RU2452759C1 - Способ изготовления керамических проппантов - Google Patents

Способ изготовления керамических проппантов Download PDF

Info

Publication number
RU2452759C1
RU2452759C1 RU2010140483/03A RU2010140483A RU2452759C1 RU 2452759 C1 RU2452759 C1 RU 2452759C1 RU 2010140483/03 A RU2010140483/03 A RU 2010140483/03A RU 2010140483 A RU2010140483 A RU 2010140483A RU 2452759 C1 RU2452759 C1 RU 2452759C1
Authority
RU
Russia
Prior art keywords
granules
granulator
mixer
mass
granulation
Prior art date
Application number
RU2010140483/03A
Other languages
English (en)
Other versions
RU2010140483A (ru
Inventor
Владимир Владимирович Алексеев (RU)
Владимир Владимирович Алексеев
Антон Александрович Дюков (RU)
Антон Александрович Дюков
Алена Александровна Прокина (RU)
Алена Александровна Прокина
Иван Анатольевич Тиньгаев (RU)
Иван Анатольевич Тиньгаев
Original Assignee
Общество С Ограниченной Ответственностью "Форэс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Форэс" filed Critical Общество С Ограниченной Ответственностью "Форэс"
Priority to RU2010140483/03A priority Critical patent/RU2452759C1/ru
Publication of RU2010140483A publication Critical patent/RU2010140483A/ru
Application granted granted Critical
Publication of RU2452759C1 publication Critical patent/RU2452759C1/ru

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение относится к производству керамических проппантов - сферических гранул, применяющихся в технологии гидроразрыва горных пород в качестве опорного слоя. В способе изготовления керамических проппантов, включающем измельчение сырьевой смеси, гранулирование полученной тонкомолотой шихты, отсев гранул заданного размера, их сушку, обжиг и классификацию, гранулирование осуществляют в турбосмесителе в течение 6-35 сек интенсивным круговым перемещением массы, обеспечивающим нормальное ускорение ее частиц от 500 до 2500 м/с2, с увлажнением шихты от 50 до 90% от требуемого и, после вылеживания в течение 0,5-6 мин, гранулы доводят до требуемой сферичности в тарельчатом грануляторе с добавлением остального количества увлажняющего раствора. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение выхода плотных сферичных гранул с высокой степенью округлости и увеличение их прочности после обжига. 3 з.п. ф-лы, 4 табл.

Description

Изобретение относится к производству керамических проппантов - сферических гранул, применяющихся в технологии гидроразрыва горных пород в качестве опорного слоя, препятствующего смыканию искусственных трещин после снятия давления гидроразрыва.
Известен способ изготовления гранул распылением суспензии в башенной сушилке [1], включающий мокрое диспергирование смеси каолина и талька, распыление суспензии при температуре 450-480°C, сушку и обжиг гранулята во вращающейся печи при температуре 1350°C, рассев гранул.
Этот известный способ требует высокого расхода топлива, а большинство получаемых гранул имеют пустоты и усадочные трещины.
Известен способ производства высокопрочных сферических керамических гранул [2], включающий кальцинацию природного алюмосиликатного сырья, его измельчение, дозирование и загрузку в тарельчатый гранулятор, увлажнение измельченного сырья, грануляцию окатыванием в тарельчатом грануляторе, дозирование и подачу в гранулятор дополнительного количества измельченного сырья, рассев полученных гранул для выделения целевой фракции, ее обжиг во вращающейся печи и рассев спеченных гранул. При этом 60-90% кальцинированного алюмосиликатного сырья измельчают до размера частиц 20-40 мкм, а 10-40% измельчают до размера частиц менее 20 мкм. В процессе гранулирования тонко измельченное сырье подают в гранулятор после увлажнения измельченного сырья и зарождения гранул и до завершения грануляции.
Недостатками данного способа являются невозможность избежать образования в тарельчатом грануляторе большого количества крупных некондиционных окатышей, что резко снижает выход целевой фракции гранул, необходимость вести процесс окомкования в периодическом режиме, недостаточная плотность сырца и прочность гранул после обжига из-за низкой активности к спеканию относительно крупных частиц (20-40 мкм), составляющих бόльшую часть шихты.
Наиболее близким по технической сущности к заявляемому изобретению является способ переработки алюмокремниевого сырья [3], включающий загрузку сырья в смеситель-гранулятор, его увлажнение, перемешивание и грануляцию в смесителе-грануляторе с вращающейся с постоянной скоростью цилиндрической чашей и роторной мешалкой. При этом в процессе увлажнения сырья скорость вращения роторной мешалки увеличивают прямо пропорционально количеству введенного увлажнителя от 5 до 50 м/с, а после образования гранул в смеситель-гранулятор дополнительно вводят измельченное алюмокремниевое сырье в количестве 10-50% от массы шихты при скорости вращения роторной мешалки 5-25 м/с.
Недостатками известного способа являются: периодический режим работы смесителя гранулятора (смесителя Айриха), низкий выход гранул требуемого размера, необходимость регулирования скорости вращения ротора с использованием его весьма высокой конечной скорости вращения, что технически сложно осуществить в крупном высокопроизводительном агрегате, низкий выход высокосферичных гранул из-за осуществления конечной добавки порции исходного сырья в тот же смесительный агрегат, где при интенсивном воздействии ротора гранулы, потерявшие пластичность в результате «опудривания» сухим сырьем, частично разрушаются, а кратковременность интенсивного периода обработки комкуемой массы приводит к получению низкой сферичности гранул и недостаточной их плотности в сырце, что вызывает высокую усадку в обжиге и образование усадочных трещин с соответствующим падением прочности гранул.
Технической задачей, на решение которой направлено заявляемое изобретение, является повышение выхода плотных сферичных гранул с высокой степенью округлости и увеличение их прочности после обжига.
Указанный технический результат достигается тем, что в известном способе изготовления керамических проппантов, включающем измельчение сырьевой смеси, гранулирование полученной тонкомолотой шихты, отсев гранул заданного размера, их сушку, обжиг и классификацию, гранулирование осуществляют в турболопастном смесителе в течение 6-35 сек интенсивным круговым перемещением массы, обеспечивающим нормальное ускорение ее частиц от 500 до 2500 м/с2 с увлажнением шихты от 50 до 90% от требуемого и, после вылеживания в течение 0,5-6 мин, гранулы доводят до требуемой сферичности в тарельчатом грануляторе с добавлением остального количества увлажняющего раствора. Кроме того, гранулы доводят до требуемой сферичности, округлости и плотности интенсивным воздействием погружных турбин тарельчатого гранулятора, количество которых должно быть не менее двух, а высеянные при классификации гранулы с размерами меньше требуемых возвращают в процесс гранулирования как дополнительные зародыши гранул. В качестве увлажняющего раствора для шихты используют водный раствор ПАВ с добавлением различных неорганических клеев на основе жидкого стекла или фосфатов.
Интенсивный режим обработки массы заключается в высокой скорости ее кругового движения по внутренней поверхности цилиндрического корпуса турболопастного смесителя. При этом переувлажненные комки массы разбиваются на мелкие зерна обломочной формы и, прокатываясь по внутренней поверхности корпуса и воздействуя на соседние зерна, формуются в сферические гранулы. Более совершенная формовка происходит при достаточно высокой центробежной силе, с которой движущаяся частица воздействует на корпус смесителя. Эта сила выражается произведением массы частицы и нормального ускорения, пропорционального квадрату линейной скорости частицы и обратно пропорционального радиусу кривизны траектории частицы. В турбосмесителе диаметр ротора и корпуса, по внутренней поверхности которого движется частица, практически одинаковы в отличие от смесителя периодического действия, используемого в известных аналогах, где диаметр корпуса в 3-4 раза больше диаметра ротора. Из приведенных соотношений следует, что достижение требуемых формующих сил в турбосмесителе обеспечивается при скоростях вращения ротора ~ в 3 раза меньших, чем в смесителе Айриха.
Другим отличительным фактором является длительность интенсивного периода обработки массы, так как в известном способе конкретный фрагмент массы претерпевает чередующиеся моменты интенсивного воздействия и спокойного состояния. Проходя через зону действия ротора, частицы отбрасываются лопастями и прокатываются по стенкам чаши с быстро угасающей скоростью, затем наступает период спокойного перемещения массы. Соотношение интенсивного и спокойного периодов составляет ~1:20. При длительности наиболее активной работы ротора 1,5-2,0 мин общее время интенсивного воздействия на каждый фрагмент массы не превышает 6 с, что недостаточно для получения высокой плотности и сферичности гранул. В предлагаемом способе реализуется относительно длительный (6-35 с) период активного гранулирования с получением более совершенных и плотных гранул.
Получаемая при интенсивном гранулировании масса содержит от 20 до 70% зародышей и гранул, что зависит от степени увлажнения шихты в турбосмесителе, а остальной материал представляет собой влажную мелкодисперсную шихту.
Промежуточное вылеживание массы способствует полноте завершения поверхностных процессов смачивания частиц шихты, снижению воздухововлечения и активизации коагуляции частиц с существенным уменьшением толщины водных прослоек между твердыми частицами, что повышает плотность и прочность сырых гранул и зародышей. Время вылеживания зависит от вещественного состава и дисперсности шихты, пористости частиц, состава увлажняющего раствора.
При дальнейшей накатке в тарельчатом грануляторе достигается высокая эффективность процесса корректировки формы и поверхности гранул, увеличения выхода кондиционных гранул, а также их выращивание до требуемого размера за счет присутствующей в массе полусухой шихты, чему способствует дополнительное введение увлажняющего раствора в тарельчатый гранулятор, обеспечивающее поддержание оптимальной влажности массы и исключающее нарушения структуры гранул, в частности образование сферической слоистости. Кроме того, предлагаемое решение обеспечивает условия, при которых в тарельчатом грануляторе могут быть использованы погружные высокоскоростные турбины для повышения качества грануляции в отличие от известного способа, где процесс выращивания гранул осуществляется с использованием добавляемой сухой шихты, что влечет потерю пластичных свойств окатышей после «опудривания» и даже при щадящем режиме работы ротора приводит к разрушению большого количества гранул. Эффективность турбовоздействия обеспечивается длительностью обработки массы, которая по расчету является оптимальной при использовании двух турбоактиваторов и производительности грануляции 2 т/ч, т.е. при времени пребывания массы в грануляторе диаметром 3 м не менее 9 мин. При меньшем времени гранулирования требуется установка трех и более турбоактиваторов. Повышению выхода гранул требуемого размера способствует регулирование количества возвращаемых на грануляцию мелких гранул - зародышей, высеянных при классификации сырых гранул.
Указанные в предлагаемом способе пределы параметров определены экспериментально и выход за эти пределы снижает качество продукции или отрицательно сказывается на экономичности процесса и ресурсе оборудования.
Возможность осуществления изобретения подтверждается примерами конкретного выполнения.
Изготовление сырых гранул размером 16/20 (1,2-0,85 мм) проводили на экспериментальной технологической линии, обжиг магнезиальносиликатных гранул осуществляли при температуре 1240°С, алюмосиликатных - при 1380 °С.
Исходными материалами служили молотые в турбомельнице сырьевые смеси на основе кальцинированных серпентинита и глины следующих составов, мас.% (табл. 1).
Таблица 1
Химический состав сырьевых смесей
Состав Al2O3 SiO2 CaO TiO2 Fe2O3 MgO R2O Остальное
Магнезиальносиликатный 4,6 57,5 1,4 0,3 6,2 27,5 0,6 1,9
Алюмосиликатный 48,6 45,4 0,6 2,2 2,3 0,2 0,3 0,4
Средний размер частиц молотой сырьевой смеси 5-10 мкм. В качестве увлажняющего использовали 1% раствор неорганического клея - триполифосфата натрия и 0,2% ПАВ - суперпластификатора С-3.
В турболопастной смеситель дозировали сырьевую смесь в количестве 2 т/ч и подавали связующий раствор для получения массы с массовой долей влаги от 6,5 до 12%. Скорость вращения турбины ступенчато варьировали, изменяя нормальное ускорение частиц массы от 500 до 2500 м/с2. Время обработки массы изменяли от 6 до 35 сек путем переноса точки ввода связующего, задавая тем самым длину пути увлажненной массы вдоль смесителя. Диаметр корпуса турбосмесителя 320 мм, длина между осями входной и выходной точек 1000 мм, количество форсуночных гнезд 8, равноудаленно расположенных вдоль смесителя.
Влажные гранулы из смесителя направляли в промежуточный бункер для вылеживания и далее в тарельчатый гранулятор, куда одновременно подавали увлажняющий раствор для доведения влажности массы до 13,2-13,4%. Масса в тарельчатом грануляторе подвергалась воздействию погружных турбоактиваторов для дополнительного уплотнения гранул. Готовые гранулы непрерывно пересыпались через борт окомкователя, поступали в классификатор для отсева мелких гранул и возврата их на гранулирование в качестве зародышей, а кондиционные по размеру гранулы фракции 16/20 (1,2-0,85 мм) подавали в сушильный агрегат для подсушки до остаточной влажности менее 5% и далее на обжиг до спекания.
Полученные сырые гранулы и проппанты сравнивались по следующим показателям качества: сферичность, округлость, насыпная плотность. Обожженные гранулы - проппанты во фракции 16/20 оценивались также по степени разрушения при нагрузке 7500 psi. Для сравнения полученных результатов приведены свойства гранул, изготовленных в соответствии с известным способом в смесителе Айриха с объемом рабочей камеры 0,8 м3 (см. табл.2 и 4).
Таблица 2
Параметры изготовления магнезиально-силикатных гранул
Наименование и величина параметра Номера примеров
1 2 3 4 5 6 7 8 9
Длительность интенсивной накатки, сек:
6 +
20 + + + + + + +
35 +
Массовая доля связующего раствора, добавленного в турбосмеситель, %:
50 +
75 + + + + + + +
90 +
Нормальное ускорение, м/с2:
500 +
1500 + + + + + + +
2500 +
Время вылеживания, мин:
0,5 +
3 + + + + + + +
6 +
Массовая доля связующего раствора, добавленного в тарельчатый гранулятор, %:
10 +
25 + + + + + + +
50 +
Таблица 3
Параметры изготовления алюмосиликатных гранул
Наименование и величина параметра Номера примеров
10
Длительность интенсивной накатки, сек: 20 +
Массовая доля связующего раствора, добавленного в турбосмеситель, %: 75 +
Нормальное ускорение, м/с2, 1500 +
Время вылеживания, мин 3 +
Массовая доля связующего раствора, добавленного в тарельчатый гранулятор, %: 25 +
Таблица 4
Свойства проппантов фракции 16/20
Примеры Свойства гранул после сушки Свойства проппантов после обжига
Сферичность Округлость Насыпная плотность, г/см3 Насыпная плотность, г/см3 Разрушение проппантов при нагрузке сжатия 7500 psi, мас.%
1 0,90 0,90 1,30 1,58 7,9
2 0,90 0,90 1,34 1,59 7,5
3 0,90 0,90 1,34 1,62 7,4
4 0,90 0,85 1,29 1,57 9,1
5 0,90 0,90 1,37 1,60 7,3
6 0,90 0,85 1,38 1,57 9,4
7 0,90 0,90 1,39 1,59 7,7
8 0,90 0,85 1,28 1,56 8,0
9 0,90 0,90 1,40 1,58 8,2
Аналог №2133716 магнезиальносиликатный 0,85 0,80 1,21 1,52 11,4
10 0,90 0,90 1,26 1,61 9,7
Аналог п. №2129987 алюмосиликатный 0,85 0,85 1,18 1,56 13,2
Полученные результаты свидетельствуют о повышении качества гранул, изготовленных по предлагаемому способу, по сравнению с близким аналогом (пат. РФ №2129987), что выражается в повышении сферичности, округлости и насыпной плотности гранул и, главное, в существенном росте прочности готовых проппантов. Эффект достигнут за счет более продолжительной интенсивной обработки гранулируемой массы, оптимизации времени смачивания шихты, получения плотных зародышей и выращивания гранул по заданному размеру в условиях стабильной влажности.
Список литературы
1. Снегирев А.И., Слободин Б.В. Технология производства и свойства сферических гранул в системе MgO-Al2O3-SiO2 // Огнеупоры и техническая керамика. 1998. №10. С.21-23.
2. Способ производства высокопрочных сферических керамических гранул: Пат. 2133716 Россия, МПК6 C04B 20/04 / Мигаль В.П., Можжерин В.А., Новиков А.Н. и др. Опубл. 27.07.99. Бюл. №21.
3. Способ переработки алюмокремниевого сырья: Пат. 2129987 Россия, МПК6 C01F 7/38, B01J 2/12 / Симановский Б.А., Розанов О.М., Можжерин В.А. и др. Опубл. 10.05.99. Бюл. №13.

Claims (4)

1. Способ изготовления керамических проппантов, включающий измельчение сырьевой смеси, гранулирование полученной тонкомолотой шихты, отсев гранул заданного размера, их сушку, обжиг и классификацию, отличающийся тем, что гранулирование осуществляют в турбосмесителе в течение 6-35 с интенсивным круговым перемещением массы, обеспечивающим нормальное ускорение ее частиц от 500 до 2500 м/с2, с увлажнением шихты от 50 до 90% от требуемого, и после вылеживания в течение 0,5-6 мин гранулы доводят до требуемой сферичности в тарельчатом грануляторе с добавлением остального количества увлажняющего раствора.
2. Способ по п.1, отличающийся тем, что гранулы доводят до требуемой сферичности интенсивным воздействием погружных турбин тарельчатого гранулятора, количество которых должно быть не менее двух.
3. Способ по п.1, отличающийся тем, что высеянные при классификации фракций гранулы с размерами меньше требуемых возвращают в процесс гранулирования как дополнительные зародыши гранул.
4. Способ по п.1, отличающийся тем, что в качестве увлажняющего раствора для шихты используют водный раствор ПАВ с добавлением различных неорганических клеев на основе жидкого стекла или фосфатов.
RU2010140483/03A 2010-10-05 2010-10-05 Способ изготовления керамических проппантов RU2452759C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010140483/03A RU2452759C1 (ru) 2010-10-05 2010-10-05 Способ изготовления керамических проппантов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010140483/03A RU2452759C1 (ru) 2010-10-05 2010-10-05 Способ изготовления керамических проппантов

Publications (2)

Publication Number Publication Date
RU2010140483A RU2010140483A (ru) 2012-04-10
RU2452759C1 true RU2452759C1 (ru) 2012-06-10

Family

ID=46031415

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010140483/03A RU2452759C1 (ru) 2010-10-05 2010-10-05 Способ изготовления керамических проппантов

Country Status (1)

Country Link
RU (1) RU2452759C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2651680C1 (ru) * 2016-11-15 2018-04-23 Общество с ограниченной ответственностью "Красноярский Завод Проппантов" Способ изготовления легковесного магнезиально-кварцевого проппанта

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944905A (en) * 1984-01-18 1990-07-31 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
RU2098618C1 (ru) * 1995-12-27 1997-12-10 Татьяна Николаевна Жаркова Способ получения расклинивающего агента
RU2129987C1 (ru) * 1998-01-09 1999-05-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ переработки алюмокремниевого сырья
RU2133716C1 (ru) * 1997-11-10 1999-07-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ производства высокопрочных сферических керамических гранул
RU2180397C1 (ru) * 2000-11-17 2002-03-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Проппант
RU78189U1 (ru) * 2008-07-30 2008-11-20 Общество с ограниченной ответственностью "Никомогнеупор" Проппант для расклинивания нефтяных скважин
RU2389710C1 (ru) * 2009-04-06 2010-05-20 Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Способ получения алюмосиликатного пропанта и состав для его получения

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944905A (en) * 1984-01-18 1990-07-31 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
RU2098618C1 (ru) * 1995-12-27 1997-12-10 Татьяна Николаевна Жаркова Способ получения расклинивающего агента
RU2133716C1 (ru) * 1997-11-10 1999-07-27 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ производства высокопрочных сферических керамических гранул
RU2129987C1 (ru) * 1998-01-09 1999-05-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ переработки алюмокремниевого сырья
RU2180397C1 (ru) * 2000-11-17 2002-03-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Проппант
RU78189U1 (ru) * 2008-07-30 2008-11-20 Общество с ограниченной ответственностью "Никомогнеупор" Проппант для расклинивания нефтяных скважин
RU2389710C1 (ru) * 2009-04-06 2010-05-20 Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Способ получения алюмосиликатного пропанта и состав для его получения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2651680C1 (ru) * 2016-11-15 2018-04-23 Общество с ограниченной ответственностью "Красноярский Завод Проппантов" Способ изготовления легковесного магнезиально-кварцевого проппанта

Also Published As

Publication number Publication date
RU2010140483A (ru) 2012-04-10

Similar Documents

Publication Publication Date Title
JPH0372035B2 (ru)
KR20050062445A (ko) 플라스터 안정화 방법 및 장치
WO2007065038A2 (en) Low thermal expansion foundry media
CN107488049A (zh) 一种Al2O3‑SiO2质球形轻质耐火材料骨料
WO2011005150A2 (ru) Способ получения полуфабриката для изготовления строительных материалов
RU2129987C1 (ru) Способ переработки алюмокремниевого сырья
RU2365555C2 (ru) Гранулированный композиционный заполнитель для силикатных стеновых изделий на основе трепела, диатомита и опоки, состав сырьевой смеси для изготовления силикатных стеновых изделий, способ получения силикатных стеновых изделий и силикатное стеновое изделие
RU2452759C1 (ru) Способ изготовления керамических проппантов
US4897029A (en) Device for preparing a very homogeneous and finely divided fine-ceramics mass
JPS626854B2 (ru)
RU2327666C1 (ru) Способ изготовления стеновых керамических изделий с использованием осадочных высококремнеземистых пород, шихта для стеновых керамических изделий и заполнитель для стеновых керамических изделий
FI65224C (fi) Foerfarande foer framstaellning av gipsskiva
RU2528814C2 (ru) Способ получения стеклокерамзита и порокерамики из трепелов и опок
EP2550242B1 (en) Method for preparing ceramic powder material to be pressed
RU2361839C1 (ru) Гранулированный заполнитель для силикатных стеновых изделий на основе кремнистых цеолитовых пород, состав сырьевой смеси для изготовления силикатных стеновых изделий, способ получения силикатных стеновых изделий и силикатное стеновое изделие
CN105540767B (zh) 一种改善水微观结构性能的矿石球
WO1993019017A1 (en) Composition for high pressure casting slip, high pressure casting slip and method for preparing the composition and slip
KR100306843B1 (ko) 시멘트혼화재와그제조방법및그것을사용한조성물
RU2318772C1 (ru) Способ изготовления стеновых керамических изделий, сырьевая шихта для изготовления стеновых керамических изделий и заполнитель для стеновых керамических изделий
RU2500647C1 (ru) Сырьевая смесь для изготовления стеновой керамики и способ ее получения
RU2376258C1 (ru) Известково-кремнеземистое вяжущее, способ получения известково-кремнеземистого вяжущего и способ получения формовочной смеси для прессованных силикатных изделий
RU2531970C1 (ru) Способ изготовления гидрофобной легковесной микросферы на основе перлита
US3311686A (en) Refractory shape and process of making same
CN109650919A (zh) 一种用于制备锡槽底砖的骨料及其制备方法、锡槽底砖
RU2244695C1 (ru) Способ получения легковесных высокопрочных керамических гранул

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201006