RU2441262C1 - Способ трансформации фазовой модуляции оптического излучения в модуляцию мощности - Google Patents

Способ трансформации фазовой модуляции оптического излучения в модуляцию мощности Download PDF

Info

Publication number
RU2441262C1
RU2441262C1 RU2010122332/28A RU2010122332A RU2441262C1 RU 2441262 C1 RU2441262 C1 RU 2441262C1 RU 2010122332/28 A RU2010122332/28 A RU 2010122332/28A RU 2010122332 A RU2010122332 A RU 2010122332A RU 2441262 C1 RU2441262 C1 RU 2441262C1
Authority
RU
Russia
Prior art keywords
crystal
radiation
modulation
phase modulation
transmitted
Prior art date
Application number
RU2010122332/28A
Other languages
English (en)
Other versions
RU2010122332A (ru
Inventor
Алексей Анатольевич Колегов (RU)
Алексей Анатольевич Колегов
Станислав Михайлович Шандаров (RU)
Станислав Михайлович Шандаров
Николай Иванович Буримов (RU)
Николай Иванович Буримов
Виталий Иванович Быков (RU)
Виталий Иванович Быков
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники filed Critical Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники
Priority to RU2010122332/28A priority Critical patent/RU2441262C1/ru
Publication of RU2010122332A publication Critical patent/RU2010122332A/ru
Application granted granted Critical
Publication of RU2441262C1 publication Critical patent/RU2441262C1/ru

Links

Abstract

Изобретение относится к области оптоэлектроники и может быть использовано в оптических системах для адаптивной трансформации фазовой модуляции оптического излучения в модуляцию мощности. Поляризацию лазерного входного излучения преобразуют в круговую при помощи четвертьволновой пластинки. Излучение подают близко к нормали на входную грань фоторефрактивного кристалла среза (100). С помощью зеркала прошедшее через кристалл излучение направляют на отражающую поверхность, вносящую фазовую модуляцию в лазерное излучение. Фазомодулированный лазерный пучок направляют через поляризатор на грань, противоположную к входной. Поляризация сигнального пучка выбирается оптимальной для линейного режима трансформации фазовой модуляции в модуляцию мощности. Встречная геометрия обеспечивает малый пространственный период голограммы и высокую дифракционную эффективность без приложения внешних электрических полей. В качестве выходного сигнала используется сигнальный пучок, прошедший кристалл. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области оптоэлектроники и может быть использовано в оптических системах, предназначенных для обработки изменяющегося во времени оптического излучения в условиях медленных или однократных изменений обрабатываемого сигнала, вызванных неконтролируемым воздействием внешних факторов. Способ включает в себя подачу оптического сигнала на входную грань гиротропного фоторефрактивного кристалла среза (100) без центра симметрии, в котором формируется отражательная голограмма. Голограмма формируется в результате встречного взаимодействия неистощаемого светового пучка накачки, имеющего круговую поляризацию, с модулированным по фазе слабым плоскополяризованным сигнальным пучком. В качестве выходного сигнала используется сигнальный пучок, прошедший кристалл.
Наиболее близким по технической сущности к изобретению является способ трансформации фазовой модуляции оптического сигнала в модуляцию мощности, описанный в работе Ромашко Р.В. Адаптивный интерферометр на основе анизотропной дифракции на фоторефрактивной отражательной голограмме / Р.В.Ромашко, Ю.Н.Кульчин, А.А.Камшилин // Изв. РАН. Сер. Физич. - 2006. - Т.70. - №9, - С.1296. В указанной работе способ реализуется по схеме с делителем мощности входного излучения и большим количеством классических отражающих и преломляющих элементов, что сохраняет виброчувствительность такой схемы. Опорная волна имеет линейную поляризацию, а сигнальная - эллиптическую.
Недостатком этого технического решения являются: большое количество классических отражающих и преломляющих элементов, что сохраняет виброчувствительность такой схемы; использование делителя мощности оптического излучения для формирования опорной и сигнальной волны.
Техническая задача изобретения: адаптивная трансформация фазовой модуляции оптического сигнала в модуляцию мощности, снижение виброчувствительности измерений, формирование отражательной голограммы без использования делителя мощности оптического излучения, снижение себестоимости.
Поставленная задача достигается следующим образом. Поляризацию входного лазерного излучения преобразуют в круговую и подают на выходную грань кубического фоторефрактивного кристалла без центра симметрии. Прошедшее через кристалл излучение направляют на исследуемую отражающую поверхность и затем направляют в кристалл, предварительно преобразовав поляризацию излучения в линейную. Поляризация сигнальной волны выбирается оптимальной для линейной трансформации фазовой модуляции в модуляцию мощности. Входная и сигнальная волны в кристалле должны пересекаться для формирования голограммы. Встречная геометрия обеспечивает малый пространственный период голограммы и высокую дифракционную эффективность без приложения внешних электрических полей. Выходным сигналом служит сигнальная волна, прошедшая через кристалл и взаимодействовавшая с входной волной. Линейность фазовой трансформации в данной схеме, использующей анизотропный характер дифракции в кристалле, достигалась за счет того, что внутренняя разность фаз в π/2 между ортогональными компонентами волны с круговой поляризацией переносится в интерференционную картину прошедшей сигнальной волны и распространяющегося в том же направлении дифрагированного на голограмме поля входной волны. Сигнальная волна сформирована из входной волны, прошедшей кристалл.
Технический результат - возможность преобразования изменяющегося во времени оптического излучения при исследовании отражающей поверхности.
К существенным признакам изобретения следует отнести:
- использование в качестве среды для формирования динамической голограммы кубического фоторефрактивного кристалла без центра симметрии;
- прошедшее через кристалл излучение направляют на исследуемую отражающую поверхность.
На чертеже изображена принципиальная схема для реализации предложенного способа. Схема содержит лазер 1, четвертьволновую пластинку 2, входное излучение 3, кубический фоторефрактивный кристалл без центра симметрии 5 с входной гранью 4 и выходной гранью 10, зеркало 6, исследуемую отражающую поверхность 7, поляризатор 8, сигнальную волну 9, выходной сигнал 11, фотодетектор 12, устройство обработки выходного сигнала 13.
В качестве лазера 1 целесообразно использовать твердотельный лазер с длиной волны 532 нм, а в качестве кристалла 5 использовать монокристаллический образец титаната висмута Bi12TiO20: Cu среза (100) и толщиной 1 мм.

Claims (3)

1. Способ трансформации фазовой модуляции оптического излучения в модуляцию мощности, в котором входное лазерное излучение с круговой поляризацией подают близко к нормали на входную грань кубического фоторефрактивного кристалла среза (100) без центра симметрии и прошедшее через кристалл излучение направляют на исследуемую поверхность, а фазомодулированный сигнальный пучок направляют на противоположную грань, при этом в качестве выходного сигнала используется сигнальный пучок, прошедший через кристалл.
2. Способ по п.1, отличающийся тем, что поляризация сигнального пучка выбирается оптимальной для линейной трансформации фазовой модуляции в модуляцию мощности
3. Способ по п.1, отличающийся тем, что сигнальным пучком служит входное лазерное излучение, прошедшее через кристалл и отразившееся от поверхности, вносящей фазовую модуляцию в излучение.
RU2010122332/28A 2010-06-01 2010-06-01 Способ трансформации фазовой модуляции оптического излучения в модуляцию мощности RU2441262C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010122332/28A RU2441262C1 (ru) 2010-06-01 2010-06-01 Способ трансформации фазовой модуляции оптического излучения в модуляцию мощности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010122332/28A RU2441262C1 (ru) 2010-06-01 2010-06-01 Способ трансформации фазовой модуляции оптического излучения в модуляцию мощности

Publications (2)

Publication Number Publication Date
RU2010122332A RU2010122332A (ru) 2011-12-10
RU2441262C1 true RU2441262C1 (ru) 2012-01-27

Family

ID=45405152

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010122332/28A RU2441262C1 (ru) 2010-06-01 2010-06-01 Способ трансформации фазовой модуляции оптического излучения в модуляцию мощности

Country Status (1)

Country Link
RU (1) RU2441262C1 (ru)

Also Published As

Publication number Publication date
RU2010122332A (ru) 2011-12-10

Similar Documents

Publication Publication Date Title
US9835869B2 (en) Universal polarization converter
CN104897270B (zh) 基于单声光调制和偏振分光的迈克尔逊外差激光测振仪
Balakshy et al. Polarization effects at collinear acousto-optic interaction
CN104880244B (zh) 基于单声光调制和消偏振分光的迈克尔逊外差激光测振仪
RU105738U1 (ru) Малогабаритный терагерцовый спектрометр
RU2441262C1 (ru) Способ трансформации фазовой модуляции оптического излучения в модуляцию мощности
CN105576495B (zh) 基于楔角电光晶体的剩余幅度调制稳定装置
RU2613943C1 (ru) Акустооптический преобразователь поляризации лазерного излучения (варианты)
Balakshy et al. Acousto-optic collinear diffraction of arbitrarily polarized light
US20050083535A1 (en) Detection of transient phase shifts in any optical wave front with photorefractive crystal and polarized beams
Shandarov et al. Dynamic Denisyuk holograms in cubic photorefractive crystals
CN102985870A (zh) 退偏器
Bagini et al. Change of energy of photons passing through rotating anisotropic elements
CN116700676B (zh) 一种小型化量子随机数发生器
Kotov et al. Acoustooptic diffraction of three-color radiation on a single acoustic wave
Colice et al. Holographic method of cohering fiber tapped delay lines
Mantsevich et al. Optoelectronic Feedback Influence on the Spectral Transmission of Collinear Acousto-Optic Diffraction
CN103424195A (zh) 旋转晶体平板的移相剪切干涉仪
CN211318937U (zh) 一种基于矢量光束的非线性频率转换装置
Sakata et al. Superachromatic Reflective Phase Retarder for the Polarization Conversion of Attosecond Pulses
RU92974U1 (ru) Электрооптический амплитудный модулятор
RU92731U1 (ru) Поляризационно-независимое адаптивное устройство линейной демодуляции фазы
Shandarov et al. Polarization effects at two-beam interaction on reflection holographic gratings in sillenite crystals
RU48080U1 (ru) Устройство для преобразования форм поляризации излучения
Kulak et al. Influence of light-induced gratings on acousto-optic interaction of Bessel light beams in uniaxial gyrotropic crystals

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160602