RU2441281C1 - Способ оценки шума цифровых рентгенограмм - Google Patents

Способ оценки шума цифровых рентгенограмм Download PDF

Info

Publication number
RU2441281C1
RU2441281C1 RU2011101471/08A RU2011101471A RU2441281C1 RU 2441281 C1 RU2441281 C1 RU 2441281C1 RU 2011101471/08 A RU2011101471/08 A RU 2011101471/08A RU 2011101471 A RU2011101471 A RU 2011101471A RU 2441281 C1 RU2441281 C1 RU 2441281C1
Authority
RU
Russia
Prior art keywords
noise
image
interval
pixel values
variance
Prior art date
Application number
RU2011101471/08A
Other languages
English (en)
Inventor
Сергей Васильевич Меркурьев (RU)
Сергей Васильевич Меркурьев
Original Assignee
Закрытое Акционерное Общество "Импульс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Импульс" filed Critical Закрытое Акционерное Общество "Импульс"
Priority to RU2011101471/08A priority Critical patent/RU2441281C1/ru
Priority to EA201100690A priority patent/EA016483B1/ru
Priority to CN2011103727936A priority patent/CN102592265A/zh
Priority to JP2012003097A priority patent/JP2012150802A/ja
Priority to KR1020120004442A priority patent/KR101319294B1/ko
Priority to EP12000171.4A priority patent/EP2477154B1/en
Priority to US13/350,898 priority patent/US20120183195A1/en
Application granted granted Critical
Publication of RU2441281C1 publication Critical patent/RU2441281C1/ru

Links

Images

Classifications

    • G06T5/70
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/42Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a horizontal axis, e.g. cutting-cylinders
    • A01D34/54Cutting-height adjustment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/42Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a horizontal axis, e.g. cutting-cylinders
    • A01D34/43Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a horizontal axis, e.g. cutting-cylinders mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/42Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a horizontal axis, e.g. cutting-cylinders
    • A01D34/62Other details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration by the use of local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Abstract

Изобретение относится к области обработки цифровых рентгенограмм. Техническим результатом является повышение качества оценки шума цифровых изображений. Способ включает получение исходного изображения, оценочного изображения низкочастотной фильтрацией исходного изображения, а также построение изображения шума как разности между исходным и оценочным изображением; удаление значений пикселей изображения шума, соответствующих резким изменениям в исходном изображении; разбиение диапазона интенсивности оценочного изображения на интервалы; накопление значений пикселей оценочного изображения шума; вычисление интервальных оценок дисперсии шума по накопленным значениям пикселей; уточнение интервальных оценок дисперсии, удаление значений пикселей изображения шума, соответствующих резким изменениям в исходном изображении, морфологическим выделением значений пикселей изображения шума, соответствующих границам на исходном изображении; и получение функции зависимости шума от интенсивности сигнала. 5 ил.

Description

Изобретение относится к области обработки цифровых изображений и может быть использовано для решения задач обработки цифровых изображений, полученных с помощью высокоэнергетического излучения, в том числе рентгеновского. Более конкретно, данное изобретение предназначено для оценки зависящего от сигнала шума цифровых рентгенограмм.
В настоящее время в цифровой рентгенодиагностике применяются разнообразные алгоритмы обработки изображений. Такие методы, как повышение резкости или сегментация анатомических структур, могут использовать информацию об уровне шума на изображении. Кроме того, практически каждый качественный метод подавления шума использует как параметр дисперсию шума. Поэтому важно рассмотреть следующую задачу: располагая только исходным цифровым изображением, определить уровень шума этого изображения. Данная задача осложняется тем, что дисперсия шума цифрового изображения существенно зависит от интенсивности полезного сигнала.
Под шумом обычно понимают случайное отклонение измеренного значения некоторой физической величины от ее точного значения. В цифровой рентгенографии детектор измеряет интенсивность рентгеновского излучения - каждая ячейка работает как сумматор фотонов, накапливая за время экспонирования в среднем
Figure 00000001
электронов путем поглощения фотонов. Количество N накопленных за время экспонирования в ячейке детектора электронов, порожденных в процессе поглощения фотонов, можно моделировать распределенной по закону Пуассона случайной величиной
Figure 00000002
Случайные флуктуации числа поглощенных фотонов называют квантовым шумом, или шумом фотонов. В современных детекторах основным источником шума изображений является шум фотонов. К дополнительным источникам шума относят шумы детекторной системы: шум чтения, тепловой шум, шумы усилителей, шумы квантования и другие [5]. Общий эффект данных источников шума можно моделировать распределенной по Гауссу случайной величиной [1-3]. Согласно общепринятой модели, в линейных электронных схемах дисперсия суммарного шума цифровых изображений (шум фотонов плюс шумы дополнительных источников) линейно зависит от величины полезного сигнала [11]:
Figure 00000003
где I(p) - уровень интенсивности сигнала в пикселе p.
Проблеме оценки зависящего от сигнала шума цифровых изображений посвящено достаточно много публикаций [1, 3, 4, 6-8, 10]. Так, в работе [6] представлен непараметрический метод оценки шума, при этом особый акцент делается на создании алгоритма, способного работать в реальном времени.
В публикации [3] рассматривается двухпараметрический подход к оценке шума. Шум исходного цифрового изображения (полученного непосредственно с детектора и не прошедшего через нелинейные преобразования, такие как гамма-коррекция и т.п.) моделируется как аддитивная по отношению к сигналу случайная величина, дисперсия которой зависит от сигнала согласно закону (1). Этот способ построения модельных кривых дисперсии шума учитывает нелинейности в работе сенсора, приводящие к недоэкспонированию и переэкспонированию, т.е. при нарушении закона (1) на краях динамического диапазона.
Наиболее близким к заявляемому является способ, изложенный в публикации [2, 6], в соответствии с которым для построения оценки зависящего от сигнала шума по исходному цифровому изображению достаточно осуществить следующие этапы:
оценить полезный сигнал с помощью низкочастотной фильтрации исходного изображения и вычислить разность между исходным изображением и его оценкой, получив тем самым изображение шума;
отбросить тем или иным способом значения пикселей изображения шума, соответствующие резким изменениям (границы, одиночные "горячие" пиксели) в исходном изображении;
разбить диапазон интенсивностей оценочного изображения на интервалы и для каждого такого интервала накопить значения пикселей изображения шума, соответствующие пикселям оценочного изображения;
вычислить дисперсию шума в каждом интервале интенсивности по накопленным в данном интервале значениям пикселей изображения шума.
Настоящее изобретение использует изложенные в вышеупомянутых публикациях принципы оценки шума. Задачей заявляемого изобретения является создание способа, более эффективного по скорости и качеству оценки шума цифровых рентгенограмм.
Технический результат в способе оценки шума цифровых рентгенограмм, включающем: получение исходного изображения; получение оценочного изображения с помощью низкочастотной фильтрации исходного изображения; построение изображения шума как разности между исходным и оценочным изображением; удаление значений пикселей изображения шума, соответствующих резким изменениям в исходном изображении; разбиение диапазона интенсивности оценочного изображения на интервалы, при этом каждый пиксель оценочного изображения принадлежит определенному интервалу; накопление для каждого интервала значений пикселей изображения шума, соответствующих пикселям оценочного изображения; вычисление интервальных оценок дисперсии шума по накопленным в данном интервале значениям пикселей шумового изображения; уточнение интервальных оценок дисперсии путем отбрасывания значений шумовых пикселей по критерию 3-сигма, достигается тем, что
осуществляют удаление значений пикселей изображения шума, соответствующих резким изменениям в исходном изображении, с помощью морфологического выделения значений пикселей изображения шума, соответствующих границам на исходном изображении;
выполняют робастную локальную линейную аппроксимацию интервальных оценок дисперсии шума, в результате которой получают табличную функцию, описывающую зависимость шума от интенсивности сигнала;
вычисляют на основе оценочного изображения и найденной табличной функции карту шума в виде изображения, являющегося попиксельной оценкой дисперсии шума исходного цифрового изображения.
Выполнение алгоритма состоит из нескольких этапов:
1) оценка полезного сигнала с помощью низкочастотной фильтрации исходного изображения и получение изображения шума с помощью вычисления разности между исходным изображением и его оценкой;
2) морфологическое отбрасывание значений пикселей изображения шума, соответствующих границам в исходном изображении;
3) разбиение диапазона интенсивностей оценочного изображения на интервалы и вычисление дисперсии шума для каждого такого интервала по накопленным в данном интервале значениям пикселей изображения шума;
4) уточнение интервальных оценок дисперсии с помощью отбрасывания значений шумовых пикселей по критерию 3-сигма;
5) робастная локальная линейная аппроксимация интервальных оценок дисперсии шума для построения табличной функции, описывающей зависимость шума от интенсивности сигнала;
6) построение карты шума по оценочному изображению и найденной табличной зависимости шума от интенсивности.
Один из возможных способов получения рентгенограмм осуществляют с помощью устройства, показанного на фиг.1. Устройство содержит рентгеновскую трубку 1, которая вырабатывает пучок 3 рентгеновского излучения. Пучок 3 рентгеновского излучения пропускают через объект 2, подвергаемый рентгеновскому обследованию. Излучение воспринимается детектором 4. Детектор 4 содержит экран, содержащий сцинтилляционный слой, и матрицу фоточувствительных сенсоров. Экран оптически связан с поверхностью активной области фоточувствительных сенсоров. Падающее рентгеновское излучение 3 сначала преобразуется в видимый свет в сцинтилляционном слое, интенсивность которого регистрируют матрицей фоточувствительных сенсоров. С матрицы фоточувствительных сенсоров считывают цифровую информацию и выводят на монитор в виде изображения.
На этапе построения оценочного изображения и получения изображения шума оценку полезного сигнала исходного изображения осуществляют, например, с помощью фильтрации исходной рентгенограммы (линейной низкочастотной свертки, медианной фильтрации и т.п.) [2, 6]. Для обеспечения жестких требований к скорости выполнения в приложениях реального времени целесообразно использовать простейшую линейную фильтрацию (например, биномиальным фильтром). На основе полученного сглаженного изображения строят изображение шума - разница между исходным и фильтрованным изображениями.
Оценка изображения простейшими фильтрами неидеальна - границы оказываются пересглаженными. В результате при взятии разности между исходным изображением и сглаженным изображением получают изображение шума, содержащее помимо шумовых пикселей в гладких областях определенное количество пикселей, соответствующих резким изменениям (границы анатомических структур - далее нешумовые пиксели). Данные пиксели должны быть исключены при расчете статистики шума, поскольку они могут существенно исказить вычисляемое значение дисперсии шума. Для этого применяются различные методики [3, 8], как правило, сводящиеся к пороговой обработке сглаженных производных исходного изображения, при этом величина порога определяется локальной оценкой отношения сигнал/шум. В областях изображения, содержащих большое количество деталей, такая оценка оказывается обычно неудовлетворительной. Поэтому в настоящем изобретении на этапе отбрасывания границ предлагают более простой подход к выделению границ, не требующий вычисления производных и локальных оценок стандартного отклонения. Суть данного морфологического подхода к отбрасыванию нешумовых пикселей состоит в следующем:
1) изображение шума разбивают на две составляющие - бинарные изображения положительных и отрицательных изменений;
2) для выделения областей, соответствующих границам, полученные изображения подвергают морфологическим операциям эрозии с последующей дилатацией;
3) обработанные изображения объединяют для получения одного бинарного изображения - карты границ исходного изображения.
С целью более полного сохранения тонких структур морфологические операции эрозии и дилатации выполняют масками малого размера (окно 2×2).
На этапе вычисления интервальных оценок дисперсии шума вычисляют минимальную и максимальную интенсивности оценочного изображения (края диапазона интенсивностей), выбирают шаг разбиения, равный, например, 32 градациям серого цвета. Далее для каждого пикселя оценочного изображения находят интервал, которому принадлежит значение данного пикселя, и соответствующее значение пикселя изображения шума используют для вычисления оценки дисперсии шума в данном интервале (при этом исключают пиксели, соответствующие границам). При вычислении интервальной оценки дисперсии шума можно применить различные формулы, например, обычную несмещенную оценку, или робастную оценку по формуле медианны абсолютных отклонений [2, 3, 6]. На выходе данной процедуры получают табличную функцию, описывающую зависимость дисперсии шума от интенсивности сигнала.
Неточности, возникающие при построении карты границ, являются помехой в аккуратном исключении нешумовых пикселей из расчета статистики, что может привести к грубым ошибкам при вычислении интервальных оценок дисперсии. Поэтому на этапе уточнения интервальных оценок дисперсии данные оценки уточняют, используя технику итеративного отбрасывания выбросов [6]: для каждого интервала итеративно исключают значения шумовых пикселей, превышающие по абсолютной величине порог, равный трем стандартным отклонениям шума, с последующим пересчетом оценки дисперсии шума в данном интервале.
После того как вычислены интервальные оценки дисперсии шума, наступает этап оценки зависимости дисперсии шума от интенсивности. При параметрической оценке в принципе можно построить тем или иным способом (например, методом наименьших квадратов, минимизации функции правдоподобия, направленной оптимизации) оценку параметров модели шума (1). Возможен также учет нелинейностей сенсора [2]. Однако, как отмечено в работе [6], построение параметрической модели, адекватно описывающей зависимость дисперсии шума от интенсивности сигнала, в силу ряда факторов может вызвать серьезные затруднения. К данным факторам можно отнести нелинейности в работе сенсора, нелинейные предобработки исходных снимков (например, логарифмирование). Поэтому более выгодным с точки зрения удобства реализации и универсальности применения представляется подход, при котором на основе интервальных оценок дисперсии строится непараметрическая оценка зависимости шума от интенсивности.
В настоящем изобретении используется непараметрический подход к построению искомой зависимости, при котором по полученным интервальным оценкам дисперсии шума создается интерполирующая табличная функция. Данная табличная функция формируется на основе робастной локальной линейной аппроксимации интервальных оценок дисперсии. Использование робастных методов позволяет дополнительно снизить влияние выбросов (грубых ошибок в интервальных оценках дисперсии), в то время как локальность аппроксимации обеспечивает повторение сложного хода кривой, описывающей зависимость шума от интенсивности. Таким образом, полученная табличная функция каждой интенсивности исходного изображения ставит в соответствие оценку дисперсии шума. Точками входа в таблицу могут служить, например, интенсивности оценочного изображения.
На практике, в случае параметрической оценки шума, может быть использован подход, при котором применяется преобразование, стабилизирующее дисперсию шума исходного изображения [2, 3, 9, 11]. При этом проблема фильтрации шума, зависящего от сигнала, сводится к задаче подавления аддитивного независимого от сигнала шума постоянной (заданной) дисперсии. В настоящем изобретении осуществляют непараметрическую оценку шума, поэтому на этапе построения карты шума предлагают использовать следующий подход: на основе оценочного изображения и интерполирующей таблицы построить карту шума - изображение, каждый пиксель которого оценивает среднеквадратическое отклонение шума в соответствующем пикселе исходного изображения. Карта шума дает попиксельную оценку шума с достаточной для практического применения точностью. Использование как можно более точной информации об уровне шума на изображении позволяет существенно улучшить качество алгоритмов шумоподавления.
Заявляемый способ осуществляют следующим образом. На этапе построения оценочного изображения и получения изображения шума исходное изображение I(x, y) фильтруют следующим низкочастотным линейным биномиальным фильтром размера 3×3:
Figure 00000004
.
При этом получают сглаженное изображение Ie(x, y)=I*H. Далее вычисляют изображение шума Ne(x, y)=I(x, y)-Ie(x, y).
На этапе отбрасывания границ, используя изображение шума Ne(x, y), формируют два изображения положительных и отрицательных изменений
Figure 00000005
Figure 00000006
Для выделения крупных областей, соответствующих границам, данные бинарные изображения последовательно подвергают морфологическим операциям эрозии и дилатации, используя маски размера 2×2:
Figure 00000007
,
Figure 00000008
.
Затем эти изображения объединяют для получения карты границ исходного изображения
Figure 00000009
.
На этапе вычисления интервальных оценок дисперсии шума вычисляют минимальную Imin и максимальную Imах интенсивности изображения Ie(x, y), выбирают шаг hM и разбивают диапазон интенсивностей на интервалы Mi, с шагом hM (hM=32). Для каждого пикселя изображения Iе(x, y) находят интервал, которому принадлежит значение этого пикселя, а соответствующее значение пикселя изображения Ne(x, y) используют для вычисления оценки дисперсии шума σ2(i) в данном интервале Mi, при этом исключают значения пикселей, для которых значение карты границ Е(x, y)=1. При вычислении интервальной оценки дисперсии шума применяют формулу несмещенной оценки дисперсии
Figure 00000010
где
Figure 00000011
- значение пикселя изображения шума Ne(x, y) из интервала Mi, ni - общее количество накопленных значений пикселей изображения шума в интервале Mi,
Figure 00000012
- среднее значений шумовых пикселей в интервале Mi.
На этапе уточнения интервальных оценок дисперсии величины σ2(i) уточняют таким образом, что для каждого интервала Mi итеративно исключают значения шумовых пикселей, превышающие по абсолютной величине порог, равный трем стандартным отклонениям шума, с последующим пересчетом оценки дисперсии шума в данном интервале:
Figure 00000013
где
Figure 00000014
- набор значений шумовых пикселей в интервале Mi на итерации k. В дальнейших расчетах используются лишь те интервалы, в которых накоплено достаточное количество значений шумовых пикселей (например, не меньше 500). Кроме того, из рассмотрения исключаются те интервалы, среднее значение
Figure 00000015
в которых существенно отличается от нуля (отклоняется от нуля более чем на половину шага сетки интервалов hM), поскольку в таких интервалах с высокой вероятностью доминируют остаточные значения нешумовых пикселей.
На этапе оценки зависимости дисперсии шума от интенсивности по полученным интервальным оценкам дисперсии шума создают интерполирующую табличную функцию. Данную табличную функцию формируют на основе робастной локальной линейной аппроксимации интервальных оценок дисперсии. Для этого на сетке интервалов Mi выбирают шаг hI и радиус rI аппроксимации (которые можно сделать зависимыми от количества точек ni в интервалах Mi). Значения полученной на предыдущем этапе табличной функции дисперсии шума от интенсивности сигнала аппроксимируют по следующему правилу:
Figure 00000016
,
где k - номер узла аппроксимации; mk - центр интервала Mi(k·hI); параметры а, b вычисляют на основе минимума суммы абсолютных отклонений [12]
Figure 00000017
Полученную в результате такого процесса таблицу значений
Figure 00000018
интерполируют на всем диапазоне интенсивностей [Imin, Imax], т.е. получают интерполирующую таблицу искомой зависимости дисперсии шума от интенсивности сигнала.
На этапе построения карты шума на основе оценочного изображения и интерполирующей таблицы строят карту шума - изображение, каждый пиксель которого оценивает дисперсию шума в соответствующем пикселе исходного изображения.
На фиг.2 показан фрагмент реального рентгеновского изображения, иллюстрирующий нелинейный отклик сенсора, приведшего к переэкспонированию.
На фиг.3 показана карта границ (нешумовых пикселей).
На фиг.4 показана график табличной функции (сплошная линия), описывающей зависимость стандартного отклонения шума от интенсивности, построенная по интервальным оценкам стандартного отклонения шума изображения фиг.1.
На фиг.5 приведена карта шума - изображение, каждый пиксель которого содержит оценку значения СКО шума.
Литература
1. Bosco A., Battiato S., Bruna A.R., Rizzo R. Noise reduction for cfa image sensors exploiting hvs behavior. Sensors 9(3), 1692-1713 (2009).
2. Foi A., Trimeche M., Katkovnik V., Egiazarian K. Practical poissonian-gaussian noise modeling and fitting for single-image raw-data. Image Processing, IEEE Transactions on 17, 1737-1754 (October 2008).
3. Foi A. Practical denoising of clipped or overexposed noisy images. Proc. 16th European Signal Process. Conf., EUSIPCO 2008, Lausanne, Switzerland, August 2008.
4. Forstner W. Image preprocessing for feature extraction in digital intensity, color and range images. In Springer Lecture Notes on Earth Sciences, 1998.
5. Gino M. Noise, Noise, Noise.
http://www.astrophys-assist.com/educate/noise/noise.htm
6. Hensel M., Lundt В., Pralow Т., Grigat R.-R. Robust and Fast Estimation of Signal-Dependent Noise in Medical X-Ray Image Sequences. In Handels, H., et al., ed.: Bildverarbeitung fur die Medizin 2006: Algorithmen, Systeme, Anwendun-gen. Springer (2006) 46-50.
7. Liu С., Szeliski R., Kang S.B., Zitnick C.L., Freeman W.T. Automatic estimation and removal of noise from a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 299{314 (2008).
8. Salmeri M., Mencattini A., Rabottino G., Lojacono R. Signal-dependent Noise Characterization for Mammographic Images Denoising. IMEKO TC4 Symposium (IMEKOTC4 '08), Firenze, Italy, September 2008.
9. Starck J., Murtagh F., Bijaoui A. Image Processing and Data Analysis: The Multiscale Approach. Cambridge University Press, 1998.
10. Waegli B. Investigations into the Noise Characteristics of Digitized Aerial Images. In: Int. Arch. For Photogr. And Remote Sensing, Vol.32-2, pages 341-348, 1998.
11. Яне Б. Цифровая обработка изображений. M.: Техносфера, 2007, 583 с.
12. W.H.Press, S.A.Teukolsky, W.T.Vetterling, B.P.Flannery. Numerical Recipes in C: The Art of Scientific Computing, Second Edition. New York: Cambridge University Press, 1992.

Claims (1)

  1. Способ оценки шума цифровых рентгенограмм, включающий получение исходного изображения; получение оценочного изображения с помощью низкочастотной фильтрации исходного изображения; построение изображения шума как разности между исходным и оценочным изображением; удаление значений пикселей изображения шума, соответствующих резким изменениям в исходном изображении; разбиение диапазона интенсивности оценочного изображения на интервалы, при этом каждый пиксель оценочного изображения принадлежит определенному интервалу; накопление для каждого интервала значений пикселей изображения шума, соответствующих пикселям оценочного изображения; вычисление интервальных оценок дисперсии шума по накопленным в данном интервале значениям пикселей шумового изображения; уточнение интервальных оценок дисперсии путем отбрасывания значений шумовых пикселей по критерию 3-сигма, отличающийся тем, что осуществляют удаление значений пикселей изображения шума, соответствующих резким изменениям в исходном изображении, с помощью морфологического выделения значений пикселей изображения шума, соответствующих границам на исходном изображении; выполняют робастную локальную линейную аппроксимацию интервальных оценок дисперсии шума, в результате которой получают табличную функцию, описывающую зависимость шума от интенсивности сигнала; вычисляют на основе оценочного изображения и построенной табличной функции, описывающей зависимость шума от интенсивности сигнала, карту шума в виде попиксельной оценки дисперсии шума исходного цифрового изображения.
RU2011101471/08A 2011-01-14 2011-01-14 Способ оценки шума цифровых рентгенограмм RU2441281C1 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2011101471/08A RU2441281C1 (ru) 2011-01-14 2011-01-14 Способ оценки шума цифровых рентгенограмм
EA201100690A EA016483B1 (ru) 2011-01-14 2011-05-26 Способ оценки шума цифровых рентгенограмм
CN2011103727936A CN102592265A (zh) 2011-01-14 2011-11-22 数字x射线胶片的噪声评价方法
JP2012003097A JP2012150802A (ja) 2011-01-14 2012-01-11 デジタルx線フィルムのノイズアセスメント方法
KR1020120004442A KR101319294B1 (ko) 2011-01-14 2012-01-13 디지털 x-레이 이미지 잡음 평가 방법
EP12000171.4A EP2477154B1 (en) 2011-01-14 2012-01-13 Noise assessment method for digital X-ray films
US13/350,898 US20120183195A1 (en) 2011-01-14 2012-01-16 Noise Assessment Method for Digital X-ray Films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011101471/08A RU2441281C1 (ru) 2011-01-14 2011-01-14 Способ оценки шума цифровых рентгенограмм

Publications (1)

Publication Number Publication Date
RU2441281C1 true RU2441281C1 (ru) 2012-01-27

Family

ID=45528922

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011101471/08A RU2441281C1 (ru) 2011-01-14 2011-01-14 Способ оценки шума цифровых рентгенограмм

Country Status (7)

Country Link
US (1) US20120183195A1 (ru)
EP (1) EP2477154B1 (ru)
JP (1) JP2012150802A (ru)
KR (1) KR101319294B1 (ru)
CN (1) CN102592265A (ru)
EA (1) EA016483B1 (ru)
RU (1) RU2441281C1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6093248B2 (ja) * 2013-05-30 2017-03-08 日本電信電話株式会社 ノイズ低減装置、ノイズ低減方法及びコンピュータプログラム
CN104182948B (zh) * 2013-12-23 2015-07-22 上海联影医疗科技有限公司 一种相关性噪声的估计方法
WO2016043691A1 (en) * 2014-09-15 2016-03-24 Analogic Corporation Noise reduction in a radiation image
WO2017045741A1 (en) * 2015-09-16 2017-03-23 Merck Patent Gmbh A method for early detection and identification of microbial-colonies, apparatus for performing the method and computer program
DE102017212339A1 (de) * 2017-07-19 2019-01-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bewertung von Bildausschnitten für eine Korrespondenzbildung
CN111445434B (zh) * 2019-10-17 2023-10-13 杭州云必技术有限公司 一种金属工件等级分选系统的图像处理方法
KR102619104B1 (ko) * 2021-01-28 2023-12-29 주식회사 크럭셀 엑스레이 영상의 선택적 이미지 처리 장치 및 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
CN117422713A (zh) * 2023-12-18 2024-01-19 武汉光谷航天三江激光产业技术研究院有限公司 一种根据oct点云提取激光焊接熔深曲线的方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270003A (ja) * 1996-03-31 1997-10-14 Shimadzu Corp X線画像の処理装置
US5923775A (en) * 1996-04-04 1999-07-13 Eastman Kodak Company Apparatus and method for signal dependent noise estimation and reduction in digital images
EP1392047B1 (en) * 2002-08-22 2013-10-30 Samsung Electronics Co., Ltd. Digital document processing for image enhancement
JP4891637B2 (ja) * 2006-03-14 2012-03-07 オリンパスメディカルシステムズ株式会社 画像解析装置
US7652788B2 (en) * 2006-06-23 2010-01-26 Nokia Corporation Apparatus, method, mobile station and computer program product for noise estimation, modeling and filtering of a digital image
RU2400815C2 (ru) * 2006-10-09 2010-09-27 Самсунг Электроникс Ко., Лтд. Способ повышения качества цифрового фотоизображения
US7995828B2 (en) * 2007-12-19 2011-08-09 Carestream Health, Inc. Speckle reporting in digital radiographic imaging
RU2342701C1 (ru) * 2007-08-15 2008-12-27 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ комплексирования цифровых многоспектральных полутоновых изображений
US8040270B2 (en) * 2009-02-26 2011-10-18 General Electric Company Low-noise data acquisition system for medical imaging

Also Published As

Publication number Publication date
EP2477154A2 (en) 2012-07-18
EP2477154A3 (en) 2013-05-08
EA016483B1 (ru) 2012-05-30
EA201100690A1 (ru) 2012-04-30
EP2477154B1 (en) 2016-08-24
JP2012150802A (ja) 2012-08-09
CN102592265A (zh) 2012-07-18
KR101319294B1 (ko) 2013-10-18
US20120183195A1 (en) 2012-07-19
KR20120082842A (ko) 2012-07-24

Similar Documents

Publication Publication Date Title
RU2441281C1 (ru) Способ оценки шума цифровых рентгенограмм
US20130089247A1 (en) Method of Noise Reduction in Digital X-Ray Frames Series
WO2013125984A2 (ru) Способ подавления шума цифровых рентгенограмм
Faraji et al. CCD noise removal in digital images
JP6027159B2 (ja) 画像ぼかし方法および機器、および電子装置
TWI405147B (zh) 單張影像的階層式去動態模糊方法
JP6156847B2 (ja) 放射線画像処理装置および方法並びにプログラム
EP3438922B1 (en) Method for processing at least one x-ray image
JP6598660B2 (ja) 画像処理装置および画像処理方法
CN111899188B (zh) 一种神经网络学习的锥束ct噪声估计与抑制方法
US9591240B1 (en) System and method for generating a dataset for real noise reduction evaluation
WO2022051775A1 (en) Method for x-ray dental image enhancement
US20130308841A1 (en) Method and apparatus for image processing
CN117115039A (zh) 一种泊松扩散模型降噪方法及系统
CN113793272A (zh) 图像降噪方法及装置、存储介质、终端
JP2014176565A (ja) 画像処理装置、放射線撮影装置、画像処理方法、コンピュータプログラム及び記憶媒体
Hosseinian et al. Assessment of restoration methods of X-ray images with emphasis on medical photogrammetric usage
JP4746761B2 (ja) 放射線画像処理装置、放射線画像処理方法、記憶媒体、及びプログラム
CN109813259B (zh) 高动态x射线成像方法、存储介质和装置
US20100310179A1 (en) Multi-Scale Representation of An Out of Focus Image
JP2021122674A (ja) 画像処理装置および方法、プログラム
Krithiga et al. Segmentation of dental caries from dental X-ray images using wavelet and watershed transforms
Gali et al. Structuring Hybrid Model Using Bilateral and Guided Filters for Image Denoising
Georgieva et al. Adaptive algorithm for CT images enhancement to improve the diagnosis of lung diseases
JP2021058418A (ja) 画像処理装置および画像処理方法、放射線撮影装置、プログラム

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130115

NF4A Reinstatement of patent

Effective date: 20140410

PD4A Correction of name of patent owner