RU2440647C1 - Резонансный свч компрессор - Google Patents

Резонансный свч компрессор Download PDF

Info

Publication number
RU2440647C1
RU2440647C1 RU2010131287/07A RU2010131287A RU2440647C1 RU 2440647 C1 RU2440647 C1 RU 2440647C1 RU 2010131287/07 A RU2010131287/07 A RU 2010131287/07A RU 2010131287 A RU2010131287 A RU 2010131287A RU 2440647 C1 RU2440647 C1 RU 2440647C1
Authority
RU
Russia
Prior art keywords
resonator
output
tee
tees
energy
Prior art date
Application number
RU2010131287/07A
Other languages
English (en)
Inventor
Сергей Николаевич Артёменко (RU)
Сергей Николаевич Артёменко
Владимир Андреевич Августинович (RU)
Владимир Андреевич Августинович
Сергей Автономович Новиков (RU)
Сергей Автономович Новиков
Юрий Георгиевич Юшков (RU)
Юрий Георгиевич Юшков
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2010131287/07A priority Critical patent/RU2440647C1/ru
Application granted granted Critical
Publication of RU2440647C1 publication Critical patent/RU2440647C1/ru

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

Резонансный СВЧ компрессор предназначен для формирования мощных СВЧ импульсов наносекундной длительности. Устройство содержит симметричный одномодовый накопительный резонатор, ограниченный короткозамыкателями, СВЧ коммутатор и элементы ввода и вывода энергии на основе волноводных тройников. Элемент ввода энергии, расположенный по центру резонатора, выполнен в виде Н-тройника. Элемент вывода энергии выполнен на основе двух Н-тройников, компланарных с Н-тройником элемента ввода, включенных симметрично в короткозамкнутые плечи резонатора на расстоянии nλв/2 от соответствующего короткозамыкателя. К выходным плечам Н-тройников элемента вывода симметрично подсоединен выходной суммирующий Н-тройник. СВЧ коммутатор размещен в центре резонатора, длина которого составляет (4n+1)λв/2. Технический результат заключается в существенном увеличении мощности сигналов за счет уменьшения времени вывода накопленной энергии. 1 ил.

Description

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ импульсов наносекундной длительности.
Известен ряд оригинальных конструкций резонансных СВЧ компрессоров, работающих на основе накопления и быстрого вывода СВЧ энергии в резонансном объеме [А.Н.Диденко, Ю.Г.Юшков. Мощные СВЧ-импульсы наносекундной длительности. М.: Энергоатомиздат, 1984, с.112]. Наиболее распространенными среди них являются компрессоры, накопительный объем которых выполнен из одномодового прямоугольного либо круглого волновода, а устройство вывода организовано на основе интерференционного переключателя в виде Т-образного волноводного Н-тройника [Р.Альварец, Д.Биркс, Д.Берн, Е.Лауэр, Д.Скалапино. Сжатие СВЧ-энергии во времени для использования в ускорителях заряженных частиц. Атомная техника за рубежом, 1982, №11, с.36-39]. Одно из прямых плеч такого переключателя используется в качестве накопительного объема и имеет длину nλв/2, где n>>1, λв - длина волны в волноводе. Второе прямое либо боковое плечо выполняется полуволновым и ограничивается короткозамыкателем. В этом плече на расстоянии λв/4 от короткозамыкателя размещается СВЧ коммутатор, соединенный с источником управляющих сигналов. Свободное плечо связывается с нагрузкой и через него осуществляется вывод энергии. Мощность выходных сигналов СВЧ компрессоров с выводом энергии через интерференционный переключатель определяется электрической прочностью коммутатора. В таких устройствах коммутируемая мощность практически равна мощности бегущей волны накопительного резонатора, т.е. предельной мощности выходных сигналов компрессора. Например, в 10-см диапазоне длин волн этот уровень не превышает 400-500 МВт [В.А.Августинович, С.Н.Артеменко, В.Ф.Дьяченко, В.Л.Каминский, С.А.Новиков, Ю.Г.Юшков. Исследование переключателя СВЧ компрессора с коммутацией в круглом волноводе. ПТЭ, 2009, №4, с.106-109]. Из-за потерь при коммутации он снижается до 250-300 МВт.
С целью увеличения мощности сигналов при неизменном уровне коммутируемой мощности предложен [R.A.Alvarez, D.P.Byrne, R.M.Johnson. Prepulse suppression in microwave pulse-compression cavities. Review Scientific Instruments, v.57, №10, p.2475-2480]. СВЧ компрессор с симметричным одномодовым накопительным резонатором длиной nλв, ограниченным короткозамыкателями и устройством ввода-вывода энергии на основе волноводных тройников в центральной части резонатора. Ввод энергии осуществляется через элемент ввода на основе Е-тройника, а вывод - через элемент вывода на основе Н-тройника. СВЧ коммутатор размещается в одном из плеч накопительного резонатора на расстоянии λв/4 от короткозамыкателя этого плеча. Такое исполнение устройства позволяет выводить энергию одновременно из двух плеч резонатора. В случае коммутации без потерь это может обеспечить двукратное увеличение мощности выходного сигнала по сравнению с мощностью бегущей волны резонатора при пропорциональном укорочении сигнала по сравнению с временем двойного пробега рабочей волны вдоль резонатора. Поэтому в реальном СВЧ компрессоре с симметричным накопительным резонатором мощность выходных сигналов, например, в 10-см диапазоне, в принципе, может быть увеличена до 500-600 МВт. По технической сущности такой компрессор наиболее близок к предлагаемому устройству и взят за прототип.
Задачей предлагаемого изобретения является создание СВЧ компрессора, обеспечивающего повышение рабочей мощности выходных сигналов.
Технический результат, достигаемый изобретением, заключается в увеличении мощности сигналов за счет уменьшения времени вывода накопленной энергии.
Указанный результат достигается тем, что в резонансном СВЧ компрессоре, содержащем, как и прототип, симметричный одномодовый накопительный резонатор, ограниченный короткозамыкателями, СВЧ коммутатор и элементы ввода и вывода энергии на основе волноводных тройников, при этом элемент ввода энергии расположен по центру резонатора, согласно изобретению элемент ввода энергии выполнен в виде Н-тройника, элемент вывода энергии выполнен на основе двух Н-тройников, компланарных с Н-тройником элемента ввода, включенных симметрично в короткозамкнутые плечи резонатора на расстоянии nλв/2 от соответствующего короткозамыкателя, к выходным плечам Н-тройников элемента вывода симметрично подсоединен выходной суммирующий Н-тройник, а СВЧ коммутатор размещен в центре резонатора, длина которого составляет (4n+1)λв/2.
На чертеже представлена схема предложенного СВЧ компрессора.
СВЧ компрессор содержит симметричный одномодовый накопительный резонатор 1 длиной (4n+1)λв/2 с плечами, ограниченными короткозамыкателями 2, и с элементом ввода энергии 3, который выполнен со стороны бокового плеча Н-тройника 4, расположенного по центру резонатора. Компрессор содержит элемент вывода энергии 5, организованный на основе двух Н-тройников 6, компланарных с входным Н-тройником 4 и включенных симметрично в плечи накопительного резонатора на расстоянии nλв/2 от короткозамыкателя 2 соответствующего плеча. К выходам тройников 6 симметрично подсоединен суммирующий Н-тройник 7, являющийся составной частью элемента вывода 4. Коммутатор 8 СВЧ компрессора расположен в центре резонатора и делит резонатор на две равные части, а в сочетании с элементами вывода - на четыре практически равные части.
Резонансный СВЧ компрессор работает следующим образом. В одномодовом резонаторе 1 через элемент ввода энергии 3 накапливается СВЧ энергия. Так как выходные волноводы Н-тройников 6 в режиме накопления расположены в узлах стоячей волны резонатора, то в режиме накопления энергия в эти волноводы не поступает. После завершения процесса накопления включается СВЧ коммутатор 8 (например, зажигается плазма газового СВЧ разряда), который расположен в максимуме электрической составляющей поля в центральном варианте рабочей моды резонатора. В результате фаза волны слева и справа от коммутатора меняется на 180°. Волны с инвертированной фазой распространяются от центра резонатора в сторону выходных волноводов Н-тройников 6. В момент их прихода к выходным волноводам тройников 6 в плоскости симметрии тройников устанавливается пучность стоячей волны резонатора, и резонатор открывается, т.к. оказывается сильно связанным с выходными волноводами этих тройников. В результате накопленная энергия поступает в выходные волноводы и начинается процесс вывода энергии. Этот процесс продолжается до тех пор, пока со стороны короткозамыкателей 2 к выходным волноводам тройников 6 поступает волна. Время поступления равно времени двойного пробега волны от короткозамыкателя каждого плеча до выходного волновода ближайшего к короткозамыкателю тройника 6. Поскольку это время равно времени пробега волны от коммутатора до выходных волноводов Н-тройников 6 и равно четвертой части времени пробега вдоль всего резонатора, то через такой промежуток времени энергия из резонатора выводится полностью в выходные (боковые) плечи тройников 6. При этом волны из этих плеч поступают в прямые плечи Н-тройника 7 и в этом тройнике суммируются. Такое развитие процесса вывода обусловлено известным свойством Н-тройников, согласованных со стороны бокового плеча. Оно заключается в полном суммировании синфазных волн одинаковой амплитуды, подводимых к Н-тройнику через его прямые плечи. Поскольку переключение из режима накопления в режим вывода осуществляется одним коммутатором, то процесс вывода через два тройника осуществляется синхронно и синфазно, что обеспечивает практически полное суммирование в выходном Н-тройнике 7. Таким образом, энергия выводится за время, в четыре раза меньшее времени двойного пробега волны вдоль резонатора, что обеспечивает четырехкратное повышение мощности выходного сигнала по сравнению с мощностью бегущей волны резонатора. Как отмечалось выше, в прототипе возможное повышение мощности равно двум.
В качестве примера рассмотрим исследованный СВЧ компрессор 10-см диапазона длин волн. Для накопления энергии использовался цилиндрический резонатор диаметром 90 мм, работавший на частоте 2804 МГц на H11(25) моде колебаний. Входной Н-тройник, как и выходные, также был изготовлен из круглого волновода диаметром 90 мм. Длина резонатора равнялась 1860 мм, а расчетное время двойного пробега на рабочей частоте составляло ~17.3 нс. Выходные Н-тройники располагались на расстоянии 440 мм от короткозамыкателей соответствующих плеч резонатора и на расстоянии 474 мм от центра резонатора. Измеренная добротность резонатора на рабочей моде равнялась 3.1×104. Энергия накапливалась от импульсного магнетрона мощностью 2 МВт с длительностью импульсов 3.2 мкс. При такой длительности и оптимальной входной связи расчетная эффективность накопления составляет 0.41. Таким образом, в резонаторе накапливалось около 2.6 Дж СВЧ энергии. При таком запасе энергии мощность бегущей волны резонатора достигает ~150 МВт, а коэффициент усиления составляет ~18.8 дБ. Это означает, что в случае коммутации без потерь на выходе системы можно получать сигналы мощностью ~600 МВт, длительностью ~4.3 нс и усилением ~24.8 дБ. Переключение резонатора из режима накопления в режим вывода осуществлялось СВЧ коммутатором, который располагался в центре резонатора по диаметру волновода. В этом месте находится максимум электрической составляющей поля в центральном варианте рабочей моды. Коммутатор представлял собой продуваемую кварцевую трубку с внутренним диаметром 12 мм и наружным 14 мм. Ориентация трубки совпадала с плоскостью поляризации рабочей моды резонатора. Со стороны одного из торцов трубки монтировался электрический разрядник, обеспечивающий подсветку разрядного промежутка коммутатора. Кроме того, к торцам трубки подсоединялись трубопроводы системы продува разрядного промежутка. Резонатор заполнялся азотом под избыточным давлением 5-5.5 ати с добавлением 15-20% элегаза. Разряд в трубке происходил в аргоне под давлением ~3.5-4 ати с добавлением 7-10% элегаза либо чистом аргоне под давлением около 5 ати. При таком давлении в трубке обеспечивалась стабильная работа коммутатора практически без сбросов на самопробой. В принципе, система работала идентично компрессору с выводом энергии через интерференционный переключатель на основе Н-тройника из круглого волновода. Причем она работала достаточно эффективно как при коммутации в аргоне, так и в смеси аргона с элегазом. Однако наиболее эффективно она работала при коммутации в чистом аргоне. Измеренный коэффициент усиления по каждому из выходов при коммутации в аргоне с элегазом составил около 19 дБ. Таким образом, мощность выходных сигналов по каждому из выходов в этом случае составляла ~160 МВт. Длительность сигналов равнялась 3.8 нс. Суммирование сигналов в тройнике приводило к некоторому увеличению их длительности и незначительному снижению усиления. Скорее всего, это связано с неидеальным согласованием суммирующего тройника и возможным отличием длины волноводных трактов от выходов компрессора до места суммирования. Максимальная суммарная мощность при коммутации в смеси аргона с элегазом достигала ~ 300 МВт. Усиление составляло ~22 дБ, а длительность равнялась ~4.3 нс. Так как управление выводом осуществлялось одним СВЧ коммутатором, то это исключало проблемы с суммированием. Таким образом, при коммутации в смеси аргона с элегазом получено только двукратное умножение мощности выходных сигналов по сравнению с мощностью бегущей резонатора. Это, очевидно, связано с относительно низкой напряженность поля в резонаторе и, соответственно, более заметными потерями при коммутации. Для снижения потерь требуется повышение мощности входного сигнала.
При коммутации в чистом аргоне зафиксировано усиление ~20 дБ и мощность ~200 МВт по каждому из выходов системы, что соответствует усилению суммарных сигналов ~23 дБ и суммарной мощности ~400 МВт. Таким образом, на чистом аргоне получено умножение мощности, близкое к трехкратному его значению. Коммутация в аргоне была возможна также в силу относительно низкой напряженности поля в резонаторе из-за достаточно большого его объема. Вместе с тем, она была более эффективной в силу более хороших коммутационных характеристик аргона по сравнению со смесью аргона с элегазом. Для повышения уровня коммутируемой мощности до предельно допустимой величины ~500 МВт требуется увеличение запаса энергии во входном импульсе в два-три раза. В этом случае система будет способна формировать сигналы с уровнем мощности порядка 1 ГВт.

Claims (1)

  1. Резонансный СВЧ компрессор, содержащий симметричный одномодовый накопительный резонатор, ограниченный короткозамыкателями, СВЧ коммутатор и элементы ввода и вывода энергии на основе волноводных тройников, при этом элемент ввода энергии расположен по центру резонатора, отличающийся тем, что элемент ввода энергии выполнен в виде Н-тройника, элемент вывода энергии выполнен на основе двух Н-тройников, компланарных с Н-тройником элемента ввода, включенных симметрично в короткозамкнутые плечи резонатора на расстоянии nλв/2 от соответствующего короткозамыкателя, к выходным плечам Н-тройников элемента вывода симметрично подсоединен выходной суммирующий Н-тройник, а СВЧ коммутатор размещен в центре резонатора, длина которого составляет (4n+1)λв/2.
RU2010131287/07A 2010-07-26 2010-07-26 Резонансный свч компрессор RU2440647C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010131287/07A RU2440647C1 (ru) 2010-07-26 2010-07-26 Резонансный свч компрессор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010131287/07A RU2440647C1 (ru) 2010-07-26 2010-07-26 Резонансный свч компрессор

Publications (1)

Publication Number Publication Date
RU2440647C1 true RU2440647C1 (ru) 2012-01-20

Family

ID=45785798

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010131287/07A RU2440647C1 (ru) 2010-07-26 2010-07-26 Резонансный свч компрессор

Country Status (1)

Country Link
RU (1) RU2440647C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486641C1 (ru) * 2012-03-29 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ формирования субнаносекундных свч импульсов и устройство для его осуществления
RU2501129C1 (ru) * 2012-10-17 2013-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Резонансный свч-компрессор
RU2596865C1 (ru) * 2015-08-04 2016-09-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Резонансный свч компрессор

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486641C1 (ru) * 2012-03-29 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ формирования субнаносекундных свч импульсов и устройство для его осуществления
RU2501129C1 (ru) * 2012-10-17 2013-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Резонансный свч-компрессор
RU2596865C1 (ru) * 2015-08-04 2016-09-10 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Резонансный свч компрессор

Similar Documents

Publication Publication Date Title
RU94062U1 (ru) Резонансный свч-компрессор
Chittora et al. A compact circular waveguide polarizer with higher order mode excitation
RU2440647C1 (ru) Резонансный свч компрессор
Vikharev et al. High power active X-band pulse compressor using plasma switches
RU89285U1 (ru) Резонансный свч компрессор
RU140975U1 (ru) Резонансный свч компрессор
RU2501129C1 (ru) Резонансный свч-компрессор
RU2293404C1 (ru) Устройство временной компрессии импульсов свч-энергии
RU2470420C1 (ru) Резонансный свч компрессор с симметричным резонатором
RU141773U1 (ru) Резонансный свч компрессор
RU2387055C1 (ru) Интерференционный переключатель резонансного свч компрессора
RU2474012C1 (ru) Резонансный свч компрессор
RU2486641C1 (ru) Способ формирования субнаносекундных свч импульсов и устройство для его осуществления
RU109923U1 (ru) Интерференционный переключатель
RU157018U1 (ru) Каскадный интерференционный свч переключатель
RU2604107C1 (ru) Резонансный свч компрессор
Avgustinovich et al. Forming nanosecond microwave pulses by transformation of resonant cavity mode
RU108218U1 (ru) Интерференционный переключатель резонансного свч-компрессора
Vikharev et al. Active compression of RF pulses
RU137158U1 (ru) Интерференционный переключатель резонансного свч компрессора
RU156871U1 (ru) Интерференционный переключатель резонансного свч компрессора
RU2515696C1 (ru) Интерференционный переключатель резонансного свч компрессора
RU2573223C2 (ru) Устройство формирования нано и субнаносекундных свч импульсов
RU2596865C1 (ru) Резонансный свч компрессор
Artemenko et al. Compression of microwave pulses in a resonant system based on two waveguide T-joints

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170727