RU2441220C2 - Способ дистанционного обнаружения тонкодисперсных аэрозолей токсичных веществ в местах их хранения и уничтожения при возникновении нештатных ситуаций с помощью пассивных инфракрасных спектрометров - Google Patents

Способ дистанционного обнаружения тонкодисперсных аэрозолей токсичных веществ в местах их хранения и уничтожения при возникновении нештатных ситуаций с помощью пассивных инфракрасных спектрометров Download PDF

Info

Publication number
RU2441220C2
RU2441220C2 RU2010116981/28A RU2010116981A RU2441220C2 RU 2441220 C2 RU2441220 C2 RU 2441220C2 RU 2010116981/28 A RU2010116981/28 A RU 2010116981/28A RU 2010116981 A RU2010116981 A RU 2010116981A RU 2441220 C2 RU2441220 C2 RU 2441220C2
Authority
RU
Russia
Prior art keywords
substances
aerosol
finely dispersed
aerosols
toxic substances
Prior art date
Application number
RU2010116981/28A
Other languages
English (en)
Other versions
RU2010116981A (ru
Inventor
Игорь Геннадьевич Васюкевич (RU)
Игорь Геннадьевич Васюкевич
Григорий Владимирович Мацюк (RU)
Григорий Владимирович Мацюк
Андрей Николаевич Морозов (RU)
Андрей Николаевич Морозов
Сергей Егорович Табалин (RU)
Сергей Егорович Табалин
Алексей Николаевич Петухов (RU)
Алексей Николаевич Петухов
Денис Сергеевич Романюта (RU)
Денис Сергеевич Романюта
Original Assignee
Игорь Геннадьевич Васюкевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Игорь Геннадьевич Васюкевич filed Critical Игорь Геннадьевич Васюкевич
Priority to RU2010116981/28A priority Critical patent/RU2441220C2/ru
Publication of RU2010116981A publication Critical patent/RU2010116981A/ru
Application granted granted Critical
Publication of RU2441220C2 publication Critical patent/RU2441220C2/ru

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к оптическим методам измерения физико-химических характеристик аэрозольных сред. Для обнаружения аэрозолей осуществляют сканирование сигнала с помощью пассивных инфракрасных спектрометров на облаке токсичного вещества, содержащего мелкодисперсный аэрозоль с диаметром частиц менее 50 мкм плотностью более 100 мг/м2 не менее 3% и имеющего тепловой контраст не менее 2°С, а идентификацию веществ осуществляют по максимальному коэффициенту корреляции спектра сигнала с образцовыми спектрами базы данных токсичных веществ, полученными в статических условиях измерений для индицируемых аэрозолей. Изобретение позволяет повысить быстродействие оптических локационных систем и специфичность обнаружения заданного перечня токсичных веществ. 1 ил., 1 табл.

Description

Изобретение относится к оптическим методам измерения физико-химических характеристик аэрозольных сред. Техническим результатом является разработка способа дистанционного обнаружения тонкодисперсных аэрозолей отравляющих веществ (ОВ) и других токсичных химикатов (ТХ) при возникновении нештатных ситуаций в местах их хранения и уничтожения, транспортировки, террористических диверсий с помощью пассивных инфракрасных (ИК) спектрометров. Для решения вопросов безопасности контроля, масштабности охвата контролируемых площадей, оперативности в получении достоверной информации при возникновении нештатных ситуаций альтернативы для дистанционных средств контроля не имеется.
В настоящее время предложены различные способы дистанционного контроля аэрозольных облаков токсичных веществ.
Известны способы и методы дистанционного контроля параметров атмосферного аэрозоля, основывающиеся на методе многочастотного лазерного зондирования [1]. Использование многочастотного зондирования предусматривает регистрацию относительных интенсивностей сигналов обратного рассеяния и восстановление параметров аэрозольного облака с применением сложных алгоритмов, которые сложно реализовать на практике.
В патенте на изобретение [2] описан способ дистанционного контроля массовой концентрации тонкодисперсных аэрозолей ОВ по их собственной люминесценции в местах хранения и уничтожения ОВ при возникновении нештатных ситуаций. Однако только небольшой перечень ОВ обладает собственной люминесценцией.
Для решения задач дистанционного обнаружения аэрозольных облаков ТХ разрабатывались и другие сложные лидарные комплексы - КДХР - 1 (1991 г.), КЛН - РХБР (2007 г). Эти разработки обладают определенными достоинствами, но также имеют свои недостатки.
В настоящее время как у нас в стране, так и за рубежом наиболее применяемым дистанционным методом контроля загрязнений атмосферы ТХ является пассивная ИК спектрометрия. Классическое их предназначение - обнаружение паров ТХ в атмосфере [3]. Однако многие ОВ (например, VX) и другие химические вещества имеют низкую температуру кипения. Это приводит к тому, что при возникновении чрезвычайной ситуации (например, в виде взрыва) образующееся количество паровой фазы низкокипящего вещества в аэрозольном облаке может быть недостаточным для его обнаружения с помощью пассивного ИК спектрометра.
Следует отметить, что физические принципы, заложенные в основу принципа действия пассивных ИК спектрометров, алгоритмы регистрации и обработки спектральной информации ориентированы на работу в условиях приземных наклонных трасс и незначительных температурных контрастов. Это определяет способность таких приборов регистрировать и идентифицировать загрязняющие приземную атмосферу вещества, находящиеся в парогазовом состоянии. Чисто аэрозольные облака при незначительных температурных контрастах, существующих в естественных условиях приземной атмосферы, не рассматривались для индикации приборами такого типа.
Следует отметить, что при незначительных температурных контрастах, ввиду оптической неоднородности облако аэрозоля малолетучего вещества можно рассматривать как оптически толстый слой среды с оптической плотностью D=σnl→∞ (где σ - сечение поглощения, n - концентрация, l - толщина слоя). Поглощательная способность частиц аэрозоля ε=1-exp(σnl) имеет значение, близкое к поглощательной способности абсолютно черного тела (ε≈1). Поэтому считается, что спектр излучения облака чистого аэрозоля не будет отличаться от спектра абсолютно черного тела, что не дает возможности идентификации токсичного вещества, образующего это облако.
Наиболее близким по технической сущности к заявляемому способу является корреляционно-экстремальный способ дистанционного мониторинга загрязняющих веществ [4]. Данный способ заключается в однократном сканировании эхо-сигнала во всем выбранном для индикации частотном диапазоне генерации излучения лазеров с последующим корреляционно-экстремальным анализом зарегистрированного спектра. Идентификацию веществ осуществляют по максимальному значению коэффициентов корреляции эхо-сигнала, рассчитанных на множестве образцовых спектров, полученных в статических условиях измерения. Изобретение позволяет повысить быстродействие оптических локационных систем и специфичность обнаружения заданного перечня токсичных веществ. Однако по стоимости, сложности оборудования, массогабаритным характеристикам, энергопотреблению, надежности лазерные локационные системы в разы уступают показателям пассивных дистанционных приборов.
При взрыве или дроблении жидкой струи низкокипящего вещества воздушным потоком образуется значительное количество мелкодисперсного аэрозоля диаметром менее 50 мкм, которое может долго находиться в атмосфере и распространяться на большие глубины. Поглощательная способность мелкодисперсного аэрозоля будет ε<1, что и позволяет проводить его идентификацию. Количество мелкодисперсного аэрозоля может составлять по массе от нескольких процентов при диспергировании воздушным потоком и до 30% и более при диспергировании взрывным типом действия. Этого количества вещества в аэрозольном виде может быть достаточно для его обнаружения с помощью пассивных приборов при выполнении определенных условий. Этими условиями являются наличие теплового контраста не менее 2°С, количество аэрозоля диаметром менее 50 мкм не менее 100 мг/м2 в поле зрения прибора, а также наличие базы данных образцовых спектров. Идентификацию веществ осуществляют по максимальному значению коэффициента корреляции измеренного сигнала и рассчитанного по множеству образцовых спектров.
Наиболее сложным моментом для проверки выказанной гипотезы является создание мелкодисперсного аэрозоля жидкого вещества без присутствия паровой фазы. Создать тонкодисперсный аэрозоль имитаторов ТХ с помощью различных генераторов особой трудности не представляет. Но чтобы в таком аэрозоле не присутствовали пары вещества, которые пассивные приборы легко обнаруживают - такое сделать почти невозможно. Можно разработать имитаторы ТХ на основе полимерного органического вещества с последующим получением из него твердого мелкодисперсного аэрозоля. Однако такой путь представляется технически сложным и трудноосуществимым. Чтобы исключить влияние паровой фазы на обнаружительную способность приборов типа ПХРДД-2 (пассивный ИК Фурье-спектрометр), мы разместили тонкий жидкий слой имитатора ТХ между двумя полимерными пленками, прозрачными для ИК области спектра. Нами была выбрана полимерная пленка, получаемая на основе полиэтилена высокого давления толщиной около 100 мкм, которая незначительно снижает пропускание излучения ПК области спектра и не имеет характерных спектров поглощения в той же области спектра, что и исследуемые вещества - имитаторы ТХ. Было выявлено, что толщина пленки в 100 мкм незначительно влияет на обнаружительную способность пассивных ИК приборов.
Исследования по выявлению возможности обнаружения ТХ в жидкой фазе с помощью пассивных приборов проводились в два этапа.
На первом этапе нами была разработана экспериментальная установка (см. чертеж). Прибор ПХРДД-2 (1) размещался на треноге на расстоянии 5 м от теплового экрана (3). В качестве теплового экрана использовался открытый термостат с возможностью задания и поддержания заданной температуры.
Нами задавался температурный контраст между температурой воздуха и тепловым экраном 2°С. Между тепловым экраном и прибором на расстоянии 2 м от прибора располагался штатив (2). На штативе располагалась полиэтиленовая кювета с тонким слоем жидкого имитатора ТХ между стенок пленки площадью, достаточной для перекрытия поля зрения прибора. Толщина жидкого слоя определялась смачиваемостью полиэтиленовых стенок и собственным его весом. Излишки жидкого слоя под тяжестью собственного веса стекались в нижнюю часть кюветы. В качестве имитаторов ТХ были выбраны вещества, имеющие различную полярность и соответственно различную смачиваемость со стенками полиэтиленовой кюветы, а также имеющиеся в базе данных прибора ПХРДД-2.
Результаты распознавания веществ в жидком состоянии с помощью пассивного прибора ПХРДД-2 представлены в таблице 1.
Таблица 1
Экспериментальные данные по определению веществ помощью ПХРДД-2
Тип вещества Концентрация, мг/м2 Коэффициент корреляции Температура,°С
воздуха экрана
Бензол 21850 0,72 26 28
20261 0,73 26 28
21420 0,72 26 28
19545 0,73 26 28
Диметилсульфоксид 123 0,71 26 28
151 0,71 26 28
186 0,72 26 28
209 0,71 26 28
302 0,77 26 28
318 0,78 26 28
Изопропиловый спирт (Пропанол-2) 3299 0,72 26 28
3531 0,71 26 28
3721 0,7 26 28
3830 0,74 26 28
Этанол 13750 0,78 26 28
13826 0,78 26 28
12225 0,78 26 28
10851 0,79 26 28
11712 0,78 26 28
Распознавание вещества проводилось по ИК спектрам их паров, имеющимся в базе данных прибора ПХРДД-2, поэтому коэффициент корреляции не превышал значений более 0,8. Однако идентификация веществ в жидком слое проводилась успешно и прибор не выдавал ложных срабатываний.
Проведя анализ ИК спектров веществ в жидкой и паровой фазе, было отмечено, что у них есть общие черты: положение полос, их количество, центры максимумов поглощения. Поэтому коэффициенты корреляции, получаемые при идентификации веществ в жидкой фазе с помощью прибора ПХРДД-2, имеют значения от 0,7 до 0,8. Однако необходимо отметить наличие различия в ширине полос поглощения, их форме, а также в отношениях интенсивности различных полос поглощения одного вещества. Появляющиеся различия в ИК спектрах веществ в паровой и жидкой фазах приводят к снижению коэффициента корреляции при идентификации веществ в атмосфере, находящихся как в жидком, так и в парообразном состоянии. Для высоколетучих веществ основной вклад в ИК спектры поглощения дает паровая фаза, поэтому вклад жидкой фазы будет менее значимым.
Интегральная концентрация индицируемых веществ определялась по коэффициентам экстинкции, заложенным в базу данных прибора, рассчитанным по паровой фазе. Поэтому не совсем корректными являются значения интегральной концентрации веществ, находящихся на трассе наблюдения прибора в жидком слое. Однако значения интегральной концентрации дают нам возможность оценить толщину жидкого слоя определяемого вещества. Так, для бензола при плотности вещества 0,879 г/см3 толщина жидкого слоя составит 25 мкм для значения 21850 мг/м2, для этанола плотности вещества 0,789 г/см3 толщина жидкого слоя составит 18 мкм для значения 13826 мг/м2, для изопропанола плотности вещества 0,785 г/см3 толщина жидкого слоя составит 4,8 мкм для значения 3830 мг/м2, для диметилсульфоксида (ДМСО) плотности вещества 1,096 г/см3 толщина жидкого слоя составит 0,3 мкм для значения 318 мг/м2.
Учитывая то, что максимальную толщину жидкого слоя индицируемых веществ, пропускающих ИК излучение и, таким образом, позволяющих его идентифицировать, в данных условиях эксперимента оценить не представлялось возможным, а также то обстоятельство, что на трассе зондирования присутствовали две полиэтиленовые стенки суммарной толщиной около 200 мкм, можно с уверенностью предположить, что жидкий слой анализируемых веществ толщиной менее 50 мкм является идентифицируемым с помощью прибора ПХРДД-2.
Таким образом, ингаляционный аэрозоль с размерами частиц менее 50 мкм также может быть идентифицирован с помощью приборов типа ПХРДД-2, являющимися пассивными ИК спектрометрами.
На втором этапе эксперимент проводился в тех же условиях, что и на первом этапе, только вместо жидкостной кюветы были использованы две форсунки с различной возможностью давать мелкодисперсный аэрозоль. В качестве обнаруживаемого вещества использовался низколетучий ДМСО. Для форсунки, дающей аэрозоль со среднемассовым диаметром частиц более 300 мкм и вкладом мелкодисперсного (менее 50 мкм) аэрозоля менее 1%, обнаружение вещества не наблюдалось. А для форсунки, дающей аэрозоль со среднемассовым диаметром частиц около 100 мкм и вкладом мелкодисперсного аэрозоля более 3%, наблюдалось успешное распознавание ДМСО с коэффициентом корреляции от 0,7 до 0,8.
Необходимо отметить, что с увеличением температурного контраста на трассе зондирования прибором будут идентифицироваться аэрозольные частицы более крупного размера.
Источники информации
1. Креков Г.М. Методологические вопросы лазерного зондирования молекулярной и аэрозольной атмосферы. // Дистанционные методы исследования атмосферы. /Под ред. Зуева В.Е. - Новосибирск: Наука, 1980, 214 с.
2. Патент на изобретение №2155954 от 03.12.1997 г. Григорьев А.А., Гаврилов В.В., Мацюк Г.В., Седунов С.Г. Способ дистанционного контроля массовой концентрации тонкодисперсных аэрозолей отравляющих веществ по их собственной люминесценции в местах хранения и уничтожения отправляющих веществ при возникновении нештатных ситуаций.
3. Морозов А.Н. Основы фурье-спектрорадиометрии /Под ред. Васильева Г.К. - М.: Наука, 2006, 275 с.
4. Патент на изобретение №2313779 от 27.12.2007 г. Алимов Н.И., Манец А.И., Шлыгин П.Е., Бойко А.Ю., Тюрин Д.В., Мацюк Г.В. Корреляционно-экстремальный способ дистанционного мониторинга загрязняющих веществ.

Claims (1)

  1. Способ дистанционного обнаружения тонкодисперсных аэрозолей токсичных веществ в местах их хранения и уничтожения при возникновении нештатных ситуаций с помощью пассивных инфракрасных спектрометров, заключающийся в регистрации в ИК-диапазоне спектра аэрозольного вещества, отличающийся тем, что осуществляют сканирование сигнала на облаке токсичного вещества, содержащего мелкодисперсный аэрозоль с диаметром частиц менее 50 мкм плотностью более 100 мг/м2 не менее 3% и имеющего тепловой контраст не менее 2°С, а идентификацию веществ осуществляют по максимальному коэффициенту корреляции спектра сигнала с образцовыми спектрами базы данных токсичных веществ, полученными в статических условиях измерений для индицируемых аэрозолей.
RU2010116981/28A 2010-04-29 2010-04-29 Способ дистанционного обнаружения тонкодисперсных аэрозолей токсичных веществ в местах их хранения и уничтожения при возникновении нештатных ситуаций с помощью пассивных инфракрасных спектрометров RU2441220C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010116981/28A RU2441220C2 (ru) 2010-04-29 2010-04-29 Способ дистанционного обнаружения тонкодисперсных аэрозолей токсичных веществ в местах их хранения и уничтожения при возникновении нештатных ситуаций с помощью пассивных инфракрасных спектрометров

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010116981/28A RU2441220C2 (ru) 2010-04-29 2010-04-29 Способ дистанционного обнаружения тонкодисперсных аэрозолей токсичных веществ в местах их хранения и уничтожения при возникновении нештатных ситуаций с помощью пассивных инфракрасных спектрометров

Publications (2)

Publication Number Publication Date
RU2010116981A RU2010116981A (ru) 2011-11-10
RU2441220C2 true RU2441220C2 (ru) 2012-01-27

Family

ID=44996686

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010116981/28A RU2441220C2 (ru) 2010-04-29 2010-04-29 Способ дистанционного обнаружения тонкодисперсных аэрозолей токсичных веществ в местах их хранения и уничтожения при возникновении нештатных ситуаций с помощью пассивных инфракрасных спектрометров

Country Status (1)

Country Link
RU (1) RU2441220C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2578105C1 (ru) * 2014-10-16 2016-03-20 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Способ дистанционного контроля размеров тонкодисперсных аэрозолей стойких токсичных химикатов при возникновении запроектных аварий на химически опасных объектах
WO2019036849A1 (zh) * 2017-08-21 2019-02-28 深圳前海达闼云端智能科技有限公司 一种物质检测方法及其装置、检测终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2578105C1 (ru) * 2014-10-16 2016-03-20 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Способ дистанционного контроля размеров тонкодисперсных аэрозолей стойких токсичных химикатов при возникновении запроектных аварий на химически опасных объектах
WO2019036849A1 (zh) * 2017-08-21 2019-02-28 深圳前海达闼云端智能科技有限公司 一种物质检测方法及其装置、检测终端

Also Published As

Publication number Publication date
RU2010116981A (ru) 2011-11-10

Similar Documents

Publication Publication Date Title
Ray et al. Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants
US20080180655A1 (en) Mobile terawatt femtosecond laser system (mtfls) for long range spectral sensing and identification of bioaerosols and chemical agents in the atmosphere
US8222604B2 (en) Detection of chemicals with infrared light
US6567753B2 (en) Devices and methods for simultaneous measurement of transmission of vapors through a plurality of sheet materials
US20130200276A1 (en) Substance detection, inspection and classification system using enhanced photoemission spectroscopy
US20080312768A1 (en) Devices and methods for detecting hazardous materials
Cao et al. Lidar polarization discrimination of bioaerosols
US7262414B1 (en) Thermal luminescence surface contamination detection system
JP2004361383A (ja) 化学的及び生物学的物質の検出及び分析
RU2441220C2 (ru) Способ дистанционного обнаружения тонкодисперсных аэрозолей токсичных веществ в местах их хранения и уничтожения при возникновении нештатных ситуаций с помощью пассивных инфракрасных спектрометров
Kendziora et al. A system for rapid standoff detection of trace explosives by active infrared backscatter hyperspectral imaging
Gagnon et al. Airborne midwave and longwave infrared hyperspectral imaging of gases
Zhevlakov et al. CARS technique for geological exploration of hydrocarbons deposits
RU2440566C1 (ru) Способ дистанционного обнаружения нефтяных загрязнений на поверхности воды
Gittins et al. Passive and active standoff infrared detection of bio‐aerosols
Wan et al. Airborne passive Fourier transform infrared remote sensing of methanol vapor from industrial emissions
CN207610987U (zh) 太赫兹探测大气高危化学品分布装置
Datskos et al. Standoff imaging of trace RDX using quantum cascade lasers
Richardson et al. Polarimetric lidar signatures for remote detection of biological warfare agents
US20110095189A1 (en) Tactical chemical biological threat detection
Handke et al. Standoff detection applying laser-induced breakdown spectroscopy at the DLR laser test range
Zhevlakov et al. Monitoring and localization hydrocarbon and sulfur oxides emissions by SRS-lidar
Hoshina et al. Noninvasive mail inspection using terahertz radiation
Mierczyk Laser systems for stand-off detection of contamination and pollution of atmosphere
Thériault et al. A novel infrared hyperspectral imager for passive standoff detection of explosives and explosive precursors

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120430