RU2456636C1 - Лазерный локатор - Google Patents

Лазерный локатор Download PDF

Info

Publication number
RU2456636C1
RU2456636C1 RU2011107340/28A RU2011107340A RU2456636C1 RU 2456636 C1 RU2456636 C1 RU 2456636C1 RU 2011107340/28 A RU2011107340/28 A RU 2011107340/28A RU 2011107340 A RU2011107340 A RU 2011107340A RU 2456636 C1 RU2456636 C1 RU 2456636C1
Authority
RU
Russia
Prior art keywords
frequency
amplifier
laser
output
photodetector
Prior art date
Application number
RU2011107340/28A
Other languages
English (en)
Inventor
Олег Фёдорович Меньших (RU)
Олег Фёдорович Меньших
Original Assignee
Олег Фёдорович Меньших
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Фёдорович Меньших filed Critical Олег Фёдорович Меньших
Priority to RU2011107340/28A priority Critical patent/RU2456636C1/ru
Application granted granted Critical
Publication of RU2456636C1 publication Critical patent/RU2456636C1/ru

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Локатор содержит СО2-лазер непрерывного действия, передающий телескоп, приемный объектив и фотоприемник, работающий в гомодинном режиме фотосмешения. Фотоприемник подключен к последовательно связанным малошумящему высокочастотному широкополосному усилителю, смесителю, широкополосному усилителю, фильтру, компенсирующему потери широкополосному усилителю, амплитудному детектору, пороговому устройству, блоку формирования сигнала радиальной скорости и персональному компьютеру. К компьютеру подключен блок измерения азимута и угла места цели. Ко второму входу смесителя подключен генератор линейно-частотно-модулированного импульсного сигнала, синхронизируемого от генератора синхроимпульсов. В оптический резонатор СО2-лазера введен пьезоэлектрический корректор, связанный с глухим отражателем оптического резонатора и с выходом регулируемого по амплитуде усилителя. Канал измерения дальности включает последовательно связанные с выходом фотоприемника малошумящий среднечастотный полосовой усилитель, дополнительный смеситель, фильтр, частотный детектор, резонансный усилитель, измеритель разности фаз и блок формирования сигнала дальности. Технический результат - возможность измерения наклонной дальности до цели без снижения энергетического потенциала лазерного доплеровского локатора. 5 ил.

Description

Изобретение относится к области измерительной техники и приборостроения и может быть использовано в качестве лазерного локатора для обнаружения и измерения координат и скорости низколетящих ракет морского базирования в интересах ВМФ страны.
Традиционно измерение скорости полета дифракционно ограниченных объектов осуществляют применением доплеровских локаторов с непрерывным режимом немодулированного излучения, однако решение задачи измерения наклонной дальности требует применения модуляции излучения (импульсной, частотной и др.), что существенно снижает предельную дальность проведения этих измерений, вносит потери излучения модулятором [1-4]. Триангуляционные методы измерения наклонной дальности с использованием немодулированного излучения, обеспечивающего наивысший энергетический потенциал локатора при заданной рабочей мощности излучающего лазера, связаны с необходимостью рассредоточения на море группы локаторов, образующих триангуляционную сеть, что снижает эффективность работы такой сети на кораблях из-за требования жесткой взаимной привязки координат кораблей в условиях их движения в боевой обстановке
Известно применение согласованной фильтрации локационных сигналов на основе дисперсионных линий задержки для повышения отношения сигнал/шум [5-21], а также использование средств стабилизации лазерного излучения для повышения обнаружительной способности лазерных локаторов с непрерывным режимом излучения [22-26].
Ближайшим техническим решением к заявляемому является лазерный доплеровский локатор, подобный рассмотренному в [12], содержащий СО2-лазер непрерывного действия, передающий телескоп, приемный объектив, фотоприемник, работающий в гомодинном режиме фотосмешения, подключенный к последовательно связанным малошумящему широкополосному усилителю, смесителю, ко второму входу которого подключен генератор линейно-частотно-модулированного импульсного сигнала, синхронизируемого от генератора синхроимпульсов, широкополосным усилителем, согласованным фильтром на дисперсионной линии задержки, широкополосным усилителем, амплитудным детектором, пороговым устройством, блоком формирования сигнала радиальной скорости и персональным компьютером с дисплеем, к которому подключен блок измерения азимута и угла места цели.
К недостатку лазерного доплеровского локатора относится его неспособность измерения наклонной дальности цели, что не позволяет определить ее текущие координаты, являющиеся важнейшими характеристиками цели, без определения которых невозможно боевое противодействие ракетному удару в море со стороны потенциального противника.
Целью изобретения является возможность измерения наклонной дальности до цели без снижения энергетического потенциала лазерного доплеровского локатора (то есть без использования внешнего электрооптического модулятора непрерывного излучения).
Указанная цель достигается в лазерном локаторе, содержащем СО2-лазер непрерывного действия, передающий телескоп, приемный объектив, фотоприемник, работающий в гомодинном режиме фотосмешения, подключенный к последовательно связанным малошумящему высокочастотному широкополосному усилителю, смесителю, ко второму входу которого подключен генератор линейно-частотно-модулированного импульсного сигнала, синхронизируемого от генератора синхроимпульсов, широкополосным усилителем, согласованным фильтром на дисперсионной линии задержки, компенсирующим потери широкополосным усилителем, амплитудным детектором, пороговым устройством, блоком формирования сигнала радиальной скорости, второй вход которого подключен к выходу генератора синхроимпульсов, и персональным компьютером с дисплеем, к которому подключен блок измерения азимута и угла места цели, отличающимся тем, что в оптический резонатор CO2-лазера непрерывного действия введен пьезоэлектрический корректор, связанный механически с глухим отражателем оптического резонатора, а электрически - с выходом регулируемого по амплитуде усилителя, связанного с регулируемым по частоте генератором переменного тока, а канал измерения дальности включает последовательно связанные с выходом фотоприемника малошумящий среднечастотный полосовой усилитель, дополнительный смеситель, второй вход которого подключен к выходу гетеродина, полосовой фильтр, частотный детектор, резонансный усилитель, измеритель разности фаз, второй вход которого подключен к выходу генератора переменного тока, и блок формирования сигнала дальности.
Достижение заявленной цели объясняется дополнением лазерного доплеровского локатора канала дальности, действующего на основе частотной модуляции лазерного излучения гармоническим сигналом с частотным детектированием среднечастотного отклика с фотоприемника с выделением указанной гармонической составляющей, смещенной по фазе относительно модулирующего гармонического сигнала на величину, пропорциональную измеряемой дальности до цели. При этом частотная модуляция лазерного излучения осуществляется без использования внешнего электрооптического модулятора за счет применения пьезоэлектрического корректора, механически связанного с глухим отражателем оптического резонатора СО2-лазера непрерывного действия, что не изменяет величину его средней мощности излучения.
Блок-схема заявляемого лазерного локатора представлена на рис.1 и включает:
1 - CO2-лазер непрерывного действия,
2 - полупрозрачный отражатель оптического резонатора,
3 - глухой отражатель оптического резонатора,
4 - пьезоэлектрический корректор, механически связанный с глухим отражателем 3,
5 и 6 - электроды высоковольтной электронной накачки лазера,
7 - блок электронной накачки,
8 - передающий телескоп,
9 - расщепитель излучения гомодинного канала,
10 - приемный объектив,
11 - фотоприемник, работающий в режиме фотосмешения, например, на соединении кадмий-ртуть-теллур, охлаждаемый жидким азотом,
12 - малоапертурный отражатель гомодинного канала,
13 - перестраиваемый по частоте генератор переменного тока,
14 - регулируемый по амплитуде усилитель (переменного тока),
15 - малошумящий высокочастотный широкополосный усилитель,
16 - смеситель канала измерения скорости,
17 - генератор линейно-частотно-модулированного (ЛЧМ) импульсного сигнала,
18 - генератор синхроимпульсов,
19 - широкополосный усилитель,
20 - согласованный фильтр на дисперсионной линии задержки (ДЛЗ),
21 - компенсирующий потери широкополосный усилитель,
22 - амплитудный детектор,
23 - пороговое устройство,
24 - блок формирования сигнала радиальной скорости,
25 - персональный компьютер с дисплеем,
26 - малошумящий среднечастотный полосовой усилитель,
27 - дополнительный смеситель (канала дальности),
28 - гетеродин,
29 - полосовой фильтр (среднечастотный широкополосный),
30 - частотный детектор,
31 - резонансный усилитель (настроенный на частоту генератора переменного тока 13),
32 - измеритель разности фаз,
33 - блок формирования сигнала дальности,
34 - блок измерения азимута и угла места цели.
На рис.2 представлены графики, отображающие работу канала скорости лазерного локатора.
Рассмотрим действие лазерного локатора.
С помощью не указанных на рис.1 технических средств наведения по азимуту β и углу места ε излучения СО2-лазера непрерывного действия 1, сформированного передающим телескопом 8 в узкий пучок, на цель - низколетящую над уровнем моря ракету - рассеянное ею излучение формируется приемным объективом 10 в его фокусе в диск Эйри - квазиточечную плоскую волну, которая воздействует на фоточувствительную поверхность фотоприемника 11 совместно с плоской волной гомодинного канала, образованного расщепителем излучения 9 и малоапертурным отражателем 12. В результате фотосмешения указанных пучков когерентного излучения с одинаковой поляризацией на выходе фотоприемника 11 образуется электрический сигнал с разностной частотой Δν(t), величина которой определяется частотами оптических колебаний - излучаемого νИЗЛ(1) и принимаемого νПР(t), которые определяются в функции времени t следующими равенствами:
Figure 00000001
Figure 00000002
где νO - средняя частота излучения CO2-лазера непрерывного действия 1,
ΔνМОД - амплитуда отклонения частоты излучения от средней νO в процессе внутренней частотной модуляции по гармоническому закону при работе пьезоэлектрического корректора 4, изменяющего длину оптического резонатора лазера,
ω=2πf - круговая частота гармонических колебаний, вырабатываемых в перестраиваемом по частоте генераторе переменного тока 13, f - частота этих колебаний,
D - текущее значение наклонной дальности до цели,
V - значение радиальной скорости цели, приближающейся к локатору,
с=3*108 м/с - электродинамическая постоянная, скорость света в вакууме.
Для CO2-лазера частота νO≈3*1013 Гц. Ширина контура усиления составляет около 60 МГц, и величину ΔνМОД можно выбирать в пределах до 30 МГц внутри указанного контура усиления. Подстройка величины ΔνМОД осуществляется регулировкой амплитуды UМОД гармонических колебаний, воздействующих на пьезоэлектрический корректор 4 с выхода регулируемого по амплитуде усилителя 14:
Figure 00000003
Пусть выбираем ΔνМОД=10 МГц. Учитывая, что ΔνМОД<<νО (более, чем на 6 порядков), выражение (2) можно с достаточной степенью точности переписать в виде:
Figure 00000004
В результате фотосмешения взаимно когерентных оптических колебаний, определяемых в (1) и (4), на выходе фотоприемника 11 выделяется электрическое колебание uФ(t) вида:
Figure 00000005
где UФD - амплитуда частотно-модулированных электрических колебаний (среднечастотных) канала дальности, UФV - амплитуда гармонических высокочастотных колебаний канала скорости. Выделяющиеся на выходе фотоприемника 11 спектральные компоненты сигналов с амплитудами UФD и UФV существенно разнесены по спектру, то есть легко отфильтровываются друг от друга и могут быть обработаны раздельно соответственно в каналах скорости и дальности локатора.
Выделение в канале скорости локатора, составленного на элементах 15-24 (рис.1), значения измеряемой радиальной скорости V общеизвестно из рассмотрения прототипа. За счет эффекта Доплера принимаемое локатором излучение, рассеянное приближающейся к локатору цели, смещено на величину ΔνV=2νOV/с, поэтому радиальная скорость находится из простого выражения:
Figure 00000006
Сигнал доплеровского смещения ΔνV воспринимается малошумящим высокочастотным широкополосным усилителем 15 (например, в диапазоне 50…60 МГц применительно к локации ракет типа «Гарпун») и поступает на смеситель 16 канала скорости, на второй вход которого воздействуют периодически следующие импульсные линейно-частотно-модулированные колебания с генератора ЛЧМ 17, запускаемого синхроимпульсами с выхода генератора синхроимпульсов 18. В результате преобразования на выходе смесителя 16 канала скорости выделяются эквивалентные линейно-частотно-модулированные импульсные сигналы (ЛЧМЭ), которые после их усиления в широкополосном усилителе 19 подвергаются спектро-временному «сжатию» в дисперсионной линии задержки (ДЛЗ) 20, имеющей полосу пропускания ΔFЛЗ и длительность импульсной характеристики τЛЗ, значения которых определяют базу ДЛЗ В=ΔFЛЗτЛЗ>>>1. Ультракороткий радиоимпульсный сигнал с выхода ДЛЗ 20 усиливается в компенсирующем потери широкополосном усилителе 21 с полосой пропускания, не меньшей полосы ΔFЛЗ (поскольку длительность «сжатого» радиоимпульса tИМП≈1/ΔFЛЗ), детектируется по амплитуде в амплитудном детекторе 22 и подвергается пороговому ограничению по минимуму в пороговом устройстве 23. уровень порога в котором выбирается из соображений получения необходимой вероятности правильного измерения (обнаружения) при заданной вероятности ложных тревог. Затем импульсный сигнал поступает на блок формирования сигнала радиальной скорости 24, в котором по временному положению фронта этого импульса относительно фронта соответствующего синхроимпульса генератора синхроимпульсов 18 формируется двоичный код, отображающий значение искомой радиальной скорости V согласно (6), и эти данные передаются на первый вход персонального компьютера с дисплеем 25.
На рис.2 отображена процедура измерительного процесса в канале скорости локатора. На рис.2а представлена периодическая последовательность синхроимпульсов uС(t) генератора синхроимпульсов 18. На рис.2б представлен периодически следующий сигнал ГЛЧМ 17 с частотной перестройкой внутри импульса от 80 МГц до 130 МГц для работы по ракете «Гарпун», скорость движения которой составляет 300 м/с. Если эта ракета движется прямо на локатор, доплеровский сдвиг ΔνV=60 МГц. Пусть, например, ракета движется под некоторым углом к линии зондирования локатора, и доплеровский сдвиг равен ΔνV=53 МГц (угол отклонения от линии визирования около 28°), что показано на рис.2в жирной горизонтальной линией. Частота ЛЧМЭ-сигнала (на выходе смесителя 16) показана на этом рисунке жирной пилообразной линией. При возможном разбросе доплеровского сдвига от 50 до 60 МГц (то есть в полосе неопределенности ΔFΞ) сигнал ЛЧМЭ может изменяться в диапазоне от 20…70 МГц до 30…80 МГц. При этом ДЛЗ 20 с полосой 20 МГц в диапазоне от 60 до 80 МГц «сжимает» ЛЧМЭ до величины tИМП=50 нс. При длительности импульсной характеристики ДЛЗ 20 τЛЗ≈100 мкс имеем базу ДЛЗ В=2000. Такая величина базы позволяет, как известно, увеличить отношение сигнал/шум на выходе ДЛЗ в (В)1/2 раз, то есть в данном примере в 44,7 раза или 33 дБ по напряжению. Временное положение «сжатого» радиоимпульса показано на рис.2в снизу рисунка. Это положение кодируется длительностью импульса, представленного на рис.2г относительно запускающего синхроимпульса на рис.2а. Этот код отображает значение радиальной скорости V и поступает на первый вход персонального компьютера с дисплеем 25.
Теперь обратимся к рассмотрению работы канала дальности локатора.
Выделяемая на выходе фотоприемника 11 спектральная компонента с амплитудой UФD усиливается в малошумящем среднечастотном полосовом усилителе 26, например, с полосой пропускания 20 МГц (при максимальной девиации ЧМ-сигнала ΔνМОД=10 МГц), а затем поступает на дополнительный смеситель 27 канала дальности, на второй вход которого поступает гармоническое колебание гетеродина 28, например, на частоте 10 МГц. На выходе этого дополнительного смесителя возникают сигналы суммарной и разностной частоты входных сигналов, поступающих на этот смеситель. Полосовой фильтр 29 выделяет компоненту суммарной частоты от 10 до 20 МГц, которая затем поступает на частотный детектор 30 (дискриминатор), на выходе которого возникает гармоническое колебание вида:
Figure 00000007
где UD - амплитуда гармонического колебания на выходе частотного детектора 30 с учетом его усиления в резонансном усилителе 31, настроенном на круговую частоту ω, соответствующую круговой частоте генератора переменного тока 13.
Сигнал в форме (7) поступает на первый вход измерителя разности фаз 32, ко второму входу которого подключен выход генератора переменного тока 13. Эти сигналы усиливаются и ограничиваются, превращаясь в импульсные сигналы с короткими фронтами, разность временных положений которых определяет разность фаз входных сигналов одной частоты. Эта разность фаз Δφ, измеряемая в блоке 32, как понятно, определяется выражением
Figure 00000008
откуда находят значение наклонной дальности:
Figure 00000009
где измеряемый сдвиг по фазе Δφ для однозначного отсчета наклонной дальности лежит в пределах 0≤Δφ≤2π. Тогда для максимального значения измеряемой наклонной дальности DMAX находим частоту f колебаний в перестраиваемом по частоте генераторе переменного тока 13 из выражения:
Figure 00000010
Так, при частоте f=10 кГц граничное значение DMAX=15 км, что вполне достаточно для тактического использования лазерного локатора по ракетам типа «Гарпун». Разность фаз Δφ в форме длительности некоторого прямоугольного импульса, фронт которого задается начальной фазой колебаний генератора 13, а спад - начальной фазой сигнала (7), формируемого в блоке 33, затем кодируется в этом блоке двоичным кодом, который поступает на второй вход персонального компьютера с дисплеем 25, к третьему входу которого поступает сигнал с выхода генератора синхроимпульсов 18.
К четвертому и пятому входам персонального компьютера с дисплеем 25 поступают кодовые сигналы о текущих значениях азимута β и угла места ε линии визирования цели. Автоматическое наведение линии визирования на движущуюся цель общеизвестно и выходит за рамки данной заявки. Поэтому действие блока измерения азимута и угла места цели 34 в данном техническом решении не рассматривается.
Управляющие первый и второй выходы персонального компьютера с дисплеем 25 соответственно связаны с входами регулирования перестраиваемого по частоте генератора переменного тока 13 и регулируемого по амплитуде усилителя 14. Подстройка частоты f требуется для согласования с частотным детектором 30, а подстройка амплитуды сигнала, подаваемого на пьезоэлектрический корректор 4, необходима для получения требуемой величины девиации ΔνМОД. Так, на больших дальностях величину девиации следует увеличивать, а при приближении цели к локатору можно снижать.
По измеренным угловым координатам цели и значению наклонной дальности легко находятся координаты цели, высота полета ракеты и ее истинная скорость, что позволяет решить задачу о моменте противодействия ракете заградительным огнем скорострельных зенитных орудий.
Модификацией заявляемого устройства является локатор с матричным фотоприемником и многоканальной обработкой на ДЛЗ. Аналогичные решения предложены автором в работах [27-30].
Важно отметить, что использование заявляемого лазерного локатора и его модификаций, позволяющих измерять радиальную скорость и наклонную дальность без использования ВНЕШНЕГО ЭЛЕКТРООПТИЧЕСКОГО МОДУЛЯТОРА излучений, в частности, без использования внешних электрооптических модуляторов треугольных ЛЧМ сигналов, во-первых, существенно упрощает аппаратуру локатора, а во-вторых, значительно повышает его энергетический потенциал, поскольку во внешних модуляторах теряется значительная мощность лазерного излучения. От этого недостатка свободно заявляемое техническое решение.
Практическое изготовление заявляемого технического решения возможно на предприятиях оптико-механической промышленности, например, во ФГУП «ВНЦ «ГОИ имени С.И.Вавилова».
Литература
1. Лазерная локация. Под ред. Н.Д.Устинова. М.: Машиностроение, 1984.
2. Протопопов В.В., Н.Д.Устинов. Инфракрасные лазерные локационные системы. М.: Воениздат, 1987.
3. Измерение спектрочастотных и корреляционных параметров и характеристик лазерного излучения. Под ред. А.Ф.Котова и Б.М.Степанова. М.: Радио и связь, 1982.
4. Кук Ч., Бернфельд М. Радиолокационные сигналы, пер. с англ. Под ред. В.С.Кильзона. М.: Сов. радио, 1971.
5. Фильтры на поверхностных акустических волнах. Под ред. Г.Мэттьюза, М.: Сов. радио, 1981, 472 с.
6. Тверской В.И. Дисперсионно-временные методы измерения спектров радиосигналов. М.: Сов. радио, 1974, 240 с.
7. Джек А.А., Грант П.М., Коллинз Дж.Х. Теория проектирования и применение Фурье-процессоров на поверхностных акустических волнах, ТИИЭИР, 1980, №4, р.22-43.
8. Меньших О.Ф. Формирователь сложных линейно-частотно-модулированных сигналов, Авт. свид. СССР №1302987, 1985.
9. Меньших О.Ф. Способ анализа спектра сигналов. Авт. свид. СССР, №1817554, 1988.
10. Меньших О.Ф. Измеритель частоты сигналов лазерного доплеровского локатора. Авт. свид. СССР №1621728 и Авт. свид. СССР №1621729, 1988.
11. Меньших О.Ф. Спектроанализатор лазерного доплеровского локатора. Авт. свид. СССР №1595219, 1988.
12. Меньших О.Ф. Лазерный доплеровский локатор. Авт. свид. СССР №1741553, 1990.
13. Меньших О.Ф. Способ обнаружения детерминированного радиосигнала. Авт. свид. СССР №1828280, 1991.
14. Меньших О.Ф. Обнаружитель лазерного доплеровского локатора. Авт. свид. СССР №1805756 и №1829640, 1991.
15. Меньших О.Ф. Устройство для частотной модуляции лазера. Авт. свид. СССР №1373188, 1985.
16. Меньших О.Ф. Способ измерения кратковременной стабильности частоты излучения газового лазера. Авт. свид. СССР №1554719, 1987.
17. Меньших О.Ф. Обнаружитель моноимпульсного сигнала. Патент РФ №2046370, 1992.
18. Меньших О.Ф. Согласованный фильтр. Патент РФ №2016493, 1994.
19. Левин Б.Р. Теоретические основы статистической радиотехники. М.: Сов. радио, 1974, кн. 1 и 2.
20. Тихонов В.И. Оптимальный прием сигналов. М.: Радио и связь, 1983, 320 с.
21. Меньших О.Ф. Ультразвуковой микроскоп. Патент РФ №2270997, №6, 2006.
22. Меньших О.Ф. Устройство для измерения динамических характеристик пьезо-корректора лазера. Авт. свид. СССР №1630585, 1988.
23. Меньших О.Ф. Способ измерения базы дисперсионных линий задержки. Авт. свид. СССР №1574036, 1988.
24. Меньших О.Ф. Устройство для измерения кратковременной стабильности частоты излучений газовых лазеров. Авт. свид. СССР №1556291, 1988.
25. Меньших О.Ф. Устройство автоподстройки частоты лазерного доплеровского локатора. Авт. свид. СССР №1591675, 1988.
26. Меньших О.Ф. Устройство для измерения вариации частоты лазерного излучения в системе связанных лазеров. Авт. свид. СССР №1621732, 1988.
27. Меньших О.Ф. Лазерный доплеровский локатор. Патент РФ №2335785, 2008.
28. Меньших О.Ф. Лазерный когерентный локатор. Патент РФ №2352958, 2009.
29. Меньших О.Ф. Способ лазерного гетеродинного приема излучений. Патент РФ №2349930, 2009.
30. Меньших О.Ф. Способ обработки информации в лазерном когерентном локаторе с матричным фотоприемником. Патент РФ №2354994, 2009.
Источники патентной информации
RU 2352958 C1, 20.04.2009 RU 2335785 C1, 10.10.2008
RU 2296350 C1, 27.03.2007 SU 1840450 A1, 20.03.2007
RU 2152058 C1, 27.06.2000 SU 1810030 A3, 27.04.1996
SU 944437 A1, 20.04.1995 RU 2012013 C1, 30.04.1994
JP 6258433 A, 16.09.1994 WO 2004074867 A1, 02.09.2004
GB 2256554 A, 09.12.1992 US 5000567 A, 19.03.1991

Claims (1)

  1. Лазерный локатор, содержащий CO2-лазер непрерывного действия, передающий телескоп, приемный объектив, фотоприемник, работающий в гомодинном режиме фотосмешения, подключенный к последовательно связанным малошумящим высокочастотным широкополосным усилителем, смесителем, ко второму входу которого подключен генератор линейно-частотно-модулированного импульсного сигнала, синхронизируемого от генератора синхроимпульсов, широкополосным усилителем, согласованным фильтром на дисперсионной линии задержки, компенсирующим потери широкополосным усилителем, амплитудным детектором, пороговым устройством, блоком формирования сигнала радиальной скорости, второй вход которого подключен к выходу генератора синхроимпульсов, и персональным компьютером с дисплеем, к которому подключен блок измерения азимута и угла места цели, отличающийся тем, что в оптический резонатор СО2-лазера непрерывного действия введен пьезоэлектрический корректор, связанный механически с глухим отражателем оптического резонатора, а электрически - с выходом регулируемого по амплитуде усилителя, связанного с регулируемым по частоте генератором переменного тока, а канал измерения дальности включает последовательно связанные с выходом фотоприемника малошумящий среднечастотный полосовой усилитель, дополнительный смеситель, второй вход которого подключен к выходу гетеродина, полосовой фильтр, частотный детектор, резонансный усилитель, измеритель разности фаз, второй вход которого подключен к выходу генератора переменного тока, и блок формирования сигнала дальности.
RU2011107340/28A 2011-02-25 2011-02-25 Лазерный локатор RU2456636C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011107340/28A RU2456636C1 (ru) 2011-02-25 2011-02-25 Лазерный локатор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011107340/28A RU2456636C1 (ru) 2011-02-25 2011-02-25 Лазерный локатор

Publications (1)

Publication Number Publication Date
RU2456636C1 true RU2456636C1 (ru) 2012-07-20

Family

ID=46847556

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011107340/28A RU2456636C1 (ru) 2011-02-25 2011-02-25 Лазерный локатор

Country Status (1)

Country Link
RU (1) RU2456636C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2506541C2 (ru) * 2012-02-27 2014-02-10 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ определения координат, курса и скорости воздушного судна
RU2563312C1 (ru) * 2014-05-30 2015-09-20 Олег Фёдорович Меньших Лазерный когерентный локатор целеуказания
RU2565821C1 (ru) * 2014-08-14 2015-10-20 Олег Фёдорович Меньших Лазерный когерентный локатор для ракет морского базирования
RU2575766C1 (ru) * 2014-12-11 2016-02-20 ОАО "Национальный центр лазерных систем и комплексов "Астрофизика" Лазерный локатор
RU2616933C2 (ru) * 2015-01-26 2017-04-18 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ формирования и обработки зондирующего лазерного сигнала

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1381881A1 (en) * 2001-04-12 2004-01-21 Honeywell International Inc. System and method for optically sensing motion of objects
RU2224267C2 (ru) * 2002-02-26 2004-02-20 Министерство Российской Федерации по атомной энергии Способ обнаружения объектов и определения их местоположения и устройство для его осуществления
RU2335785C1 (ru) * 2006-12-26 2008-10-10 Олег Федорович Меньших Лазерный доплеровский локатор
RU2352958C1 (ru) * 2007-09-04 2009-04-20 Олег Федорович Меньших Лазерный когерентный локатор

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1381881A1 (en) * 2001-04-12 2004-01-21 Honeywell International Inc. System and method for optically sensing motion of objects
RU2224267C2 (ru) * 2002-02-26 2004-02-20 Министерство Российской Федерации по атомной энергии Способ обнаружения объектов и определения их местоположения и устройство для его осуществления
RU2335785C1 (ru) * 2006-12-26 2008-10-10 Олег Федорович Меньших Лазерный доплеровский локатор
RU2352958C1 (ru) * 2007-09-04 2009-04-20 Олег Федорович Меньших Лазерный когерентный локатор

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2506541C2 (ru) * 2012-02-27 2014-02-10 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ определения координат, курса и скорости воздушного судна
RU2563312C1 (ru) * 2014-05-30 2015-09-20 Олег Фёдорович Меньших Лазерный когерентный локатор целеуказания
RU2565821C1 (ru) * 2014-08-14 2015-10-20 Олег Фёдорович Меньших Лазерный когерентный локатор для ракет морского базирования
RU2575766C1 (ru) * 2014-12-11 2016-02-20 ОАО "Национальный центр лазерных систем и комплексов "Астрофизика" Лазерный локатор
RU2616933C2 (ru) * 2015-01-26 2017-04-18 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ формирования и обработки зондирующего лазерного сигнала

Similar Documents

Publication Publication Date Title
CN105576478B (zh) 快速扫频的傅里叶域锁模光电振荡器
US5745437A (en) Method and apparatus for coherent burst ranging
Onori et al. Coherent interferometric dual-frequency laser radar for precise range/Doppler measurement
US11112502B2 (en) Laser radar system
US11243307B2 (en) Method for processing a signal from a coherent lidar in order to reduce noise and related lidar system
US3790278A (en) Peaked power coherent pulsed laser transmitter/receiver system
CA3034765A1 (en) Method for processing a signal arising from coherent lidar and associated lidar system
RU2456636C1 (ru) Лазерный локатор
CN109991622A (zh) 一种激光雷达
RU191111U1 (ru) Оптоволоконный когерентный доплеровский лидар
CN114035174A (zh) 双通道双啁啾线性调频连续波激光雷达方法及装置
US10408925B1 (en) Low probability of intercept laser range finder
Liu et al. 11‐GHz‐Bandwidth Photonic Radar using MHz Electronics
USH933H (en) Infrared coherent optical sensor
RU2563312C1 (ru) Лазерный когерентный локатор целеуказания
RU2660450C1 (ru) Устройство радиолокационной станции с непрерывным линейно-частотно-модулированным сигналом и синтезом апертуры
Yang et al. Development of an all-fiber heterodyne lidar for range and velocity measurements
CN104111450A (zh) 一种利用双脉冲探测目标微多普勒特征的方法及系统
CN115792861A (zh) 一种实现脉冲激光多普勒雷达信号相干累加的装置及方法
RU2565821C1 (ru) Лазерный когерентный локатор для ракет морского базирования
EP1483600A1 (en) Modelocked laser transmitter for synthetic aperture ladar
Pillet et al. Wideband dual-frequency lidar-radar for simultaneous velocity and high-resolution range profile measurements
RU2451302C1 (ru) Имитатор бликовых переотражений лазерного излучения морской поверхностью
Pillet et al. Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement
CN116601529A (zh) 激光雷达装置和风计测方法