RU2446205C1 - Биореактор вытеснения с мембранным устройством подвода газового питания - Google Patents

Биореактор вытеснения с мембранным устройством подвода газового питания Download PDF

Info

Publication number
RU2446205C1
RU2446205C1 RU2010144464/10A RU2010144464A RU2446205C1 RU 2446205 C1 RU2446205 C1 RU 2446205C1 RU 2010144464/10 A RU2010144464/10 A RU 2010144464/10A RU 2010144464 A RU2010144464 A RU 2010144464A RU 2446205 C1 RU2446205 C1 RU 2446205C1
Authority
RU
Russia
Prior art keywords
gas
bioreactor
heat exchanger
tubular membranes
displacement
Prior art date
Application number
RU2010144464/10A
Other languages
English (en)
Inventor
Сергей Германович Мухачев (RU)
Сергей Германович Мухачев
Виктор Михайлович Емельянов (RU)
Виктор Михайлович Емельянов
Марат Фаридович Шавалиев (RU)
Марат Фаридович Шавалиев
Ирина Сильвестровна Владимирова (RU)
Ирина Сильвестровна Владимирова
Алексей Равильевич Аблаев (RU)
Алексей Равильевич Аблаев
Елена Николаевна Нуруллина (RU)
Елена Николаевна Нуруллина
Original Assignee
Общество с ограниченной ответственностью "Биотехконсалтинг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Биотехконсалтинг" filed Critical Общество с ограниченной ответственностью "Биотехконсалтинг"
Priority to RU2010144464/10A priority Critical patent/RU2446205C1/ru
Application granted granted Critical
Publication of RU2446205C1 publication Critical patent/RU2446205C1/ru

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Изобретение относится к микробиологической, пищевой, медицинской промышленности, в частности к биореакторам асептического выращивания микроорганизмов, и может быть использовано для комплектации установок учебного, научно-исследовательского и промышленного назначения. Биореактор вытеснения с мембранным устройством подвода газового питания включает цилиндрический корпус, крышку, днище, газораспределительное устройство, газопроницаемые полимерные трубчатые мембраны. Последние установлены вдоль оси корпуса. Внутри корпуса вдоль центральной его оси установлена несущая труба теплообменника. Внутри трубы теплообменника расположена труба подвода газа, соединенная с газораспределительным устройством. Снаружи несущей трубы теплообменника установлена винтовая перфорированная поверхность, через отверстия которой проходят газопроницаемые полимерные трубчатые мембраны, закрепленные между крышкой и газораспределительным устройством. Биореактор вытеснения при работе обеспечивает повышение производительности за счет интенсификации массообмена и упрощение эксплуатации. 2 ил.

Description

Изобретение относится к микробиологической, пищевой, медицинской промышленности, в частности к биореакторам асептического выращивания микроорганизмов, и может быть использовано для комплектации установок учебного, научно-исследовательского и промышленного назначения.
Известен аппарат для культивирования клеток и тканей, содержащий закрытую емкость, мешалку и устройство для подвода газа в питательную среду, представляющее собой змеевик, выполненный из проницаемого для газа полимерного материала. Змеевик расположен внутри дополнительной циркуляционной обечайки (А.с. СССР 786326. Аппарат для культивирования клеток и тканей / Байбаков В.И., Власкин Б.А. // Бюл. №8, 1986).
Недостатками такого аппарата являются использование механического перемешивающего устройства, герметизация вала которого сложна, а само наличие мешалки и разделение емкости аппарата на две части ограничивает объем, занимаемый трубчатым устройством газового питания. Все вышеперечисленное ведет к ограничению рабочей поверхности ввода газа и снижает предельные массообменные характеристики и производительность аппарата.
Известен биореактор для выращивания микроорганизмов, содержащий цилиндрический корпус, мешалку и несущие элементы, на которые крепится полимерная газопроницаемая трубчатая мембрана для подвода газа (см. http://www.fermenter.ru/content/page_25_0.html, Компактный настольный ферментер BIOSTAT В с устройством для беспузырьковой аэрации).
Недостатками такого аппарата являются использование сложного механического перемешивающего устройства и неполное использование пространства для развития рабочей поверхности полимерной газопроницаемой трубчатой мембраны.
Наиболее близким к изобретению по технической сущности и достигаемому эффекту является биореактор колонного типа с осевым расположением газопроницаемых полимерных трубчатых мембран, закрепленных между днищем, имеющим газораспределительную полость, и подвижным газосборным устройством. Биореактор не имеет механических перемешивающих устройств, за счет чего весь объем равномерно заполнен газопроницаемыми полимерными трубчатыми мембранами, отстоящими друг от друга на расстояния 3-4 мм. Общая удельная поверхность мембран при этом достигает 155 м23 (Научно-технический отчет ООО «Биотехпродукция» по теме «Аппаратурное оснащение и совершенствование аэробных технологий получения посевных материалов». Емельянов В.М., Мухачев С.Г., Ситнов В.В. и др. УДК 663.131, № гос. регистрации 01200610996, Казань, 2007).
К недостаткам такого биореактора относится крепление газопроницаемых полимерных трубчатых мембран на днище, а газосборного устройства на крышке, что усложняет конструкцию и затрудняет сборку биореактора. Кроме того, отсутствуют дополнительные промежуточные крепления трубчатых мембран, что не позволяет поднять рабочее давление газа выше 0,25 МПа из-за их деформации и ограничивает предельную скорость массообмена кислорода на уровне 1,1-1,3 кг/м3·ч (деформация трубчатых мембран влечет частичное их соприкосновение и взаимное экранирование поверхностей массообмена), что снижает производительность биореактора.
Задача, на решение которой направлено заявляемое изобретение, заключается в повышении производительности биореактора за счет интенсификации массообмена, в создании более простого в эксплуатации биореактора. Предлагаемая конструкция биореактора позволяет интенсифицировать массообменные процессы за счет повышения рабочего давления газа в газопроницаемых полимерных трубчатых мембранах, за счет более интенсивного контакта культуральной жидкости, движущейся по винтовой поверхности перпендикулярно трубчатым мембранам, за счет увеличения пути движения потока культуральной жидкости в биореакторе, а также равномерного поддержания температуры культуральной жидкости во всем объеме биореактора.
Технический результат в биореакторе вытеснения с мембранным устройством подвода газового питания, включающем цилиндрический корпус, крышку, днище, газораспределительное устройство, газопроницаемые полимерные трубчатые мембраны, установленные вдоль оси корпуса, достигается тем, что внутри корпуса вдоль центральной его оси установлена несущая труба теплообменника, внутри которой расположена труба подвода газа, соединенная с газораспределительным устройством, снаружи несущей трубы теплообменника установлена винтовая перфорированная поверхность, через отверстия которой проходят газопроницаемые полимерные трубчатые мембраны, закрепленные между крышкой и газораспределительным устройством.
Предлагаемое изобретение позволяет увеличить продуктивность биореактора по биомассе микроорганизмов в 2,0-2,5 раза, упростить эксплуатацию биореактора.
На фиг.1 схематично показан предложенный биореактор в продольном сечении и его вид сверху; на фиг.2 показано поперечное сечение биореактора.
Биореактор содержит цилиндрический корпус 1 с днищем 2, съемную крышку 3, на которой смонтированы газопроницаемые полимерные трубчатые мембраны 4, установленные вдоль оси корпуса 1, газораспределительное устройство 5. Корпус 1, днище 2, крышка 3 биореактора могут быть выполнены, например, из нержавеющей стали.
Съемная крышка 3 имеет полость 6 для приема непотребленного газа и штуцер 7, служащий для его отвода, а также для отвода воздуха при первоначальной продувке газовой полости внутри газопроницаемых полимерных трубчатых мембран 4 газом заданного рабочего состава, например техническим кислородом. На съемной крышке 3 имеется засевной штуцер 8, штуцер для подачи газового питания 9, штуцер для отвода углекислого газа 10. На днище 2 расположен штуцер 11, через который отбирается культуральная жидкость и внешним рециркуляционным насосом подается в биореактор через штуцер 8. Вдоль центральной оси корпуса 1 установлена несущая труба теплообменника 12, внутри которой расположена труба подвода газа 13, соединенная с газораспределительным устройством 5. Для подачи и отвода теплоносителя используются штуцеры 14 и 15 соответственно. Снаружи несущей трубы теплообменника 12 установлена винтовая перфорированная поверхность 16, выполненная, например, из нержавеющей стали, через отверстия которой проходят газопроницаемые полимерные трубчатые мембраны 4, например выполненные из силикона, закрепленные между крышкой 3 и газораспределительным устройством 5. Толщина винтовой перфорированной поверхности 16, например равная 1,5-2,5 мм, и обработка кромок отверстий, через которые пропущены трубчатые мембраны 4, выбираются из условия недопущения перерезания трубок на кромках при подаче в них газа под давлением. Отверстия в винтовой перфорированной поверхности 16 для облегчения монтажа биореактора могут, например, на 0,1-0,2 мм превышать диаметр трубчатых мембран. Кромка винтовой поверхности 16 герметизируется уплотнительным шнуром 17. Отбор проб осуществляется через штуцер 11. Для подачи титранта используется штуцер 18. Датчики (рН, рO2, eH и др.) могут устанавливаться при необходимости в ячейку внешнего рециркуляционного контура.
Рассмотрим предлагаемый биореактор в работе. В цилиндрический корпус 1 биореактора заливается питательная среда, и через засевной штуцер 8 вводится культура микроорганизмов. В культуральную жидкость через газопроницаемые полимерные трубчатые мембраны 4 из трубы подвода газа 13, соединенной с входным штуцером 9, подается газовое питание. Через отводной штуцер 7 осуществляется сброс воздуха из полости трубчатых мембран 4 при кратковременной продувке их рабочим газом.
В зависимости от потребности культуры микроорганизмов, по мере роста концентрации клеток, давление подаваемого газа увеличивают. Интенсивность процесса определяют по скорости продуцирования углекислого газа, отбираемого из отводящего углекислый газ штуцера 10. Точка отбора углекислого газа находится выше штуцера 8. С целью создания потока внутри биореактора, культуральная жидкость, отбираемая через штуцер 11, возвращается в корпус биореактора через штуцер 8. Интенсификация массообменных характеристик биореактора достигается тем, что время пребывания потока культуральной жидкости в биореакторе увеличивается, при той же самой объемной скорости ее движения, линейная скорость возрастает, поток культуральной жидкости направлен перпендикулярно газопроницаемым полимерным трубчатым мембранам, за счет чего интенсивнее идет обновление пограничного слоя жидкости, растет движущая сила процесса. Движущийся по винтовой поверхности перпендикулярно трубчатым мембранам поток культуральной жидкости более интенсивно омывает трубчатые мембраны, что существенно увеличивает коэффициент массоотдачи, а следовательно, поток кислорода в культуральную жидкость. Это способствует увеличению концентрации микроорганизмов, повышает производительность биореактора по выпускаемому продукту.
Кроме того, использование винтовой перфорированной поверхности, через перфорации которой проходят трубчатые мембраны, выполняющей функцию дополнительных креплений газопроницаемых полимерных трубчатых мембран, позволяет увеличить давление внутри мембраны примерно в 2 раза при снижении удельной поверхности мембран не более чем на 20% (часть поверхности трубчатых мембран 4 проходит через ограничивающие деформацию перфорации винтовой поверхности 16), обеспечивает рост массообмена в 2-2,5 раза.
Предлагаемое изобретение позволяет поднять рабочее давление внутри полимерных трубчатых мембран 4. При повышении давления поверхность трубчатых мембран 4 деформируется, но, встречая сопротивление со стороны перфорированной винтовой поверхности 16, эта деформация носит ограниченный характер вследствие того, что шаг винтовой поверхности составляет, например, 8-10 мм.
Если в прототипе поддержание температуры внутри биореактора обеспечивается внешней теплообменной рубашкой, что накладывает определенные ограничения на диаметр колонного биореактора, то в предлагаемом изобретении несущая труба теплообменника находится внутри биореактора, расположена вдоль центральной его оси, кроме того, винтовая перфорированная поверхность является элементом теплообменника, что обеспечивает более равномерное поддержание температуры во всем объеме биореактора и дает возможность увеличения диаметра колонного биореактора до размеров промышленного инокулятора, например до 200 литров.
Использование изобретения позволяет повысить производительность биореактора, упростить его эксплуатацию, уменьшить стоимость расходных материалов (например, отказаться от применения армированных мембран), снизить себестоимость выпускаемого продукта.
Изобретение может быть использовано для комплектации надежных и недорогих установок учебного, исследовательского и промышленного назначения.

Claims (1)

  1. Биореактор вытеснения с мембранным устройством подвода газового питания, содержащий цилиндрический корпус, крышку, днище, газораспределительное устройство, газопроницаемые полимерные трубчатые мембраны, установленные вдоль оси корпуса, отличающийся тем, что внутри корпуса вдоль центральной его оси установлена несущая труба теплообменника, внутри которой расположена труба подвода газа, соединенная с газораспределительным устройством, снаружи несущей трубы теплообменника установлена винтовая перфорированная поверхность, через отверстия которой проходят газопроницаемые полимерные трубчатые мембраны, закрепленные между крышкой и газораспределительным устройством.
RU2010144464/10A 2010-10-29 2010-10-29 Биореактор вытеснения с мембранным устройством подвода газового питания RU2446205C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010144464/10A RU2446205C1 (ru) 2010-10-29 2010-10-29 Биореактор вытеснения с мембранным устройством подвода газового питания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010144464/10A RU2446205C1 (ru) 2010-10-29 2010-10-29 Биореактор вытеснения с мембранным устройством подвода газового питания

Publications (1)

Publication Number Publication Date
RU2446205C1 true RU2446205C1 (ru) 2012-03-27

Family

ID=46030877

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010144464/10A RU2446205C1 (ru) 2010-10-29 2010-10-29 Биореактор вытеснения с мембранным устройством подвода газового питания

Country Status (1)

Country Link
RU (1) RU2446205C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2534886C1 (ru) * 2013-10-15 2014-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО "КНИТУ") Биореактор с мембранным устройством подвода газового питания
RU2596396C1 (ru) * 2015-05-25 2016-09-10 Федеральное государственное бюджетное учреждение науки Институт биологического приборостроения с опытным производством Российской Академии наук (ИБП РАН) Биореактор с мембранным устройством газового питания микроорганизмов
RU2644344C1 (ru) * 2016-10-26 2018-02-08 Федеральное государственное бюджетное учреждение науки Институт биологического приборостроения с опытным производством Российской Академии наук (ИБП РАН) Биологический реактор для превращения газообразных углеводородов в биологически активные соединения

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU786326A1 (ru) * 1979-06-08 1986-02-28 Всесоюзный Научно-Исследовательский Институт Молекулярной Биологии Аппарат дл культивироваеи клеток и тканей

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU786326A1 (ru) * 1979-06-08 1986-02-28 Всесоюзный Научно-Исследовательский Институт Молекулярной Биологии Аппарат дл культивироваеи клеток и тканей

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЕМЕЛЬЯНОВ В.М. и др. Научно-технический отчет ООО «Биотехпродукция» «Аппаратурное оснащение и совершенствование аэробных технологий получения посевных материалов». УДК 663.131., № гос. регистрации 01200610996, г.Казань: 2007. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2534886C1 (ru) * 2013-10-15 2014-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВПО "КНИТУ") Биореактор с мембранным устройством подвода газового питания
RU2596396C1 (ru) * 2015-05-25 2016-09-10 Федеральное государственное бюджетное учреждение науки Институт биологического приборостроения с опытным производством Российской Академии наук (ИБП РАН) Биореактор с мембранным устройством газового питания микроорганизмов
RU2644344C1 (ru) * 2016-10-26 2018-02-08 Федеральное государственное бюджетное учреждение науки Институт биологического приборостроения с опытным производством Российской Академии наук (ИБП РАН) Биологический реактор для превращения газообразных углеводородов в биологически активные соединения

Similar Documents

Publication Publication Date Title
JP5394623B2 (ja) バイオリアクタおよび方法
JP4146476B2 (ja) 生物反応装置
AU2010238548B2 (en) Cell culture system
Singh et al. Bioreactors–technology & design analysis
US9499290B2 (en) Stationary bubble reactors
WO2000011953A1 (en) Method and apparatus for aseptic growth or processing of biomass
RU2415913C1 (ru) Биореактор вытеснения с мембранным устройством подвода и стерилизации газового питания
FI128860B (en) BIOREACTORS FOR GROWING MICRO-ORGANISMS
Jaibiba et al. Working principle of typical bioreactors
RU2446205C1 (ru) Биореактор вытеснения с мембранным устройством подвода газового питания
US20110117639A1 (en) Taylor Vortex Flow Bioreactor for Cell Culture
US10316283B2 (en) Concentrically baffled reactors and systems that incorporate them
RU2596396C1 (ru) Биореактор с мембранным устройством газового питания микроорганизмов
US20110100902A1 (en) Mixing device, system and method for anaerobic digestion
RU2644344C1 (ru) Биологический реактор для превращения газообразных углеводородов в биологически активные соединения
RU2585666C1 (ru) Аппарат для культивирования метанокисляющих микроорганизмов
WO2017126614A1 (ja) 廃水処理装置及び気体式液体仕切弁
CN111115998B (zh) 一种生物反应器装置
KR101323560B1 (ko) 바이오 반응기
CN206680254U (zh) 一种水产养殖排放水处理装置
da Rosa et al. Bioreactors operating conditions
RU2534886C1 (ru) Биореактор с мембранным устройством подвода газового питания
CN213977648U (zh) 一种美颜产品生产原料生物反应器
US9550702B2 (en) Tubular digester
EP3551744A1 (en) A convertible bioreactor, a kit, and a method for converting a bioreactor

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181030