RU2453811C1 - Электронный уровень - Google Patents

Электронный уровень Download PDF

Info

Publication number
RU2453811C1
RU2453811C1 RU2010152078/28A RU2010152078A RU2453811C1 RU 2453811 C1 RU2453811 C1 RU 2453811C1 RU 2010152078/28 A RU2010152078/28 A RU 2010152078/28A RU 2010152078 A RU2010152078 A RU 2010152078A RU 2453811 C1 RU2453811 C1 RU 2453811C1
Authority
RU
Russia
Prior art keywords
hundred
inputs
decoder
outputs
sixtieth
Prior art date
Application number
RU2010152078/28A
Other languages
English (en)
Inventor
Павел Игоревич Шупейкин (RU)
Павел Игоревич Шупейкин
Original Assignee
Павел Игоревич Шупейкин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Павел Игоревич Шупейкин filed Critical Павел Игоревич Шупейкин
Priority to RU2010152078/28A priority Critical patent/RU2453811C1/ru
Application granted granted Critical
Publication of RU2453811C1 publication Critical patent/RU2453811C1/ru

Links

Images

Abstract

Изобретение относится к измерительной технике, может быть использовано для контроля горизонтальности поверхностей изделий и в строительстве. Сущность изобретения в том, что в электронный уровень, содержащий блок обработки сигналов, вводятся блок излучателя, матрица приборов с зарядовой инжекцией /ПЗИ/ и плоскопанельный дисплей, последовательно соединенные генератор тактовых импульсов и делитель частоты. При этом блок обработки сигналов включает четыре идентичных шифратора и блок индикации. Техническими результатами являются выполнение контроля горизонтальности поверхности синхронно по двум координатам и визуальное наблюдение отклонения от горизонтали на экране плоскопанельного дисплея. 4 ил.

Description

Изобретение относится к измерительной технике, может быть использовано для контроля горизонтальности поверхностей изделий и в строительстве.
Прототипом принят "Электронный уровень" [1, с.404], содержащий магнитоэлектрический измерительный преобразователь и электронный блок обработки сигналов. Недостаток прототипа: контроль горизонтальности поверхности по одной координате и отсутствие визуального наблюдения процесса измерения.
Техническими результатами являются выполнение контроля горизонтальности поверхности синхронно по двум координатам и визуальное наблюдение отклонения от горизонтали на экране плоскопанельного дисплея. Сущность изобретения в том, что в электронный уровень, содержащий блок обработки сигналов, вводятся блок излучателя, матрица приборов с зарядовой инжекцией /ПЗИ/ и плоскопанельный дисплей.
Структурная схема электронного уровня на фиг.1, блок излучателя на фиг.2, плоскопанельный дисплей на фиг.3, принцип получения координат отклонения от горизонтали в двух направлениях на фиг.4. Электронный уровень содержит /фиг.1/ непрозрачный корпус 1, внутри которого расположен блок 2 излучателя, матрица 3 приборов с зарядовой инжекцией /ПЗИ/ из КНОП-датчиков [2, с.832, 833] с разрешением 720×720 пикселов, блок 4 обработки сигналов, включающий четыре идентичных шифратора 5, 6, 7, 8 и блок 9 индикации, последовательно соединенные генератор 10 тактовых импульсов и делитель 11 частоты, первый 12 и второй 13 ключи, управляющие входы которых объединены и подключены к первому выходу делителя 11 частоты, второй и третий выходы подключены соответственно к сигнальным входам ключей 12, 13, и плоскопанельный дисплей 14. Матрица ПЗИ 3 установлена и закреплена под верхней стороной корпуса 1, фоточувствительная сторона матрицы ПЗИ 3 строго параллельна опорному /нижнему/ основанию корпуса 1 и расположена в фокальной плоскости объектива блока 2 излучателя, который содержит /фиг.2/ цилиндрический корпус 15, в центре которого имеется две полуоси 18, внутри корпуса 15 размещен светодиод 16 белого излучения, в верхнем торце корпуса 15 размещен объектив 17, на нижний конец корпуса 15 навинчивается соответствующего веса груз 19 с отверстием по оси, груз 19 выполняет роль отвеса, блок 2 излучателя содержит подвижную рамку 20 с двумя полуосями 21 и двумя подшипниками скольжения для полуосей 18 в центрах сторон противоположные сторонам с полуосями 21, в подшипниках скольжения размещаются внешние концы полуосей 18, содержит внешнюю неподвижную рамку 22, жестко соединенную с корпусом 1 электронного уровня и имеющую тоже два подшипника скольжения в центрах двух сторон неподвижной рамки 22 для размещения в них концов полуосей 21 подвижной рамки 20, цилиндрический корпус 15 имеет две степени свободы перемещения, перпендикулярные друг другу, выполняемые поворотом корпуса 15 под действием груза 19 относительно подвижной рамки 20 в плоскости X и поворотом корпуса 15 совместно с подвижной рамкой 20 относительно неподвижной рамки 22 в плоскости Y. Блок 4 обработки сигналов выполняется из четырех идентиных шифраторов 5, 6, 7, 8 и блока 9 индикации. Входы первый-триста шестидесятый /1-360/ каждого шифратора 5-8 подключены к соответствующим первому-триста шестидесятому /1-360/ выходам матрицы ПЗИ 3, информационные первый-десятый выходы каждого шифратора 5-8 подключены к соответствующим первому-десятому входам блока 9 индикации, выходы знака минус "1" с шифраторов 5 /-X/ и 7 /-Y/ подключены к соответствующим двум входам в блоке 9 индикации. Управляющие входы Uвыд шифраторов 5-8 и вход светодиода 16 /фиг.1/ через осевое отверстие в грузе 19 объединены и подключены к первому выходу /25 Гц/ делителя 11 частоты.
Плоскопанельный дисплей 14 включает первый 23, второй 24, третий 25 и четвертый 26 идентичные дешифраторы, входы первый-десятый каждого из них подключены к первому-десятому выходам своего шифратора 5-8, и включает /фиг.3/ четыре идентичных канала формирования управляющих сигналов, каждый из которых содержит последовательно соединенные дешифратор 27 /29, 31, 33/ и блок 28 /30, 32, 34/ импульсных усилителей, и экран 35. Каждый блок импульсных усилителей 28, 30, 32, 34 содержит 129600 импульсных усилителей /360×360/, выходы блоков импульсных усилителей подключены параллельно к соответствующим своим 129600 входам экрана, всего входов 518400: 129600×4.
В первом канале формирования управляющих сигналов 1-360 входы дешифратора 27 подключены соответственно к 1-360 выходам первого дешифратора 23, а 361-720 входы дешифратора 27 подключены соответственно к 1-360 выходам третьего дешифратора 25 /-Y/, во втором канале 1-360 входы дешифратора 29 подключены к 1-360 выходам первого дешифратора 23 /-X/, а 361-720 входы дешифратора 29 подключены соответственно к 1-360 выходам четвертого дешифратора 26 /Y/, в третьем канале 1-360 входы дешифратора 31 подключены соответственно к 1-360 выходам второго дешифратора 24 /X/, а 361-720 входы дешифратора 31 подключены к 1-360 выходам четвертого дешифратора 26 /Y/, в четвертом канале 1-360 входы дешифратора 33 подключены соответственно к 1-360 выходам второго дешифратора 24 /X/, а 361-720 входы дешифратора 33 подключены к 1-360 выходам третьего дешифратора 25 /-Y/. Экран 35 представляет матрицу из 720×720 излучающих элементов /518400/, выполненных в прозрачном материале экрана 35. Каждый излучающий элемент является миниатюрным светодиодом белого излучения диаметром 0,5 мм, в качестве которых могут быть использованы светодиоды OLED [3, с.7-9]. Частота тактовых импульсов генератора 10 составляет:
fт=25 Гц×720×720=12,96 МГц,
где: 25 Гц - частота выдачи измерений с шифраторов 5-8, частота кадров на экране 35,
720 - число строк в матрице ПЗИ 3,
720 - число отсчетов /пикселов/ в строке.
Частота строк fс=25 Гц×720=18 кГц.
Диапазон отклонения луча излучателя /фиг.1/ от центра координат матрицы ПЗИ 3 принимается ±5°, разрешение измерений по X, Y плоскостям матрицы ПЗИ 3 /фиг.4/ составляет:
Figure 00000001
/угловых секунд/, погрешность измерения составляет ±25″.
360 - число пикселей в одной четверти плоскости матрицы ПЗИ 3. Горизонтальность опорной /нижней/ стороны корпуса 1 прибора выполняется с погрешностью, в три раза меньшей, чем погрешность электронного уровня, чтобы она не влияла на результаты измерений.
Шифраторы 5-8 преобразуют сигнал с пиксела матрицы ПЗИ 3 в выходной десятиразрядный параллельный двоичный код: 360→1010101000.
Блок 9 индикации включает соответствующее число дешифраторов /микросхемы типа К514ИЛ2 [4, с.93]/, преобразующие двоичные коды с шифраторов 5-8 в десятичные числа, высвечиваемые на табло блока 9 индикации. Координаты -X во второй и третьей четвертях матрицы ПЗИ 3 и координаты -Y в третьей и четвертой четвертях имеют знак минус, шифраторы 5 /-X/ и 7 /-Y/ вместе с выдачей кодов выдают и сигнал минус "1", который высвечивается как знак "-" перед значением координаты.
Работа устройства
Для измерения отклонения поверхности изделия от горизонтали корпус 1 прибора нижней стороной ставится на проверяемую поверхность, включается питание прибора. Излучение светодиода 16 /фиг.1/ фокусируется объективом 17 на поверхности матрицы ПЗИ 3. Импульсы 25 Гц открывают ключи 12, 13, на первый вход матрицы ПЗИ 3 с ключа 12 поступают импульсы частоты строк 18 кГц для считывания сигнала строки /координата Y/, на второй вход матрицы ПЗИ 3 поступают импульсы 12,96 МГц для считывания сигнала с облученного пиксела в строке /координата X/. С двух выходов матрицы ПЗИ 3, соответствующих положению пиксела, следуют два сигнала: один в шифратор 7 /-Y/ или 8 /Y/, второй в шифратор 5 /-X/ или 6 /X/. Коды координат поступают в блок 9 индикации, в котором они преобразуются в десятичные числа, параллельно коды поступают в плоскопанельный дисплей 14, на экране 35 высвечивается один светодиод, соответствующий положению засвеченного пиксела в матрице ПЗИ 3, и подсвечивается перекрестие экрана 35. Оператор убеждается наглядно в отклонении контролируемой поверхности, а на табло блока 9 индикации высвечивается результат отклонения поверхности от горизонтали. Заявляемый электронный уровень выполняет мгновенное измерение отклонения контролируемой поверхности от истинной горизонтали синхронно в двух взаимно перпендикулярных направлениях с погрешностью ±25″ и дает изображение отклонения на экране 35. Прибор выполняется малогабаритным с автономным питанием, пригоден для контроля горизонтальности поверхности изделий производства и в строительных работах, в том числе в полевых условиях.
Использованные источники
1. Т.В.Корнеева. Толковый словарь по метрологии, измерительной технике и управлению качеством. М., 1990, с.404.
2. Колеениченко О.В., Шишигин И.В. Аппаратные средства PC. 5-е изд., СПб., 2004, с.832-833.
3. "Радио" №6, 2008, с.7-9.
4. В.И.Иванов, А.И.Аксенов, A.M.Юшин. Полупроводниковые оптоэлектронные прибоы. Справочник. М., 1984, с.93.

Claims (1)

  1. Электронный уровень, содержащий блок обработки сигналов, отличающийся тем, что в его непрозрачный корпус вводятся блок излучателя, матрица приборов с зарядовой инжекцией (ПЗИ), плоскопанельный дисплей, последовательно соединенные генератор тактовых импульсов и делитель частоты, первый и второй ключи, управляющие входы которых объединены и подключены к первому выходу делителя частоты, второй и третий выходы которого подключены к сигнальным входам соответственно первого и второго ключей, блок излучателя содержит цилиндрический корпус с двумя полуосями в центре корпуса, в котором расположен светодиод белого излучения, в верхнем торце корпуса размещен объектив, на нижний конец корпуса навинчивается груз (отвес) с отверстием по оси, содержит подвижную рамку с двумя полуосями и двумя подшипниками скольжения в центрах сторон, противоположных сторонам с полуосями, в подшипниках скольжения размещаются полуоси цилиндрического корпуса, содержит внешнюю неподвижную рамку, жестко соединенную с корпусом электронного уровня и имеющую два подшипника скольжения в центрах двух сторон неподвижной рамки, в которых размещаются полуоси подвижной рамки, цилиндрический корпус блока излучения имеет две степени свободы перемещения, перпендикулярные друг другу, первая выполняется поворотом цилиндрического корпуса относительно подвижной рамки в плоскости Y, вторая выполняется поворотом цилиндрического корпуса совместно с подвижной рамкой относительно внешней неподвижной рамки в плоскости X, матрица ПЗИ с разрешением 720×720 пикселей установлена и закреплена под верхней стороной корпуса электронного уровня, фоточувствительная сторона матрицы ПЗИ параллельна опорному (нижнему) основанию корпуса электронного уровня и расположена в фокальной плоскости объектива цилиндрического корпуса блока излучателя, первый и второй управляющие входы матрицы ПЗИ подключены к выходам соответственно первого и второго ключей, блок обработки сигналов выполняется из четырех шифраторов и блока индикации, первый-триста шестидесятый входы каждого шифратора подключены соответственно к первому-триста шестидесятому соответствующим выходам матрицы ПЗИ, информационные первый-десятый выходы каждого шифратора подключены к соответствующим входам блока индикации, к соответствующим двум входам которого подключены выходы сигналов минус ("1") первого и третьего шифраторов, управляющие входы Uвыд первого-четвертого шифраторов блока обработки сигналов и вход светодиода блока излучателя через осевое отверстие в грузе цилиндрического корпуса объединены и подключены к первому выходу делителя частоты, плоскопанельный дисплей включает первый, второй, третий и четвертый дешифраторы, четыре идентичных канала формирования управляющих сигналов, каждый из которых включает последовательно соединенные дешифратор и блок импульсных усилителей, и экран, информационные первый-десятый входы первого-четвертого дешифраторов подключены к первому-десятому выходам соответственно первого-четвертого шифраторов блока обработки сигналов, в первом канале формирования управляющих сигналов первый-триста шестидесятый входы дешифратора первого канала подключены соответственно к первому-триста шестидесятому выходам первого дешифратора, а триста шестьдесят первый-семьсот двадцатый входы дешифратора первого канала подключены соответственно к первому-триста шестидесятому выходам третьего дешифратора, во втором канале формирования управляющих сигналов первый-триста шестидесятый входы дешифратора второго канала подключены соответственно к первому-триста шестидесятому выходам первого дешифратора, а триста шестьдесят первый-семьсот двадцатый входы дешифратора второго канала подключены соответственно к первому-триста шестидесятому выходам четвертого дешифратора, в третьем канале формирования управляющих сигналов первый-триста шестидесятый входы дешифратора третьего канала подключены соответственно к первому-триста шестидесятому выходам второго дешифратора, а триста шестьдесят первый-семьсот двадцатый входы дешифратора третьего канала подключены соответственно к первому-триста шестидесятому выходам четвертого дешифратора, в четвертом канале формирования управляющих сигналов первый-триста шестидесятый входы дешифратора четвертого канала подключены соответственно к первому-триста шестидесятому выходам второго дешифратора, а триста шестьдесят первый-семьсот двадцатый входы дешифратора четвертого канала подключены соответственно к первому-триста шестидесятому выходам третьего дешифратора, каждый блок импульсных усилителей содержит 129600 импульсных усилителей (360×360), выходы блоков импульсных усилителей подключены параллельно к своим 129600 входам экрана, который представляет матрицу из светодиодов белого излучения 720×720, выполненные в прозрачном материале экрана.
RU2010152078/28A 2010-12-20 2010-12-20 Электронный уровень RU2453811C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010152078/28A RU2453811C1 (ru) 2010-12-20 2010-12-20 Электронный уровень

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010152078/28A RU2453811C1 (ru) 2010-12-20 2010-12-20 Электронный уровень

Publications (1)

Publication Number Publication Date
RU2453811C1 true RU2453811C1 (ru) 2012-06-20

Family

ID=46681147

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010152078/28A RU2453811C1 (ru) 2010-12-20 2010-12-20 Электронный уровень

Country Status (1)

Country Link
RU (1) RU2453811C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU189162A1 (ru) * Б. А. Уточкин Институт физики высоких энергий Электронный уровень
SU1059425A1 (ru) * 1982-12-07 1983-12-07 Институт Электродинамики Ан Усср Устройство дл измерени малых углов наклона
EP0130738A2 (en) * 1983-06-22 1985-01-09 Eureka Developments Limited Electronic levelling device
EP0629283A1 (en) * 1992-03-07 1994-12-21 Turner Intellectual Property Limited Levelling device
FR2765965A1 (fr) * 1997-07-11 1999-01-15 Jean Pierre Gallo Micromecanisme optoelectronique de controle de niveau
JP2002048536A (ja) * 2000-08-01 2002-02-15 Nec Kyushu Ltd 電子式水準器およびそれを用いた水平ステージ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU189162A1 (ru) * Б. А. Уточкин Институт физики высоких энергий Электронный уровень
SU1059425A1 (ru) * 1982-12-07 1983-12-07 Институт Электродинамики Ан Усср Устройство дл измерени малых углов наклона
EP0130738A2 (en) * 1983-06-22 1985-01-09 Eureka Developments Limited Electronic levelling device
EP0629283A1 (en) * 1992-03-07 1994-12-21 Turner Intellectual Property Limited Levelling device
FR2765965A1 (fr) * 1997-07-11 1999-01-15 Jean Pierre Gallo Micromecanisme optoelectronique de controle de niveau
JP2002048536A (ja) * 2000-08-01 2002-02-15 Nec Kyushu Ltd 電子式水準器およびそれを用いた水平ステージ

Similar Documents

Publication Publication Date Title
Zhan et al. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels
TW200717286A (en) Method of measuring relative movement in two dimensions of an object and an optical input device using a single self-mixing laser
US20090126494A1 (en) Ultrasonic inspection apparatus and ultrasonic probe used for same
CN102608619A (zh) 光子计数压缩采样相控阵激光三维成像方法
CN103852035B (zh) 空心螺纹细杆直线度或同轴度的测量机构及采用该机构实现直线度或同轴度的测量方法
Ruzza et al. A multi-module fixed inclinometer for continuous monitoring of landslides: Design, development, and laboratory testing
Qiu et al. Real-time tunnel deformation monitoring technology based on laser and machine vision
RU2453811C1 (ru) Электронный уровень
CN101165455A (zh) 构造物位移测量装置
CN106772410A (zh) 一种激光测距仪
CN206440824U (zh) 一种激光测距仪
RU2435135C1 (ru) Электронный уровень
Murra et al. Interfacing Arduino Boards with Optical Sensor Arrays: Overview and Realization of an Accurate Solar Compass
RU2439508C1 (ru) Измеритель вибрации
Marszalec et al. A photoelectric range scanner using an array of LED chips
Shentu et al. Research on structure optimization and measurement method of a large-range deep displacement 3D measuring sensor
CN105758369B (zh) 激光跟踪测量系统
Zou et al. Assembled Cantilever Fiber Touch Trigger Probe for Three-Dimensional Measurement of Microstructures
CN105758370B (zh) 一种激光跟踪测量系统
Cheng et al. Design of Lidar Data Acquisition and Control System in High Repetition Rate and Photon-Counting Mode: Providing Testing for Space-Borne Lidar
Musico et al. The Central Logic Board for the KM3NeT detector: Design and production
Leslie et al. Design, Fabrication, and Characterization of a Novel Optical Six-Axis Distributed Force and Displacement Tactile Sensor for Dexterous Robotic Manipulation
Krummenauer et al. Comparison of Dimensional Accuracy between a Laser Scanner and a Laser Tracker with Handheld Scan in a Laboratory Setting
RU2548575C2 (ru) Устройство для измерения угла наклона поверхности
Xu et al. Calibration method for a laser-based alignment system