RU2451547C2 - Способ получения пористого углеродного носителя - Google Patents

Способ получения пористого углеродного носителя Download PDF

Info

Publication number
RU2451547C2
RU2451547C2 RU2010136625/04A RU2010136625A RU2451547C2 RU 2451547 C2 RU2451547 C2 RU 2451547C2 RU 2010136625/04 A RU2010136625/04 A RU 2010136625/04A RU 2010136625 A RU2010136625 A RU 2010136625A RU 2451547 C2 RU2451547 C2 RU 2451547C2
Authority
RU
Russia
Prior art keywords
temperature
hours
porous carbon
activation
carried out
Prior art date
Application number
RU2010136625/04A
Other languages
English (en)
Other versions
RU2010136625A (ru
Inventor
Ольга Николаевна Бакланова (RU)
Ольга Николаевна Бакланова
Георгий Валентинович Плаксин (RU)
Георгий Валентинович Плаксин
Александр Валентинович Лавренов (RU)
Александр Валентинович Лавренов
Ольга Алексеевна Княжева (RU)
Ольга Алексеевна Княжева
Владимир Александрович Лихолобов (RU)
Владимир Александрович Лихолобов
Original Assignee
Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации filed Critical Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации
Priority to RU2010136625/04A priority Critical patent/RU2451547C2/ru
Publication of RU2010136625A publication Critical patent/RU2010136625A/ru
Application granted granted Critical
Publication of RU2451547C2 publication Critical patent/RU2451547C2/ru

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к технологии получения пористых углеродных материалов и может быть использовано при получении нанесенных катализаторов, носителей катализаторов для каталитических процессов, а также сорбентов для адсорбционных и электрохимических процессов. В предлагаемом способе получения пористого углеродного носителя, включающем смешивание сажи и водного раствора органической жидкости, сушку, термообработку в среде углеводородных газов при температуре 800-1000°С и парогазовую активацию до получения суммарного объема пор 0,3-0,9 см3/г, в качестве органической жидкости используют соединения с атомным отношением С:Н>1, после сушки дополнительно проводят термообработку в неокислительной среде при 90-500°С в три этапа: 5-10 часов при температуре 90-100°С, затем в течение 1-3 часов при температуре 150-300°С, и в течение 1-3 часов при температуре 300-500°С, а активацию ведут до получения материала с отношением объемов микро- и мезопор от 0,2 до 0,5. Технический эффект - получение катализатора с повышенным объемом микропор. 1 табл., 14 пр.

Description

Изобретение относится к технологии получения пористых углеродных материалов и может быть использовано при получении нанесенных катализаторов, носителей катализаторов для каталитических процессов, а также сорбентов для адсорбционных и электрохимических процессов.
Важнейшими достоинствами углеродных материалов является их стойкость и стабильность в агрессивных средах, высокие значения удельной поверхности и возможность регулировать в широких пределах параметры пористой структуры. Другим преимуществом является инертность поверхности, что исключает протекание нежелательных побочных реакций, катализируемых носителем.
Промышленные активные угли обычно содержат все разновидности пор. Для углей растительного и каменноугольного происхождения характерны высокие значения объемов микропор (до 0,2-0,4 см3/г) и макропор (до 0,5-1,0 см3/г) и относительно низкие значения объемов мезопор. Для синтетических активных углей подбором сырья и технологических параметров возможно развитие объема мезопор до значений 0,2-0,4 см3/г. Микропористые активные угли обладают высокой эффективностью в процессах сорбции и разделения газовых сред, а мезопористые эффективны в жидкофазных сорбционных процессах. В пористых телах макропоры обычно исполняют роль транспортных каналов, и их роль в процессах сорбции веществ с низкой и средней молекулярной массами невелика. В каталитических жидкофазных и газофазных процессах определяющую роль играют как мезопоры, так и микропоры. Для каждого каталитического процесса и катализатора для достижения максимальной эффективности должна быть подобрана оптимальная пористая структура, которая может быть охарактеризована как отношением объемов микро- и мезопор (Vми/Vмезо), так и размером и распределением пор. В настоящее время отечественная и мировая промышленность выпускает ограниченный ассортимент пористых углеродных материалов, используемых в качестве носителей и катализаторов. В основном это микро-макропористые активные угли каменноугольного и растительного происхождения, свойства и текстура которых определяются, главным образом, характеристиками исходного сырья и технологией приготовления (Мухин В.М., Тарасов А.В., Клушин В.Н. Активные угли России. - М.: Металлургия, 2000). Применение промышленных активных углей в качестве носителей катализаторов ограничено высоким содержанием в них минеральных примесей, которые могут катализировать побочные реакции, невысокой механической прочностью и, в большей степени, неоптимальной пористой структурой (Van de Sandt, Wiersma A, Makkee M, van Beccum H, Moulijn J.A.- Appl.Catal. A, 1998, Vol.173, р.161.) В промышленных активых углях соотношение объемов микро- и мезопор обычно имеет величину от 1 до 6, (Бутырин Г.М. Высокопористые углеродные материалы.- М.: Химия, 1976.-c.178; Мухин В.М., Тарасов А.В., Клушин В.Н. Активные угли России. - M.: Металлургия, 2000), в то время как для каталитических процессов и катализаторов желательно иметь значение этого соотношения менее 1.
Известен способ приготовления пористых углеродных материалов, включающий стадию карбонизации без доступа воздуха при температуре до 500°С органических полимеров, выбранных из группы сополимеров винилпиридина, стирола или акрилонитрила с дивинилбензолом, поликонденсатов фенола, фурфурола или фурана с альдегидами, последующую стадию термообработки в токе инертного газа при температуре 700-800°С и активацию в токе водяного пара при 700-900°С (патент SU №1836138).
Недостатками известного способа является то, что образующиеся материалы являются микропористыми и обладают отношением объемов микро- и мезопор Vми/Vмезо=1-3,5. Кроме того, эти материалы обладают низкими прочностными характеристиками и невысокой эффективностью в каталитических процессах.
Известен способ получения пористого углеродного материала, включающий пропитку углеродного материала полимеризующимися органическими веществами при 35-70°С при соотношении углеродного материала и полимеризующегося вещества, равном 1-(0,1-0,2) и последующую термообработку при температуре 850°С (патент РФ №1834662). В качестве исходного углеродного материала выбирают активные угли из косточек фруктов, плодов или грецкого ореха, обладающих преимущественно микромакропористой структурой, а в качестве полимеризующегося вещества фенолформальдегидную смолу, фурфурол или др. При термической обработке пропитанного материала происходит разложение полимера с образованием прочного углеродного остатка с максимальным объемом микропор.
Недостатками известного способа являются высокие значения отношения Vми/Vмезо образующегося углеродного материала и неоптимальная пористая структура для приготовления катализаторов.
Наиболее близким к предлагаемому является способ получения пористого углеродного материала, включающий последовательные стадии получения из сажи с размером глобул 40-50 нм матрицы в виде гранул диаметром 0,5-3,0 мм, осаждения на матрицу в процессе термического разложения углеводородов пиролитического углерода до соотношения сажа: пиролитический углерод, равного 1:(1-3), и стадию частичной селективной окислительной газификации (активации) углерод-углеродных композитов до потери массы 20-40% (авторское свидетельство СССР №1706690, прототип). Образующийся углеродный материал является мезопористым с преимущественным размером пор от 30 до 50 нм и объемом мезопор 0,3-0,9 см3/г. Достоинствами материала являются высокие статические и динамические прочностные характеристики (например, прочность на раздавливание превышает прочность активных углей в 5-10 раз), низкое содержание неуглеродных примесей (менее 1,0 мас.%). Этот материал нашел широкое применение в катализе в качестве носителя катализаторов гидрирования органических соединений, диспропорционирования канифоли, декарбонилирования фурфурола и др. (Лихолобов В.А., Суровикин В.Ф., Плаксин Г.В. и др. Наноструктурированные углеродные материалы в катализе и адсорбции.//Катализ в промышленностию, 2008, Спецвыпуск- с.63).
Существенным недостатком пористого углеродного материала и способа его получения является то, что материал является преимущественно мезопористым. Известным способом получения невозможно развить в материале достаточного объема микропор - соотношение объема микропор к объему мезопор составляет 0,01-0,05.
Целью предлагаемого изобретения является повышение объема микропор и получения материала с отношением объемов микро- и мезопор от 0,2 до 0,5.
Поставленная цель достигается тем, что в способе получения пористого углеродного носителя, включающем смешивание сажи и водного раствора органической жидкости, сушку, термообработку в среде углеводородных газов при температуре 800-1000°С и парогазовую активацию до получения суммарного объема пор 0,3-0,9 см3/г в качестве органической жидкости используют соединения с атомным отношением С:Н>1, после сушки дополнительно проводят термообработку в неокислительной среде при 90-500°С в три этапа: 5-10 часов при температуре 90-100°С, затем в течение 1-3 часов при температуре 150-300°С, и 1-3 часов при температуре 300-500°С, а активацию ведут до получения материала с отношением объемов микро- и мезопор от 0,2 до 0,5.
Использование в качестве органической жидкости соединений с атомным отношением С:Н>1, например, водных растворов фурфурилового спирта, обеспечивает в процессе сушки и термообработки в диапазоне температур 90-150°С в инертной среде протекание реакции полимеризации с образованием линейных макромолекул. Дальнейшее повышение температуры до 300°С и отсутствие окислителей приводит к трехмерной сшивке линейных макромолекул органической жидкости и образованию сетчатого нерастворимого и неплавкого полимера - полифурфурилового спирта, который прочно связывает частицы дисперсного углерода, что способствует сохранению размера и формы гранул материала. Дальнейшее повышение температуры термообработки до 500°С в неокислительной атмосфере приводит к карбонизации полифурфурилового спирта и образованию на поверхности частиц и между частицами дисперсного микропористого углерода. Образующийся после стадий уплотнения и активации углеродный материал наряду с высоким объемом мезопор будет иметь значительный объем микропор, сформировавшийся в карбонизованном полифурфуриловом спирте. В процессе карбонизации полифурфурилового спирта образуется микропористый углерод со средним размером пор 0,4-0,5 нм и узким распределением пор по размерам.
При использовании в качестве органической жидкости, вводимой в поры углеродного материала, водных растворов фенолформальдегидной смолы формирование трехмерно сшитого неплавкого материала - резита осуществляется в процессе двухстадийной реакции поликонденсации. Первая стадия поликонденсации протекает при 90°С и завершается образованием резолов. Дальнейшее повышение температуры приводит к протеканию второй стадии реакции поликонденсации с образованием трехмерно сшитого неплавкого полимера - резита.
При использовании в качестве органической жидкости, вводимой в поры углеродного материала, смеси водных растворов винилпирролидона и акриламида, образование полимеров поливинилпирролидона и полиакриламида происходит в результате радикальной полимеризации, протекающей при 90°С в присутствии инициатора процесса полимеризации, например, перекиси водорода или динитрила азо-бис-изомасляной кислоты (АИБН). Дальнейшее повышение температуры приводит к взаимодействию функциональных групп отдельных полимеров и получению трехмерно сшитого неплавкого продукта.
Таким образом, проведение дополнительной термообработки в неокислительной среде при 90-500°С необходимо для формирования в результате протекания реакций поликонденсации и полимеризации трехмерно сшитых полимеров. При температурах ниже 90°С не протекают реакции полимеризации и поликонденсации, а при температуре выше 500°С полимер спекается и превращается в непористый углерод. Наличие окислителя может привести к выгоранию органического полимера и, как следствие, к полному отсутствию микропор в углеродном носителе.
Анализ параметров текстуры пористых углеродных материалов, полученных по прототипу и по предлагаемому способу, проводили адсорбционным методом, данные получены из изотерм адсорбции-десорбции стандартного адсорбтива - азота при 77, 4 К на анализаторе ASAP-2020M, "Micrometrics". Перед адсорбционными измерениями образцы тренировали в вакууме при 573К в течение 10-12 часов. Из экспериментальных изотерм рассчитывались суммарный адсорбционный объем пор (VΣ), удельные объемы микропор (Vми) и мезопор (Vмезо).
Определение прочностных характеристик осуществляли по ГОСТ 16188-70 «Сорбенты. Метод определения прочности при истирании». Сущность метода заключается в механическом истирании навески сорбента стальным стержнем диаметром 50±0,05 мм и массой 1200 г во вращающемся со скоростью 75 об/мин стальном барабане диаметром 80±0,0-5 мм. Прочность сорбента (%) характеризуется отношением массы отсеянного нераспыленного сорбента, полученного после истирания, к первоначальной массе сорбента.
Примеры реализации предлагаемого способа приведены ниже
Пример 1 (по прототипу)
Порошок сажи смешивают с водным раствором мелассы с концентрацией 0,5% при соотношении 1:1. Грануляцию осуществляют в роторном смесителе-грануляторе непрерывного действия с объемом рабочей камеры 10 дм3 при скорости вращения ротора 750 об/мин и времени обработки - 3 мин.
Сажа после грануляции имеет влажность 50±2 мас.%. Для удаления влаги гранулы подвергают сушке на воздухе в два этапа: при температуре 20-80°С в течение 4 часов, при температуре 80-160°С в течение 7 часов.
Для проведения стадий науглероживания и активации используют специальную лабораторную установку. Лабораторная установка для проведения термообработки гранул технического углерода включает в себя цилиндрический кварцевый реактор с объемом реакционной зоны 0,5 дм3, вращающийся со скоростью 5-10 об/мин. Температура в реакторе поддерживается с точностью ±2°С за счет внешнего электронагревателя. В реактор могут подаваться как раздельно, так и в смеси любые неорганические (инертные) и углеводородные газы, а также водяной пар. Подачу последнего используют на стадии паровой активации. Водяной пар поступает в реактор через дополнительный подогреватель из испарителя. Подача газов контролируется ротаметрами, подача водяного пара по массе воды, поступающей в испаритель.
Для проведения стадии науглероживания навеску гранулированной высушенной сажи загружают в кварцевый реактор, подают газообразную пропан-бутановую фракцию со скоростью 8-10 л/час, нагревают до температуры 800-850°С и выдерживают при этой температуре в течение 3-4 часов, после чего образец охлаждают до 300°С, выгружают из реактора и фиксируют увеличение массы образца в процессе науглероживания.
Для проведения активации навеску гранулированной и науглероженной сажи загружают в кварцевый реактор, прогретый до температуры 850°С, и начинают подачу водяного пара со скоростью 0,2-0,8 л воды/час, которую продолжают в течение 30-120 мин. Далее образец охлаждают до 300°С, выгружают из реактора и фиксируют потерю массы образца в процессе активации.
Образец имеет следующие характеристики:
Объем микропор, см3 - 0,07
Объем мезопор, см3 - 0,72
Соотношение (Vми/Vмезо) - 0,10
Прочность, % - 95
Пример 2
Порошок сажи по примеру 1 смешивают с водным раствором фурфурилового спирта с концентрацией 20% при соотношении раствор фурфурилового спирта технический углерод=1,0:0,8.
Грануляцию осуществляют в роторном смесителе-грануляторе непрерывного действия с объемом рабочей камеры 10 дм3 при скорости вращения ротора 750 об/мин и времени обработки - 3 мин.
Сажа после грануляции имеет влажность 50±2 мас.%. Для удаления влаги гранулы подвергают сушке при комнатной температуре в течение 4 часов. Далее температуру повышают до 90°С и выдерживают при этой температуре в течение 5 часов для проведения полимеризации введенного фурфурилового спирта. Далее с целью образования в составе гранул неплавкого трехмерно-сшитого полифурфурилового спирта (в результате протекания реакции поликонденсации) гранулированную сажу помещают в обогреваемый реактор, подают инертный газ, повышают температуру до 300°С и выдерживают при этой температуре в инертной атмосфере в течение 3 часов. Далее для проведения карбонизации полимерных органических соединений и образования микропористого углерода в неокислительной атмосфере производят подъем температуры до 500°С со скоростью подъема не более 2°/мин и выдерживают при этой температуре в течение 2 часов.
Для проведения стадий науглероживания и активации используют лабораторную установку по примеру 1. Для проведения стадии науглероживания навеску гранулированной высушенной сажи загружают в кварцевый реактор, подают газообразную пропан-бутановую фракцию со скоростью 8-10 л/час, нагревают до температуры 800-850°С и выдерживают при этой температуре в течение 3-4 часов, после чего образец охлаждают до 300°С, выгружают из реактора и фиксируют увеличение массы образца в процессе науглероживания.
Для проведения активации навеску загружают в кварцевый реактор, прогретый до температуры 850°С, и начинают подачу водяного пара со скоростью 0,2-0,8 л воды/час, которую продолжают в течение 30-120 мин. Далее образец охлаждают до 300°С, выгружают из реактора и фиксируют потерю массы образца в процессе активации. Характеристики полученного пористого углеродного носителя приведены в таблице.
Примеры 3-8. Проводят в условиях примера 2, отличие состоит в условиях проведения дополнительной термообработки (температурно-временной режим). Условия и результаты, полученные в примерах 3-8, приведены в таблице.
Пример 9. Порошок сажи смешивают с водным раствором фенолформальдегидной смолы с концентрацией 20% при соотношении раствор фенольной смолы:технический углерод=1,0:0,7.
Грануляцию осуществляют в роторном смесителе-грануляторе непрерывного действия с объемом рабочей камеры 10 дм3 при скорости вращения ротора 750 об/мин и времени обработки - 3 мин.
Сажа после грануляции имеет влажность 50±2 мас.%. Для удаления влаги гранулы подвергают сушке при комнатной температуре в течение 4 часов. Далее температуру повышают до 90°С и выдерживают при этой температуре в течение 5 часов для проведения поликонденсации фенолформальдегидной смолы и образования фенолформальдегидного олигомера - резола. Затем температуру в реакторе поднимают до 200°С, подают инертный газ и выдерживают при этой температуре в инертной среде 1 час для получения трехмерно-сшитого полимера - резита. Далее для проведения карбонизации полимерных органических соединений и образования микропористого углерода в неокислительной атмосфере производят подъем температуры до 500°С со скоростью не более 2°/мин и выдерживают при этой температуре в течение 2 часов. Проведение науглероживания и активации проводят в условиях примера 2.
Примеры 10-11. Проводят в условиях примера 9, отличие состоит в температурно-временном режиме. Условия и результаты, полученные в примерах 10-11, приведены в таблице.
Пример 12. Порошок сажи смешивают с водными растворами винилпирролидона с концентрацией 25%, акриламида с концентрацией 20% и 1% водным раствором инициатора полимеризации динитрилом азо-бис-изомасляной кислоты (АИБН) при соотношении (раствор винилпирролидона+акриламида+АИБН):технический углерод=1,0:0,9.
Грануляцию осуществляют в роторном смесителе-грануляторе непрерывного действия с объемом рабочей камеры 10 дм3 при скорости вращения ротора 750 об/мин и времени обработки - 3 мин.
Сажа после грануляции имеет влажность 50±2 мас.%. Для удаления влаги гранулы подвергают сушке при комнатной температуре в течение 4 часов. Далее температуру повышают до 90°С и выдерживают при этой температуре в течение 5 часов для проведения радикальной полимеризации винилпирролидона и акриламида и образования полимера поливинилпирролидона и полиакриламида. Затем температуру в реакторе поднимают до 150°С, подают инертный газ и выдерживают при этой температуре в инертной среде 3 часа для взаимодействия функциональных групп полимеров различных полимерных цепей и образовния трехмерно сшитого сополимера. Далее для проведения карбонизации полимерных органических соединений и образования микропористого углерода в неокислительной атмосфере производят подъем температуры до 500°С со скоростью не более 3°/мин и выдерживают при этой температуре в течение 3 часов. Проведение науглероживания и активации проводят в условиях примера 2.
Примеры13-14. Проводят в условиях примера 12, отличие состоит в температурно-временном режиме. Условия и результаты, полученные в примерах 13-14, приведены в таблице.
Как следует из таблицы, проведение дополнительной трехэтапной термообработки в неокислительной среде при 90-500°С позволяет получить пористый углеродный носитель с развитой микропористой текстурой и отношением объемов микро-и мезопор 0,2-0,5.
Figure 00000001

Claims (1)

  1. Способ получения пористого углеродного носителя, включающий смешивание сажи и водного раствора органической жидкости, сушку, термообработку в среде углеводородных газов при температуре 800-1000°С и парогазовую активацию до получения суммарного объема пор 0,3-0,9 см3/г, отличающийся тем, что в качестве органической жидкости используют соединения с атомным отношением С:Н>1, после сушки дополнительно проводят термообработку в неокислительной среде при 90-500°С в три этапа: 5-10 ч при температуре 90-100°С, затем в течение 1-3 ч при температуре 150-300°С, и в течение 1-3 ч при температуре 300-500°С, а активацию ведут до получения материала с отношением объемов микро- и мезопор от 0,2 до 0,5.
RU2010136625/04A 2010-08-31 2010-08-31 Способ получения пористого углеродного носителя RU2451547C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010136625/04A RU2451547C2 (ru) 2010-08-31 2010-08-31 Способ получения пористого углеродного носителя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010136625/04A RU2451547C2 (ru) 2010-08-31 2010-08-31 Способ получения пористого углеродного носителя

Publications (2)

Publication Number Publication Date
RU2010136625A RU2010136625A (ru) 2012-03-10
RU2451547C2 true RU2451547C2 (ru) 2012-05-27

Family

ID=46028827

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010136625/04A RU2451547C2 (ru) 2010-08-31 2010-08-31 Способ получения пористого углеродного носителя

Country Status (1)

Country Link
RU (1) RU2451547C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697324C1 (ru) * 2018-03-27 2019-08-13 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (Институт катализа СО РАН, ИК СО РАН) Способ получения углеродного изделия

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1706690A1 (ru) * 1988-04-19 1992-01-23 Всесоюзный Научно-Исследовательский Институт Технического Углерода Пористый углеродный материал
WO2002068324A1 (en) * 2001-02-28 2002-09-06 The Penn State Research Foundtion Micro-mesoporous active carbon, and a method of treating it
RU2306977C1 (ru) * 2006-05-24 2007-09-27 Московская государственная академия тонкой химической технологии им. М.В. Ломоносова Способ получения углеродного носителя катализатора
KR100885191B1 (ko) * 2007-08-28 2009-03-12 충북대학교 산학협력단 철촉매 이온교환법을 이용하는 메조포아 활성탄 제조방법
RU2361670C1 (ru) * 2008-04-07 2009-07-20 Институт проблем переработки углеводородов Сибирского отделения Российской Академии Наук (ИППУ СО РАН) Способ получения крупносферического углеродного носителя для катализаторов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1706690A1 (ru) * 1988-04-19 1992-01-23 Всесоюзный Научно-Исследовательский Институт Технического Углерода Пористый углеродный материал
WO2002068324A1 (en) * 2001-02-28 2002-09-06 The Penn State Research Foundtion Micro-mesoporous active carbon, and a method of treating it
RU2306977C1 (ru) * 2006-05-24 2007-09-27 Московская государственная академия тонкой химической технологии им. М.В. Ломоносова Способ получения углеродного носителя катализатора
KR100885191B1 (ko) * 2007-08-28 2009-03-12 충북대학교 산학협력단 철촉매 이온교환법을 이용하는 메조포아 활성탄 제조방법
RU2361670C1 (ru) * 2008-04-07 2009-07-20 Институт проблем переработки углеводородов Сибирского отделения Российской Академии Наук (ИППУ СО РАН) Способ получения крупносферического углеродного носителя для катализаторов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697324C1 (ru) * 2018-03-27 2019-08-13 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (Институт катализа СО РАН, ИК СО РАН) Способ получения углеродного изделия

Also Published As

Publication number Publication date
RU2010136625A (ru) 2012-03-10

Similar Documents

Publication Publication Date Title
JP6906503B2 (ja) 活性炭から調製されて、プロピレン−プロパン分離に有用なカーボンモレキュラーシーブ吸着剤
Qi et al. Synthesis of porous carbon beads with controllable pore structure for volatile organic compounds removal
Zhang et al. Preparation of activated carbon from sawdust by zinc chloride activation
Kutorglo et al. Nitrogen-rich hierarchically porous polyaniline-based adsorbents for carbon dioxide (CO2) capture
Tanco et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies
Gaur et al. Preparation and characterization of ACF for the adsorption of BTX and SO2
Tang et al. Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture
CN108609602B (zh) 基于含能聚离子液体的氮掺杂微孔碳材料及其制备方法
RU2436625C1 (ru) Способ получения углеродного адсорбента
WO2012098405A1 (en) Method of preparing porous carbon
Puziy et al. Phosphoric acid activation—functionalization and porosity modification
Ioannou et al. Adsorption of methylene blue dye onto activated carbons based on agricultural by-products: Equilibrium and kinetic studies
Bai et al. Lyocell-based activated carbon fibers improved the adsorption of harmful gas properties when produced via dual-simultaneous treatments
RU2451547C2 (ru) Способ получения пористого углеродного носителя
Bai et al. Modification of textural properties of CuO-supported activated carbon fibers for SO2 adsorption based on electrical investigation
Hosseini et al. Fabrication and characterization porous carbon rod-shaped from almond natural fibers for environmental applications
Singh et al. Microporous activated carbon spheres prepared from resole‐type crosslinked phenolic beads by physical activation
Stoycheva et al. Adsorption of ethyl acetate from water by nanoporous carbon prepared from waste materials
CA1100721A (en) Carbon pellets with controlled porosity
EP0394350B1 (en) Hydrophobic carbon molecular sieves
Sternik et al. Studies on the process of basic dyes adsorption on uniform spherical carbons
CN114700036B (zh) 一种改性烟杆基生物质多级孔炭及其制备方法和应用
JP7396052B2 (ja) 芳香族化合物製造用触媒
Gonsalvesh et al. Production of adsorbents from" End of Life" tyres and characterization of their porous structure
KR20120015782A (ko) 요오드 및 황화수소의 흡착제거가 우수한 구형 활성탄의 제조방법 및 그로부터 제조된 구형활성탄

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130901

NF4A Reinstatement of patent

Effective date: 20160820

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170901

NF4A Reinstatement of patent

Effective date: 20200827

PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20210309