2
Authority
RU
Russia
Prior art keywords
tool
processing
relaxation
source
parts
Prior art date
Application number
RU2010118995/02A
Other languages
English (en)
Other versions
RU2010118995A (ru
Inventor
Альберт Викторович Королев (RU)
Альберт Викторович Королев
Александр Альбертович Королев (RU)
Александр Альбертович Королев
Андрей Альбертович Королев (RU)
Андрей Альбертович Королев
Original Assignee
Альберт Викторович Королев
Александр Альбертович Королев
Андрей Альбертович Королев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альберт Викторович Королев, Александр Альбертович Королев, Андрей Альбертович Королев filed Critical Альберт Викторович Королев
Priority to RU2010118995/02A priority Critical patent/RU2457100C2/ru
Publication of RU2010118995A publication Critical patent/RU2010118995A/ru
Application granted granted Critical
Publication of RU2457100C2 publication Critical patent/RU2457100C2/ru

Links

Images

Landscapes

  • Turning (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Изобретение относится к машиностроению и приборостроению, а именно к технологическим операциям релаксации остаточных напряжений в деталях. Осуществляют введение в контакт с деталью по меньшей мере одного инструмента в виде источника ультразвуковых колебаний. Деталь непрерывно вращают вокруг своей оси. Осуществляют подачу инструмента вдоль обрабатываемой поверхности детали. Инструмент прижимают к детали с силой, обеспечивающей деформацию детали на величину, большую или равную амплитуде его ультразвуковых колебаний. Скорость подачи инструмента выбирают из условия, чтобы энергия ультразвуковых колебаний за время обработки с учетом ее потерь превышала энергию, необходимую для релаксации остаточных напряжений детали. В результате повышается производительность обработки деталей. 2 ил.

Description

Изобретение относится к машиностроению и приборостроению, а именно к технологическим операциям релаксации остаточных напряжений в деталях.
Известен способ релаксации остаточных напряжений, включающий введение в контакт детали и инструмента, представляющего собой источник ультразвуковых колебаний, и поворот детали вокруг своей оси (RU 2140842 С1). Деталь закрепляют на неподвижной опоре в виде призмы, источник ультразвуковых колебаний устанавливают на жестко фиксированном расстоянии от опоры, поворот детали осуществляют периодически после некоторого времени обработки в каждом фиксированном положении детали.
Недостатками данного способа являются низкая производительность и низкое качество обработки, так как релаксация осуществляется неравномерно вдоль поперечного сечения детали, а также вдоль оси детали большой протяженности.
Наиболее близким по технической сущности и достигаемому эффекту к заявляемому (прототипом) является способ релаксации деталей ультразвуковым инструментом, прижимаемым к обрабатываемой поверхности с определенной силой и перемещаемым вдоль этой поверхности (RU 2252859 С1, В24B 39/04, 27.05.2005). Ультразвуковой инструмент представляет собой волновод, на торце которого закреплен съемный рабочий наконечник, выполненный из материала, соответствующего физико-механическим свойствам обрабатываемого материала.
Недостатками данного способа являются низкая производительность и низкое качество обработки, так как не регламентированы режимы обработки, в результате чего либо затрачивается излишнее время обработки, либо не полностью удаляются остаточные напряжения, либо могут возникнуть новые неблагоприятные напряжения в деталях.
Задачей настоящего изобретения является повышение качества и производительности обработки деталей.
Поставленная задача решается тем, что в известном способе релаксации остаточных напряжений деталей ультразвуковым инструментом, прижимаемым к обрабатываемой поверхности с определенной силой и перемещаемым вдоль этой поверхности, силу прижима инструмента к детали выбирают из условия, чтобы она вызывала исключительно упругую деформацию детали на величину, большую или равную амплитуде колебаний инструмента, а подачу инструмента вдоль обрабатываемой поверхности ограничивают необходимостью сообщить детали за время обработки ультразвуковую энергию с учетом ее потерь, равную энергии образования остаточных напряжений в данной детали. Другим отличием является то, что детали подвергают ультразвуковой обработке как минимум дважды одним или одновременно несколькими ультразвуковыми инструментами, причем режим обработки каждой последующей обработки устанавливают в зависимости от эффективности предыдущих обработок.
Так как силу прижима инструмента к детали выбирают из условия возникновения исключительно упругой деформации детали, то при обработке не возникают новые напряжения, так как при пластической деформации детали после обработки возникает остаточная деформация, приводящая к неблагоприятному перераспределению остаточных напряжений. Если величина упругой деформации детали больше или равна амплитуде колебаний ультразвукового инструмента, то в процессе обработки деталь и инструмент будут непрерывно находиться в контакте, иначе эффективность обработки падает, а на поверхности детали может возникнуть наклеп. Ограничение подачи инструмента необходимо, чтобы за время обработки деталь получила с учетом потерь энергию деформации инструментом, достаточную для удаления остаточных напряжений, которая равна энергии образования этих остаточных напряжений в детали. Использование многократной обработки деталей ультразвуком позволяет повысить качество обработки, так как периодическое нагружение деталей и снятие нагрузки позволяет использовать меньшие нагрузки, более равномерно перераспределять напряжения в деталях и более своевременно закончить процесс обработки, не допуская возникновение новых нежелательных напряжений. Кроме того, многократная обработка деталей одновременно несколькими инструментами позволяет резко повысить производительность процесса.
На фиг.1 изображена схема релаксации напряжений длинной детали; на фиг.2 - схема релаксации остаточных напряжений в коротких деталях.
Обрабатываемую деталь 1 (фиг.1), представляющую собой полый вал, устанавливают в центрах 2. К ней подводят инструмент 3, представляющий собой источник ультразвуковых колебаний, колеблющийся с частотой f, и прижимают его к детали с силой Р. Затем детали 1 сообщают вращение с частотой nd, а инструмент 3 перемещают вдоль оси детали со скоростью Sν.
При обработке коротких деталей 4 (фиг.2) их устанавливают на опору 5, представляющую собой механизм направления и перемещения деталей, и к ним прижимают с силой Р1 и Р2 и т.д. несколько инструментов 6 - источников ультразвуковых колебаний, колеблющихся с частотой f1, f2 и т.д. Деталям 4 придают вращение с частотой nd вокруг их оси и перемещают с подачей Sν вдоль обрабатываемой поверхности относительно инструментов 6. Режим обработки каждым последующим инструментом устанавливают в зависимости от эффективности обработки предыдущими инструментами.
Так как инструмент 3 озвучивает деталь 1 во всех ее сечениях, то осуществляется равномерная релаксация остаточных напряжений в поперечном сечении и по всей длине детали (фиг.1).
При обработке коротких деталей 4 (фиг.2) помимо этого повышается производительность, так как обработка осуществляется напроход. Кроме того, возможна установка нескольких инструментов 6, что дополнительно повышает производительность обработки.
Приведем численный пример. Обработке подвергают цилиндрическую кольцевую деталь с наружным диаметром D=20 мм и внутренним диаметром d=10 мм. Длина детали L=250 мм. Материал детали - сталь 40Х, имеющая предел упругости σu=280 МПа и модуль упругости Е=210000 МПа. Максимальная величина остаточных напряжений в детали равна σо=180 МПа. Для релаксации остаточных напряжений используется инструмент, колеблющийся с частотой f=20 кГц и амплитудой А=0,02 мм. Число инструментов равно k=1.
Силу прижима инструмента к детали определяем, с одной стороны, из условия недопустимости остаточной (пластической) деформации по формуле:
Figure 00000001
где σu - предел упругости материала детали, МПа; z - расстояние инструмента от левой опоры, мм; W - момент сопротивления изгибу, мм3, равный:
Figure 00000002
Для указанного выше примера
Figure 00000003
Figure 00000004
Как видно, чем дальше находится инструмент от середины детали, тем допустимая нагрузка Р может быть больше. При перемещении инструмента в середину детали (z=0,5·L) допустимая нагрузка равна Р≤3299 H.
Но, с другой стороны, сила прижима инструмента к детали должна обеспечивать деформацию детали на величину, большую или равную амплитуде ультразвуковых колебаний. В противном случае потери энергии колебаний будут значительно возрастать.
Для длинных деталей это условие определяется выражением:
Figure 00000005
где J - момент инерции сечения детали, равный:
Figure 00000006
Для условий примера
Figure 00000007
Figure 00000008
Для длинных деталей обработка будет эффективной только при нахождении инструмента в средней части детали при 0,25·L≤z≤0,75·L. Иначе при жестком закреплении по краям детали ее деформация, а следовательно эффективность обработки, будет низкой.
Экспериментально установлено, что часть энергии, полученной деталью в процессе ультразвуковой обработки, расходуется на преодоление внутреннего трения и на изменение ее температуры. Поэтому деталь при ультразвуковой обработке должна получить энергию, как правило, превышающую энергию релаксации напряжений. Исходя из этого подачу Sν вдоль обрабатываемой поверхности выбирают из условия, чтобы энергия ультразвуковых колебаний eu за время обработки превышала энергию eo, необходимую для релаксации остаточных напряжений с учетом ее потерь:
eu≥Kp·eo,
где Kp - коэффициент потери энергии при ее передаче от источника ультразвуковых колебаний к детали.
Коэффициент потери энергии возрастает с увеличением разницы между частотой собственных колебаний детали и частотой колебаний инструмента. В условиях примера Kp=70.
Энергия ультразвуковых колебаний определяется из равенства:
Figure 00000009
,
где Pi, Ai, fi, τi - соответственно сила прижима, амплитуда колебаний, частота колебаний и время обработки i-м инструментом;
k - число инструментов - источников ультразвуковых колебаний.
В свою очередь время обработки равно:
Figure 00000010
,
где Lf - эффективная длина перемещения инструмента.
Эффективная длина перемещения инструмента равна длине обрабатываемой поверхности Lf=L для коротких деталей и Lf=0,5·L для длинных деталей, жестко закрепленных по краям;
тогда
Figure 00000011
Если режим обработки каждым инструментом одинаковый, то
Figure 00000012
Энергия, необходимая для снятия остаточных напряжений, равна энергии образования напряжений. Энергия деформации изгиба детали (фиг.1) равна:
Figure 00000013
где σz - напряжение изгиба в сечении z, МПа.
Например, если характер распределения остаточных напряжений в детали соответствует характеру возникновения напряжений при простом изгибе от действия равномерно распределенной нагрузки, то в этом случае
Figure 00000014
Подставляя данное выражение в предыдущее равенство, после преобразований получим ео=0,157 Дж. Тогда из равенства (3) определим Sν=9,8 м/мин.
Если вместо одного инструмента при обработке данной детали использовать k инструментов, то, как следует из равенства (4), подача инструмента может быть в k раз больше и, следовательно, во столько же раз уменьшится машинное время и тем самым увеличится производительность обработки.
При обработке коротких деталей также повышается производительность обработки, так как обработка осуществляется напроход. При этом время установки и снятия детали перекрывается машинным временем и исключается время на подвод и отвод инструмента. Обычно эти потери составляют от 20% до 50% штучного времени. Поэтому производительность обработки предлагаемым способом повышается в 1,25-2 раза.
Технико-экономическая эффективность предложенного способа обработки заключается в следующим.
1. В повышении качества обработки за счет ограничения деформации детали в процессе обработки и ограничения подачи инструмента, что позволяет полностью удалить остаточные напряжения и не допустить образование новых напряжений.
2. В повышении производительности обработки за счет обеспечения величины деформации детали, большей или равной амплитуде колебаний инструмента, и за счет использования при обработке одновременно нескольких инструментов.
3. В повышении качества обработки за счет использования многократной обработки малыми дозами ультразвуковой энергии, так как это позволяет осуществить более равномерную обработку детали и во время прекратить процесс, не допуская возникновение новых напряжений.
4. В расширении технологических возможностей способа за счет расширения номенклатуры обрабатываемых деталей и области применения способа.
Источники информации
1. RU 2140842 С1.
2. RU 2252859 С1, В24В 39/04, 27.05.2005 - прототип.

Claims (1)

  1. Способ релаксации остаточных напряжений деталей, включающий введение в контакт с деталью по меньшей мере одного инструмента в виде источника ультразвуковых колебаний и поворот детали вокруг своей оси, отличающийся тем, что деталь непрерывно вращают вокруг своей оси, осуществляют подачу инструмента вдоль обрабатываемой поверхности детали, инструмент прижимают к детали с силой, обеспечивающей деформацию детали на величину, большую или равную амплитуде его ультразвуковых колебаний, при этом скорость подачи инструмента выбирают из условия, чтобы энергия ультразвуковых колебаний за время обработки с учетом ее потерь превышала энергию, необходимую для релаксации остаточных напряжений детали.
RU2010118995/02A 2010-05-11 2010-05-11 Способ релаксации остаточных напряжений RU2457100C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010118995/02A RU2457100C2 (ru) 2010-05-11 2010-05-11 Способ релаксации остаточных напряжений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010118995/02A RU2457100C2 (ru) 2010-05-11 2010-05-11 Способ релаксации остаточных напряжений

Publications (2)

Publication Number Publication Date
RU2010118995A RU2010118995A (ru) 2011-11-20
RU2457100C2 true RU2457100C2 (ru) 2012-07-27

Family

ID=45316370

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010118995/02A RU2457100C2 (ru) 2010-05-11 2010-05-11 Способ релаксации остаточных напряжений

Country Status (1)

Country Link
RU (1) RU2457100C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2719673C1 (ru) * 2019-08-14 2020-04-21 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" Способ ультразвуковой обработки изделий из стеклокерамики

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1255405A1 (ru) * 1984-09-06 1986-09-07 Предприятие П/Я А-1495 Способ поверхностного пластического деформировани деталей
RU2170654C1 (ru) * 1999-11-16 2001-07-20 Ульяновский государственный технический университет Способ упрочнения деталей поверхностным пластическим деформированием
WO2004013359A1 (en) * 2002-07-31 2004-02-12 U.I.T., L.L.C. Ultrasonic impact machining of body surfaces to correct defects and strengthen work surfaces
RU2252859C1 (ru) * 2004-07-23 2005-05-27 Холопов Юрий Васильевич Ультразвуковой инструмент для снятия остаточных напряжений и упрочнения поверхностей металлов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1255405A1 (ru) * 1984-09-06 1986-09-07 Предприятие П/Я А-1495 Способ поверхностного пластического деформировани деталей
RU2170654C1 (ru) * 1999-11-16 2001-07-20 Ульяновский государственный технический университет Способ упрочнения деталей поверхностным пластическим деформированием
WO2004013359A1 (en) * 2002-07-31 2004-02-12 U.I.T., L.L.C. Ultrasonic impact machining of body surfaces to correct defects and strengthen work surfaces
RU2252859C1 (ru) * 2004-07-23 2005-05-27 Холопов Юрий Васильевич Ультразвуковой инструмент для снятия остаточных напряжений и упрочнения поверхностей металлов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2719673C1 (ru) * 2019-08-14 2020-04-21 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" Способ ультразвуковой обработки изделий из стеклокерамики

Also Published As

Publication number Publication date
RU2010118995A (ru) 2011-11-20

Similar Documents

Publication Publication Date Title
JP2004504166A (ja) 超音波を利用したマイクロバニシ仕上げ装置
Choi et al. Effect of ultrasonic vibration in grinding; horn design and experiment
CN202369614U (zh) 液压油缸细长活塞杆表面纳米强化装置
US20070244595A1 (en) Method and means for ultrasonic impact machining of surfaces of machine components
RU2457100C2 (ru) Способ релаксации остаточных напряжений
Sarvi Hampa et al. The role of dry aero-acoustical lubrication and material softening in ultrasonically assisted milling of difficult-to-cut AISI 304 steels
RU2423220C1 (ru) Способ комбинированной обработки шлифованием и поверхностным пластическим деформированием
CN114262788A (zh) 一种大型曲轴变形控制方法
RU2529327C2 (ru) Способ комбинированного упрочнения поверхности деталей
RU2317187C2 (ru) Устройство для безабразивной ультразвуковой финишной обработки и чистового точения поверхностей сложного профиля
Chen et al. Cutting mechanism investigation in vibration-assisted machining
RU2478031C2 (ru) Способ релаксации остаточных напряжений
RU2458777C2 (ru) Способ упрочняющей обработки поверхностей деталей выглаживанием
WO2016027205A1 (en) An apparatus for and a method of turning difficult-to-cut alloys
Zeng et al. Experimental investigation into rotary ultrasonic machining of alumina
Li et al. A Study on the Development of Rotary Ultrasonic Machining Spindle
RU179056U1 (ru) Устройство для ультразвуковой упрочняющей обработки металлической детали
RU2252859C1 (ru) Ультразвуковой инструмент для снятия остаточных напряжений и упрочнения поверхностей металлов
CN215147699U (zh) 一种大口径非球面反射镜横向超声波磁流变抛光设备
Harrison et al. Reduction of lobing in centreless grinding via variation of set-up angles
RU2777322C1 (ru) Устройство для удаления остаточных напряжений в детали
RU213646U1 (ru) Ультразвуковой инструмент для упрочнения внутренних цилиндрических поверхностей металлических изделий
Ma et al. Investigation of intermittent cutting mechanism of abrasive particles in ultrasonic-assisted external cylindrical honing
Iwabe et al. Side milling of helical end mill oscillated in axial direction with ultrasonic vibration
RU2366558C1 (ru) Способ статико-импульсного упрочнения плоских поверхностей с использованием роторного генератора механических импульсов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130512