RU2451281C1 - Способ определения механических характеристик стержней из полимерных композиционных материалов и устройство для его реализации (варианты) - Google Patents

Способ определения механических характеристик стержней из полимерных композиционных материалов и устройство для его реализации (варианты) Download PDF

Info

Publication number
RU2451281C1
RU2451281C1 RU2010139689/28A RU2010139689A RU2451281C1 RU 2451281 C1 RU2451281 C1 RU 2451281C1 RU 2010139689/28 A RU2010139689/28 A RU 2010139689/28A RU 2010139689 A RU2010139689 A RU 2010139689A RU 2451281 C1 RU2451281 C1 RU 2451281C1
Authority
RU
Russia
Prior art keywords
sample
longitudinal
loading
load
mechanical characteristics
Prior art date
Application number
RU2010139689/28A
Other languages
English (en)
Other versions
RU2010139689A (ru
Inventor
Антон Яковлевич Рудольф (RU)
Антон Яковлевич Рудольф
Сергей Павлович Поздеев (RU)
Сергей Павлович Поздеев
Владимир Федорович Савин (RU)
Владимир Федорович Савин
Анатолий Николаевич Луговой (RU)
Анатолий Николаевич Луговой
Алексей Николаевич Блазнов (RU)
Алексей Николаевич Блазнов
Олег Владимирович Старцев (RU)
Олег Владимирович Старцев
Вячеслав Борисович Тихонов (RU)
Вячеслав Борисович Тихонов
Михаил Юрьевич Локтев (RU)
Михаил Юрьевич Локтев
Original Assignee
Общество С Ограниченной Ответственностью "Бийский Завод Стеклопластиков"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Бийский Завод Стеклопластиков" filed Critical Общество С Ограниченной Ответственностью "Бийский Завод Стеклопластиков"
Priority to RU2010139689/28A priority Critical patent/RU2451281C1/ru
Publication of RU2010139689A publication Critical patent/RU2010139689A/ru
Application granted granted Critical
Publication of RU2451281C1 publication Critical patent/RU2451281C1/ru

Links

Images

Abstract

Изобретение относится к способу определения механических характеристик материалов, в частности к способам определения модуля упругости, предельной прочности, предельной деформации стержней из полимерных композиционных материалов, и устройству для его реализации. Способ определения механических характеристик стержней из полимерных композиционных материалов предусматривает нагружение горизонтально установленного образца возрастающей нагрузкой, регистрацию величины нагрузки и соответствующей деформации образца и последующий расчет значений механических характеристик, при этом образец в виде стержня постоянного сечения с шарнирно закрепленными концами подвергают продольному изгибу путем продольного нагружения, регистрируют величину продольной нагрузки и соответствующие величины стрелы прогиба и радиуса кривизны в зоне наибольшего прогиба (вариант 1) или величину продольной нагрузки и соответствующую величину сближения концов образца в осевом направлении (вариант 2), продольное нагружение продолжают до начала разрушения образца, напряжение σ, деформацию ε и модуль упругости Е определяют по формулам. Устройство для определения механических характеристик стержней из полимерных композиционных материалов продольным изгибом содержит горизонтальное основание, установленные на нем подвижную с возможностью горизонтального перемещения шарнирную опору и неподвижный силоизмерительный узел, включающий неподвижно закрепленную на основании вертикальную стойку, снабженную в верхней части шарниром с подвешенным на нем кронштейном, на котором со стороны, обращенной к подвижной опоре, размешена неподвижная шарнирная опора, а с противоположной - нагружающий наконечник, контактирующий с силоизмерительным датчиком, размещенным на вертикальной стойке, причем гнезда для установки образца в подвижной и неподвижной шарнирных опорах, нагружающий наконечник и силоизмерительный датчик соосны (размещены на одной линии), подвижная опора снабжена нагружающим механизмом, например электродвигателем с редуктором, а между подвижной опорой и силоизмерительным узлом установлены датчики измерения стрелы прогиба и радиуса кривизны (вариант 1) или подвижная опора снабжена датчиком перемещения (вариант 2). Техническим результатом предлагаемого изобретения является повышение точности определения механических характеристик стержней из полимерных композиционных материалов. 4 н.п. ф-лы, 4 ил.

Description

Изобретение относится к способам определения механических характеристик материалов, конкретно к способу определения модуля упругости, предельной прочности, предельной деформации, и устройству для его реализации.
Для определения механических характеристик полимерных композиционных материалов (ПКМ) в настоящее время используют методы испытаний на растяжение, изгиб и сжатие.
Известен способ испытания образцов из полимерных композиционных материалов (ПКМ) на растяжение (ГОСТ 9550-81, ГОСТ 11262-80).
Сущность испытания заключается в растяжении образца, закрепленного в концевых захватах испытательной машины, и измерении параметров (нагрузки, напряжений и изменений размеров), получаемых при растяжении. По полученным во время растяжения результатам измерений определяют численные значения модуля упругости и прочности материала. Однако этот способ трудоемок, требует изготовления плоских образцов с регламентируемыми размерами, при этом механическая обработка вызывает нарушение структуры материала и приводит к занижению определяемых механических характеристик. В случаях возникновения необходимости испытания тонких стержней, например, диаметром от 1,5 до 12 мм, из таких стержней невозможно изготовить плоские образцы с регламентируемыми стандартами размерами. Кроме того, основным признаком корректности проведенного испытания и правильности изготовления образца является разрушение образца в его рабочей зоне (в зоне с постоянным сечением), однако в случае испытания однонаправленных ПКМ, обладающих высокой прочностью в направлении армирования и низкой - в поперечном направлении, а также низкой прочностью на сдвиг вдоль направления армирования, соблюсти указанное условие, как правило, не удается, разрыв происходит главным образом в месте перехода от рабочей части к захватам.
Известен способ испытания образцов на изгиб (ГОСТ 9550-82, ГОСТ 4648-71). Этот способ также требует изготовления плоских образцов регламентированных размеров и в этом обладает теми же недостатками, что и способ испытаний на растяжение. При сопоставлении результатов испытаний на поперечный изгиб однонаправленных ПКМ обычно получают наиболее высокие значения прочности, близкие к расчетным, и низкие значения модуля упругости по сравнению с испытаниями на сжатие и растяжение. Несоответствие значений прочности и модуля упругости вызывают недоверие и препятствуют более широкому использованию этого метода испытаний.
Наиболее близким к предлагаемому является способ определения механических характеристик ПКМ при испытании их на сжатие, регламентируемый в ГОСТ 4651-82.
Сущность испытания заключается в сжатии образца, закрепленного в концевых захватах испытательной машины, и измерении параметров (нагрузки, напряжений и изменений размеров), получаемых при сжатии, и последующего вычисления механических характеристик. Способ допускает проводить испытания на образцах прямоугольного и круглого сечения, однако обладает рядом недостатков:
- очень часто при испытании стержней из ПКМ происходит комбинированное разрушение - сжатие с изгибом, т.к. образец, рекомендуемый стандартом, работает в зоне, близкой к потере устойчивости;
- стандартные испытательные машины не позволяют направить осевое сжимающее усилие строго по оси образца, в результате этого происходит внецентренное сжатие с изгибом, которое сопровождается подломом либо срезом образца в зажимах;
- разрушение образца происходит в основном по краю металлического захвата в месте наибольшей концентрации напряжений, чем в рабочей части образца.
Технической задачей изобретения является разработка способа определения механических характеристик, конкретно, предельной прочности, предельной деформации и модуля упругости стержней из полимерных композиционных материалов, в том числе из однонаправленно армированных, повышение точности (достоверности) результатов испытаний и снижение их трудоемкости.
Поставленная техническая задача решается двумя вариантами.
Согласно первому варианту в способе определения механических характеристик стержней из полимерных композиционных материалов, предусматривающем нагружение образца возрастающей нагрузкой, регистрацию величины нагрузки и соответствующей деформации образца и последующий расчет значений механических характеристик, горизонтально установленный образец в виде круглого стержня постоянного сечения с шарнирно закрепленными концами подвергают продольному изгибу путем продольного нагружения, регистрируют величину продольной нагрузки и соответствующие величины стрелы прогиба и радиуса кривизны в зоне максимального прогиба, продольное нагружение продолжают до начала разрушения образца, механические характеристики σ - напряжение, ε - деформацию и Е-модуль упругости определяют по формулам:
Figure 00000001
Figure 00000002
Figure 00000003
где
P - приложенная к концам образца продольная нагрузка (реакция шарнирных опор);
f - стрела прогиба образца при продольном изгибе, мм;
w - момент сопротивления поперечного сечения образца, мм3;
F - площадь поперечного сечения образца, мм2;
d - диаметр для образцов круглого сечения или толщина для образцов прямоугольного сечения, мм;
ρ - радиус кривизны в зоне максимального прогиба образца, мм.
За предельную прочность σв принимают наибольшее значение напряжения, полученное при испытаниях данного образца, а соответствующее ей значение деформации - за предельную деформацию εв.
Способ определения механических характеристик стержней из полимерных композиционных материалов согласно первому варианту осуществляют следующим образом.
Образец из полимерного композиционного материала в виде круглого стержня постоянного сечения горизонтально устанавливают в шарнирные опоры испытательного устройства и нагружая вдоль его продольной оси, подвергают продольному изгибу вплоть до его разрушения. Регистрацию параметров (сила Р - продольная нагрузка, стрела прогиба f и радиус кривизны ρ - в зоне наибольшего прогиба образца) начинают при достижении усилия, близкого критическому (преимущественно 0,85 от критической расчетной силы) по показаниям силоизмерительного датчика, и производят с заданной периодичностью. Измерение стрелы прогиба f осуществляют, например, датчиком перемещения, а радиус кривизны ρ - оптическим бесконтактным методом.
Сигналом к завершению испытаний является начало разрушения стержня, которое определяется падением продольной нагрузки Р по показаниям силоизмерительного датчика, установленного в устройстве для испытания.
Значения напряжения σ и деформации ε вычисляют по выражениям (1) и (2), после чего строят график зависимости σ=f(ε). Наибольшее напряжение, выдерживаемое образцом, принимают за предел прочности σв. За предельную деформацию εв принимают соответствующее пределу прочности значение деформации.
На графике зависимости σ=f(ε) определяют линейный участок. Модуль упругости вычисляют как коэффициент пропорциональности на линейном участке зависимости σ=f(ε) по формуле (3).
Согласно второму варианту в способе определения механических характеристик стержней из полимерных композиционных материалов, предусматривающем нагружение образца возрастающей нагрузкой, регистрацию величины нагрузки и соответствующей деформации образца и последующий расчет значений механических характеристик, горизонтально установленный образец в виде стержня постоянного сечения с шарнирно закрепленными концами подвергают продольному изгибу путем продольного нагружения, регистрируют величину продольной нагрузки Р и соответствующую величину сближения концов образца в осевом направлении Δ, продольное нагружение продолжают до начала разрушения образца, а механические характеристики определяют по формулам (1-3), при этом величину стрелы прогиба f образца при продольном изгибе и радиус кривизны ρ в зоне максимального прогиба образца в зависимости от величины сближения концов образца в осевом направлении Δ рассчитывают с помощью аппроксимирующих выражений.
Для расчета значений величины стрелы прогиба f образца при продольном изгибе и радиуса кривизны ρ в зоне максимального прогиба образца в зависимости от величины сближения концов образца в осевом направлении Δ предлагаются аппроксимирующие выражения, обеспечивающие высокую точность и позволяющие их использование для обработки результатов испытаний на ЭВМ в режиме реального времени.
Figure 00000004
Figure 00000005
где
δ - отношение Δ/L, относительное сближение концов стержня при продольном изгибе;
L - исходная длина стержня, мм;
Δ - величина сближения концов стержня в осевом направлении, мм.
Способ определения механических характеристик стержней из полимерных композиционных материалов согласно второму варианту осуществляют следующим образом.
Образец из полимерного композиционного материала в виде круглого стержня постоянного сечения устанавливают горизонтально в шарнирные опоры испытательной машины и, нагружая вдоль его продольной оси, подвергают продольному изгибу вплоть до его разрушения.
Регистрацию параметров (сила Р - продольная нагрузка и Δ - величина взаимного сближения концов образца) начинают при достижении усилия, близкого критическому (преимущественно 0,85 от критической расчетной силы) по показаниям силоизмерительного датчика, и производят с заданной периодичностью. Измерение величины взаимного сближения концов образца осуществляют, например, датчиком перемещения.
Сигналом к завершению испытаний является начало разрушения стержня, которое определяется падением продольной нагрузки Р по показаниям силоизмерительного датчика, установленного в устройстве для проведения испытаний.
Производят вычисление величины стрелы прогиба f образца при продольном изгибе и радиус кривизны ρ в зоне максимального прогиба образца в зависимости от величины сближения концов образца в осевом направлении Δ по формулам (4-5).
Значения напряжения σ и деформации ε вычисляют по выражениям (1) и (2), после чего строят график зависимости σ=f(ε). Наибольшее напряжение, выдерживаемое образцом, принимают за предельную прочность σв. За предельную деформацию εв принимают соответствующее предельной прочности значение деформации.
На графике зависимости σ=f(ε) определяют линейный участок. Модуль упругости вычисляют как коэффициент пропорциональности на линейном участке зависимости σ=f(ε) по формуле (3).
Оба варианта предлагаемого способа определения механических характеристик стержней из полимерных композиционных материалов предусматривают использование осесимметричных образцов, в том числе круглого сечения. Кроме того, способ может быть использован для испытаний трубчатых образцов и образцов прямоугольного сечения.
Горизонтальное крепление образца в шарнирных опорах исключает недостатки, присущие прототипу (внецентренное сжатие с изгибом, которое сопровождается подломом либо срезом образца в захватах, а также разрушение образца по краю металлического захвата в месте наибольшей концентрации напряжений или комбинированное разрушение - сжатие с изгибом), что обеспечивает получение практически 100% зачетных результатов испытаний. Горизонтальное крепление образца в шаровых опорах повышает точность (достоверность) получаемых результатов, т.к. вес опор и датчика силы не влияют на результат измерения, кроме того в узле передачи нагрузки от образца к датчику силы трение скольжения заменено трением качения, поэтому точность измерения возрастает.
Технической задачей изобретения также является разработка конструкции устройства для определения механических характеристик стержней из полимерных композиционных материалов
Из уровня техники устройств, с помощью которых можно было бы реализовать предлагаемый способ определения механических характеристик стержней из полимерных композиционных материалов, не выявлено.
Поставленная техническая задача решается двумя вариантами.
Согласно первому варианту предлагается устройство для определения механических характеристик стержней из полимерных композиционных материалов, содержащее горизонтальное основание, установленные на нем подвижную с возможностью горизонтального перемещения шарнирную опору и неподвижный силоизмерительный узел, включающий неподвижно закрепленную на основании вертикальную стойку, снабженную в верхней части шарниром с подвешенным на нем кронштейном, на котором со стороны, обращенной к подвижной шарнирной опоре, размешена неподвижная шарнирная опора, а с противоположной - нагружающий наконечник, контактирующий с силоизмерительным датчиком, размещенным на вертикальной стойке, причем гнезда для установки образца в подвижной и неподвижной шарнирных опорах, нагружающий наконечник и силоизмерительный датчик размещены соосно, подвижная опора снабжена нагружающим механизмом, например электродвигателем с редуктором, а между подвижной опорой и силоизмерительным узлом установлены датчики измерения стрелы прогиба и радиуса кривизны.
На фиг.1. изображен общий вид устройства, на фиг.2. - выполнение силоизмерительного узла.
Предлагаемое устройство содержит горизонтальное основание 1, установленные на нем с возможностью горизонтального перемещения подвижную шарнирную опору 2 и неподвижный силоизмерительный узел, включающий неподвижно закрепленную на горизонтальном основании вертикальную стойку 3, снабженную в верхней части шарниром 4 с подвешенным на нем кронштейном 5, на котором со стороны, обращенной к подвижной шарнирной опоре, размещена неподвижная шарнирная опора 6, а с противоположной - нагружающий наконечник 7, контактирующий с силоизмерительным датчиком 8, закрепленным на вертикальной стойке, при этом гнезда для установки образца в подвижной и неподвижной шарнирных опорах, нагружающий наконечник и силоизмерительный датчик соосны (размещены на одной линии), подвижная опора снабжена нагружающим механизмом, содержащим электродвигатель 9 с редуктором 10, а между подвижной шарнирной опорой 2 и неподвижным силоизмерительным узлом размещены датчик измерения стрелы прогиба 11 и датчик измерения радиуса кривизны 12 испытываемого образца 13.
Устройство работает следующим образом.
Образец 13 устанавливают в шарнирных опорах 2 и 6, приводят в действие нагружающий механизм, электродвигатель 9 через редуктор 10 перемещает подвижную шарнирную опору 2, нагружая образец 13 продольной нагрузкой. Образец передает приложенную к нему нагрузку на неподвижную шарнирную опору 6, которая через нагружающий наконечник 7 передает ее на силоизмерительный датчик 8. В момент достижения заданной величины продольной нагрузки (например, 0.85 от критической расчетной силы) по показаниям силоизмерительного датчика запускается одновременная запись величины стрелы прогиба образца по показаниям датчика 11, радиус кривизны в зоне максимального прогиба образца по показаниям датчика 12 и соответствующей величины продольной нагрузки по показаниям силоизмерительного датчика 8. Нагружение образца и запись регистрируемых параметров продолжают до начала разрушения образца, которое соответствует резкому падению нагрузки по показаниям силоизмерительного датчика 8, после чего электродвигатель 10 нагружающего механизма выключают.
Согласно второму варианту предлагается устройство для определения механических характеристик стержней из полимерных композиционных материалов, содержащее горизонтальное основание, установленные на нем подвижную с возможностью горизонтального перемещения шарнирную опору и неподвижный силоизмерительный узел, включающий неподвижно закрепленную на основании вертикальную стойку, снабженную в верхней части шарниром с подвешенным на нем кронштейном, на котором со стороны, обращенной к подвижной шарнирной опоре, размешена неподвижная шарнирная опора, а с противоположной - нагружающий наконечник, контактирующий с силоизмерительным датчиком, размещенным на вертикальной стойке, причем гнезда для установки образца в подвижной и неподвижной шарнирных опорах, нагружающий наконечник и силоизмерительный датчик соосны, подвижная опора снабжена нагружающим механизмом, например электродвигателем с редуктором, и датчиком перемещения.
На фиг.3 изображен общий вид устройства, на фиг.4 - выполнение силоизмерительного узла.
Предлагаемое устройство содержит горизонтальное основание 1, установленные на нем с возможностью горизонтального перемещения подвижную шарнирную опору 2 и неподвижный силоизмерительный узел, включающий неподвижно закрепленную на горизонтальном основании вертикальную стойку 3, снабженную в верхней части шарниром 4 с подвешенным на нем кронштейном 5, на котором со стороны, обращенной к подвижной шарнирной опоре, размещена неподвижная шарнирная опора 6, а с противоположной - нагружающий наконечник 7, контактирующий с силоизмерительным датчиком 8, закрепленным на вертикальной стойке, при этом гнезда для установки образца в подвижной и неподвижной шарнирных опорах, нагружающий наконечник и силоизмерительный датчик соосны (размещены на одной линии), подвижная опора снабжена нагружающим механизмом, содержащим электродвигатель 9 с редуктором 10, и датчиком перемещения 14.
Устройство работает следующим образом.
Образец 12 устанавливают в шарнирных опорах 2 и 6, приводят в действие нагружающий механизм, электродвигатель 9 через редуктор 10 перемещает подвижную шарнирную опору 2, нагружая образец 12 продольной нагрузкой. Образец передает приложенную к нему нагрузку на неподвижную шарнирную опору 6, которая через нагружающий наконечник 7 передает ее на силоизмерительный датчик 8. В момент достижения заданной величины продольной нагрузки (например, 0.85 от критической расчетной силы) по показаниям силоизмерительного датчика запускается одновременная запись величины сближения концов образца в осевом направлении по показаниям датчика перемещения 14 и соответствующей величины продольной нагрузки по показаниям силоизмерительного датчика 8. Нагружение образца и запись регистрируемых параметров продолжают до начала разрушения образца, которое соответствует резкому падению нагрузки по показаниям силоизмерительного датчика 8 после чего электродвигатель 10 нагружающего механизма выключают.

Claims (4)

1. Способ определения механических характеристик стержней из полимерных композиционных материалов, предусматривающий нагружение образца возрастающей нагрузкой, регистрацию величины нагрузки и соответствующей деформации образца и последующий расчет значений механических характеристик, отличающийся тем, что горизонтально установленный образец в виде стержня постоянного сечения с шарнирно закрепленными концами подвергают продольному изгибу путем продольного нагружения, регистрируют величину продольной нагрузки и соответствующие величины стрелы прогиба и радиуса кривизны в зоне наибольшего прогиба, продольное нагружение продолжают до начала разрушения образца, напряжение σ, деформацию ε и модуль упругости Е определяют по формулам:
Figure 00000006

Figure 00000007

Figure 00000008

где Р - приложенная к концам образца продольная нагрузка (реакция шарнирных опор);
f - стрела прогиба образца при продольном изгибе, мм;
w - момент сопротивления поперечного сечения образца, мм3;
F - площадь поперечного сечения рабочей части образца, мм2;
d - диаметр образца, мм;
ρ - радиус кривизны в зоне максимального прогиба образца, мм,
при этом наибольшее напряжение принимают за предельную прочность σв, а соответствующее ему значение деформации - за предельную деформацию εв.
2. Способ определения механических характеристик стержней из полимерных композиционных материалов, предусматривающий нагружение образца возрастающей нагрузкой, регистрацию величины нагрузки и соответствующей деформации образца и последующий расчет значений механических характеристик, отличающийся тем, что горизонтально установленный образец в виде стержня постоянного сечения с шарнирно закрепленными концами подвергают продольному изгибу путем продольного нагружения, регистрируют величину продольной нагрузки и соответствующую величину сближения концов образца в осевом направлении, продольное нагружение продолжают до начала разрушения образца, а механические характеристики определяют по формулам
Figure 00000006

Figure 00000007

Figure 00000008

где Р - приложенная к концам образца продольная нагрузка (реакция шарнирных опор);
f - стрела прогиба образца при продольном изгибе, мм;
w - момент сопротивления поперечного сечения образца, мм3;
F - площадь поперечного сечения рабочей части образца, мм2;
d - диаметр образца, мм;
ρ - радиус кривизны в зоне максимального прогиба образца, мм,
наибольшее напряжение принимают за предельную прочность σв, соответствующее ему значение деформации - за предельную деформацию εв; при этом величину стрелы прогиба f образца при продольном изгибе и радиус кривизны ρ в зоне максимального его прогиба в зависимости от величины сближения концов образца в осевом направлении Δ рассчитывают с помощью аппроксимирующих выражений
Figure 00000009

Figure 00000010

где f - стрела прогиба образца при продольном изгибе, мм;
ρ - радиус кривизны в зоне максимального прогиба образца, мм;
δ=Δ/L - относительное сближение концов стержня при продольном изгибе;
L - исходная длина стержня, мм;
Δ - величина сближения концов стержня в осевом направлении, мм.
3. Устройство для определения механических характеристик стержней из полимерных композиционных материалов способом по п.1, содержащее горизонтальное основание, установленные на нем подвижную с возможностью горизонтального перемещения шарнирную опору и неподвижный силоизмерительный узел, включающий неподвижно закрепленную на основании вертикальную стойку, снабженную в верхней части шарниром с подвешенным на нем кронштейном, на котором со стороны, обращенной к подвижной опоре размешена неподвижная шарнирная опора, а с противоположной - нагружающий наконечник, контактирующий с силоизмерительным датчиком, размещенным на вертикальной стойке, причем гнезда для установки образца в подвижной и неподвижной шарнирных опорах, нагружающий наконечник и силоизмерительный датчик сосны (размещены на одной линии), подвижная опора снабжена нагружающим механизмом, например электродвигателем с редуктором, а между подвижной опорой и силоизмерительным узлом установлены датчики измерения стрелы прогиба и радиуса кривизны.
4. Устройство для определения механических свойств стержней из полимерных композиционных материалов способом по п.2, содержащее горизонтальное основание, установленные на нем подвижную с возможностью горизонтального перемещения шарнирную опору и неподвижный силоизмерительный узел, включающий неподвижно закрепленную на основании вертикальную стойку, снабженную в верхней части шарниром с подвешенным на нем кронштейном, на котором со стороны, обращенной к подвижной опоре, размещена неподвижная шарнирная опора, а с противоположной - нагружающий наконечник, контактирующий с силоизмерительным датчиком, размещенным на вертикальной стойке, причем гнезда для установки образца в подвижной и неподвижной шарнирных опорах, нагружающий наконечник и силоизмерительный датчик сосны (размещены на одной линии), подвижная опора снабжена нагружающим механизмом, например электродвигателем с редуктором, и датчиком перемещения.
RU2010139689/28A 2010-09-27 2010-09-27 Способ определения механических характеристик стержней из полимерных композиционных материалов и устройство для его реализации (варианты) RU2451281C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010139689/28A RU2451281C1 (ru) 2010-09-27 2010-09-27 Способ определения механических характеристик стержней из полимерных композиционных материалов и устройство для его реализации (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010139689/28A RU2451281C1 (ru) 2010-09-27 2010-09-27 Способ определения механических характеристик стержней из полимерных композиционных материалов и устройство для его реализации (варианты)

Publications (2)

Publication Number Publication Date
RU2010139689A RU2010139689A (ru) 2012-04-10
RU2451281C1 true RU2451281C1 (ru) 2012-05-20

Family

ID=46031270

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010139689/28A RU2451281C1 (ru) 2010-09-27 2010-09-27 Способ определения механических характеристик стержней из полимерных композиционных материалов и устройство для его реализации (варианты)

Country Status (1)

Country Link
RU (1) RU2451281C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2564520C1 (ru) * 2014-07-15 2015-10-10 Общество С Ограниченной Ответственностью "Бийский Завод Стеклопластиков" Способ определения термомеханических характеристик полимерных композиционных материалов
RU2597811C1 (ru) * 2015-07-14 2016-09-20 Федеральное государственное бюджетное учреждение науки Институт проблем химико-энергетических технологий Сибирского отделения РАН (ИПХЭТ СО РАН) Способ определения механических характеристик полых трубчатых изделий из полимерных композиционных материалов
CN106370415A (zh) * 2016-10-31 2017-02-01 西安建筑科技大学 一种自动控制轴心受力构件往复荷载加载装置及使用方法
RU2651617C1 (ru) * 2017-08-24 2018-04-23 Федеральное государственное бюджетное учреждение науки Институт проблем химико-энергетических технологий Сибирского отделения Российской академии наук (ИПХЭТ СО РАН) Способ и устройство для определения теплостойкости полимерных композиционных материалов
RU208798U1 (ru) * 2021-10-05 2022-01-13 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва» Устройство для испытания сотовых панелей

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Савин В.Ф., Луговой А.Н., Волков Ю.П., Блазнов А.Н. "Продольный изгиб как метод определения механических характеристик материалов", Заводская лаборатория. Диагностика материалов - 2006. - т.72. - №1. - с.55-58. Савин В.Ф., Волков Ю.П., Луговой А.Н., Блазнов А.Н., Хе А.И. «Продольный изгиб как средство контроля механических характеристик композиционных конструкционных материалов» Измерения, автоматизация и моделирование в промышленности и научных исследованиях: Межвузовский сборник / Под ред. Г.В.Леонова. - Изд-во Алт. гос. техн. ун-та, 2002. - с.167-172. Блазнов А.Н., Пушилин А.А., Луговой А.Н., Голубев В.И., Савин В.Ф., Волков Ю.П. «Автоматизированная установка для испытаний стеклопластиковых стержней на продольный изгиб», Измерения, автоматизация и моделирование в промышленности и научных исследованиях: Межвузовский сборник / Под ред. Г.В.Леонова. - Бийск: Изд-во Алт. гос. техн. ун-та, 2005. - с.36-39. Луговой А.Н. «Исследование механических характеристик однонаправленно армированног *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2564520C1 (ru) * 2014-07-15 2015-10-10 Общество С Ограниченной Ответственностью "Бийский Завод Стеклопластиков" Способ определения термомеханических характеристик полимерных композиционных материалов
RU2597811C1 (ru) * 2015-07-14 2016-09-20 Федеральное государственное бюджетное учреждение науки Институт проблем химико-энергетических технологий Сибирского отделения РАН (ИПХЭТ СО РАН) Способ определения механических характеристик полых трубчатых изделий из полимерных композиционных материалов
CN106370415A (zh) * 2016-10-31 2017-02-01 西安建筑科技大学 一种自动控制轴心受力构件往复荷载加载装置及使用方法
RU2651617C1 (ru) * 2017-08-24 2018-04-23 Федеральное государственное бюджетное учреждение науки Институт проблем химико-энергетических технологий Сибирского отделения Российской академии наук (ИПХЭТ СО РАН) Способ и устройство для определения теплостойкости полимерных композиционных материалов
RU208798U1 (ru) * 2021-10-05 2022-01-13 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва» Устройство для испытания сотовых панелей

Also Published As

Publication number Publication date
RU2010139689A (ru) 2012-04-10

Similar Documents

Publication Publication Date Title
RU2451281C1 (ru) Способ определения механических характеристик стержней из полимерных композиционных материалов и устройство для его реализации (варианты)
Tariq et al. Li material testing-fermilab antiproton source lithium collection lens
Miljojković et al. DETERMINING ELASTIC MODULUS OF THE MATERIAL BY MEASURING THE DEFLECTION OF THE BEAM LOADED IN BENDING.
KR101176958B1 (ko) 3점 지지 굽힘 시험기
Genovese et al. A novel methodology for non-destructive characterization of polymers’ viscoelastic properties
CN103115603B (zh) 一种在材料拉扭试验中测量双轴应变的装置和方法
RU2483214C1 (ru) Способ определения удельной поверхностной энергии разрушения твердых тел
CN201449358U (zh) 蠕变试验机
RU2350898C1 (ru) Коленчато-рычажный индикаторный тензометр
RU2373515C1 (ru) Устройство для определения твердости материалов методом царапания
Antherieu et al. Principle and experimental validation of a new apparatus allowing large deformation in pure bending: Application to thin wire
RU2357223C1 (ru) Способ испытаний упругих стержней на долговечность и устройство для его осуществления
RU100255U1 (ru) Стенд для испытания железобетонных элементов на поперечный изгиб при статическом нагружении
CN107702980A (zh) 弹性模量、抗弯刚度多功能组合实验装置
CN210108832U (zh) 一种用于混凝土试件的新型直接拉伸试验装置
RU2597811C1 (ru) Способ определения механических характеристик полых трубчатых изделий из полимерных композиционных материалов
RU172393U1 (ru) Стенд для испытания железобетонных элементов с обжатием и кратковременным динамическим кручением
Park et al. Tensile and high cycle fatigue tests of NiCo thin films
RU2003111551A (ru) Машина испытательная для механических испытаний материалов на растяжение
RU2745947C1 (ru) Способ определения изгибной жесткости полимерных композиционных материалов при различных температурных условиях
RU2431127C1 (ru) Датчик деформации
RU106742U1 (ru) Датчик деформации
CN219694750U (zh) 一种拉伸试样断后延伸率测量装置
CN209342512U (zh) 一种便携式预应力波纹管纵向荷载试验检测仪
CN215677860U (zh) 一种新型水泥混凝土抗折试验装置