RU2440023C1 - Способ выявления периодических составляющих в ритме сердца - Google Patents

Способ выявления периодических составляющих в ритме сердца Download PDF

Info

Publication number
RU2440023C1
RU2440023C1 RU2010132072/14A RU2010132072A RU2440023C1 RU 2440023 C1 RU2440023 C1 RU 2440023C1 RU 2010132072/14 A RU2010132072/14 A RU 2010132072/14A RU 2010132072 A RU2010132072 A RU 2010132072A RU 2440023 C1 RU2440023 C1 RU 2440023C1
Authority
RU
Russia
Prior art keywords
heart
heart rhythm
beginning
components
pulse train
Prior art date
Application number
RU2010132072/14A
Other languages
English (en)
Inventor
Людмила Викторовна Демина (RU)
Людмила Викторовна Демина
Ольга Владимировна Мельник (RU)
Ольга Владимировна Мельник
Анатолий Александрович Михеев (RU)
Анатолий Александрович Михеев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет"
Priority to RU2010132072/14A priority Critical patent/RU2440023C1/ru
Application granted granted Critical
Publication of RU2440023C1 publication Critical patent/RU2440023C1/ru

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Изобретение относится к области медицины. Способ заключается в осуществлении записи электрокардиосигнала. При этом формируют последовательность прямоугольных импульсов, периодичность повторения которых совпадает с ритмом сердца, а длительность пропорциональна длительности соответствующего цикла сердечных сокращений. Пауза между смежными импульсами имеет одинаковую длительность для всей последовательности этих импульсов, и ее начало совпадает с началом очередного цикла сердечных сокращений. Полученную последовательность импульсов фильтруют одновременно с помощью набора фильтров, состоящего из фильтра нижних частот и полосовых фильтров. По наличию сигналов на выходах фильтров судят о наличии соответствующих периодических составляющих в сердечном ритме. Применение способа позволяет определить в режиме реального времени моменты появления тех или иных волновых компонент в ритме сердца, что, в свою очередь, позволяет оценить сопутствующие этому моменту обстоятельства и предпринять соответствующие терапевтические воздействия для нормализации работы сердечно-сосудистой системы. 7 ил.

Description

Изобретение относится к области медицины, в частности к электрокардиографии, и может быть использовано при анализе ритма сердца для выявления медленноволновых составляющих вариабельности сердечного ритма, характеризующих степень централизации управления этим ритмом. Способ дает возможность определить в режиме реального времени моменты появления тех или иных волновых компонент в ритме сердца, что, в свою очередь, позволяет оценить сопутствующие этому моменту обстоятельства и предпринять соответствующие терапевтические воздействия для нормализации работы сердечно-сосудистой системы.
Колебания длительности цикла сердечных сокращений (вариабельность сердечного ритма) является важным диагностическим признаком для оценки адаптационных возможностей регуляторных систем организма. Среди диагностически наиболее значимых параметров сердечного ритма особое место занимают так называемые медленноволновые периодические составляющие сердечного ритма.
Различают три частотных диапазона таких составляющих [1]:
- высокочастотные колебания (HF) (0.15-0.4 Гц );
- низкочастотные колебания (LF, медленные волны первого порядка) (0.04-0.15 Гц);
- очень низкочастотные колебания (VLF, медленные волны второго порядка) (0.003-0.04 Гц).
Для выявления периодических составляющих в ритме сердца обычно осуществляют анализ динамического ряда, образованного последовательностью значений длительностей циклов сердечных сокращений (кардиоинтервалов). Длительности кардиоинтервалов традиционно определяют как расстояние между R-зубцами двух смежных кардиоинтервалов (RR-интервалы). Склонность к использованию при оценке вариабельности сердечного ритма RR-интервалов связана с тем, что зубец R, особенно во втором стандартном отведении, наиболее легко выделить из электрокардиосигнала (ЭКС) при компьютерной обработке, в силу того, что он является наибольшим по амплитуде.
Более правильным будет рассмотрение длительности PP-интервалов (расстояний между P-зубцами смежных кардиоинтервалов, так как именно начало зубца P является началом нового сердечного цикла, связанного с возбуждением синусового узла).
Известен способ выявления периодических составляющих в ритме сердца, заключающийся в том, что в записанном электрокардиосигнале определяют длительности кардиоинтервалов для получения ритмограммы, на основе которой строят автокорреляционную функцию [2].
Автокорреляционная функция (АКФ) представляет собой статистическую взаимосвязь каждого последующего интервала RR с предыдущими и отражает степень централизации управления процессами регуляции.
Если в исследуемой выборке последовательности значений длительностей циклов сердечных сокращений имеются гармонические составляющие, то АКФ имеет вид периодических колебаний [3]. При этом период колебаний АКФ будет определяться одной из доминирующих медленноволновых компонент (фиг.1). Однако, если ритмограмма содержит все три гармонические составляющие (HF, LF и VLF), то судить по виду АКФ о наличии какой-либо из этих составляющих или их комбинаций, а тем более оценивать мощности этих составляющих становится затруднительно (фиг.2). Кроме этого, на основе полученной АКФ нельзя определить момент времени появления тех или иных волновых компонент в ритмограмме.
Известен способ выявления периодических составляющих в ритме сердца [4] (прототип), заключающийся в том, что в записанном электрокардиосигнале определяют длительности кардиоинтервалов, строят ритмограмму, на основе которой проводят спектральный анализ с помощью преобразования Фурье, по результатам спектрального анализа судят о наличии соответствующих гармонических составляющих в последовательности длительностей кардиоинтервалов или комбинации этих составляющих.
Этот способ позволяет одновременно выделить периодические составляющие всех упомянутых выше диапазонов (HF, LF и VLF), что иллюстрируется фиг.3, заимствованной из [1]. Однако момент времени появления тех или иных волновых компонент в ритмограмме также нельзя определить, что является недостатком данного способа.
Предлагаемый способ позволяет устранить этот недостаток.
Суть предлагаемого способа заключается в том, что осуществляют запись электрокардиосигнала, формируют последовательность прямоугольных импульсов, периодичность повторения которых совпадает с ритмом сердца, а длительность пропорциональна длительности соответствующего цикла сердечных сокращений. При этом пауза между смежными импульсами имеет одинаковую длительность для всей последовательности этих импульсов, и ее начало совпадает с началом очередного цикла сердечных сокращений. Полученную последовательность импульсов фильтруют одновременно с помощью набора фильтров, состоящего из фильтра нижних частот и полосовых фильтров, по наличию сигналов на выходах фильтров судят о наличии соответствующих периодических составляющих в сердечном ритме.
Обосновать предлагаемый способ можно следующим образом.
Из рассмотрения электрокардиосигнала в течение продолжительного отрезка времени следует, что он представляет собой сигнал, период повторения которого (и, соответственно, частота) изменяется от одного цикла сердечных сокращений к другому.
Если на основе ЭКС (фиг.4a) в каждом цикле сердечных сокращений сформировать прямоугольные импульсы, разделенные паузами одинаковой длительности, начало которых совпадает с началом соответствующего цикла сердечных сокращений (фиг.4, б), то получим последовательность прямоугольных импульсов, частота повторения которых меняется по закону изменения сердечного ритма, т. е. получим сигнал с частотно-импульсной модуляцией (ЧИМ) [5]. В качестве паузы между смежными импульсами можно использовать интервал дискретизации электрокардиосигнала, следующий сразу за началом очередного цикла сердечных сокращений (началом P-зубца), поскольку в современных электрокардиографах ЭКС предварительно дискретизируют и значения дискретных отсчетов преобразуют в цифровой код для выполнения обработки и анализа в цифровом виде. Выделить начало каждого цикла сердечных сокращений, синхронизированного с началом P-зубца, можно с помощью устройства [6].
Спектральный состав сигнала с ЧИМ описывается выражением [5]:
Figure 00000001
где ΔΩП - девиация частоты повторения импульсов;
ΩП - частота повторения импульсов;
Ω - частота модулирующего сигнала;
Ωnl=nΩП+lΩ;
Figure 00000002
- период повторения импульсов;
τ - длительность импульса;
Jl(x) - функция Бесселя l-го порядка.
В спектре сигнала с ЧИМ в соответствии с (1) содержатся:
постоянная составляющая
Figure 00000003
полезная компонента с частотой модулирующего сигнала
бесконечная сумма гармоник частоты повторения nΩП, каждая из которых окружена бесконечным числом составляющих, сдвинутых друг от друга на интервал Ω.
Figure 00000005
.
Спектр сигнала с ЧИМ, где модулирующим сигналом являются низкочастотные составляющие ритма сердца, показан на фиг.5. В этом случае полезная компонента содержит три составляющие, HF, LF и VLF, каждая из которых может быть выделена соответствующим фильтром системы из трех фильтров (фиг.6). Составляющая VLF выделяется фильтром нижних частот, амплитудно-частотная характеристика (АЧХ) которого на фиг. 6 отмечена цифрой 1, составляющая LF выделяется полосовым фильтром, АЧХ которого отмечена цифрой 2, и составляющая HF выделяется полосовым фильтром, АЧХ которого отмечена цифрой 3.
Выделение на выходах фильтров сигналов низкочастотных периодических составляющих при частотах FHF=0.4 Гц, FLF=0.1 Гц, FVLF=0.01 Гц, присутствующих в ритме сердца и возникающих в разные моменты времени, иллюстрируется фиг.7.
Технико-экономический эффект предложенного способа выявления периодических составляющих в ритме сердца заключается в том, что обеспечивается возможность определения в режиме реального времени момента появления тех или иных волновых компонент в ритме сердца, что, в свою очередь, позволяет оценить сопутствующие этому моменту обстоятельства и предпринять соответствующие терапевтические воздействия для нормализации работы сердечно-сосудистой системы.
Литература
1. Вариабельность сердечного ритма. Стандарты измерения, физиологической интерпретации и клинического использования. Рабочая группа Европейского Кардиологического Общества и Северо-Американского общества стимуляции и электрофизиологии. // Вестник аритмологии. 1999. №11. С.53-78.
2. Диагностика функционального состояния спортсменов на основе применения метода вариационной пульсометрии / Зайцев В.К., Киселев В.А., Наумов С.С., Подливаев Б.А. // Сборник трудов ученых РГАФК. - М., 2000. С.158-165.
3. Бендат Дж., Пирсол А. Измерение и анализ случайных процессов. М.: Мир, 1971. С.32-35.
4. Патент РФ 2141246. Способ исследования вариабельности ритма сердца / Т.П.Гизатулина, Г.М.Ромалис // Опубл. 20.11.1999. Бюллетень №32.
5. Борисов Ю.П., Пенин П.И. Основы многоканальной передачи информации. М.: Связь, 1967. С.204, 205, 239-241.
6. Патент РФ 2237432. Устройство для выделения начала кардиоцикла / О.А.Зуйкова, А.А.Михеев // Опубл. 10.10.2004. Бюллетень №28.

Claims (1)

  1. Способ выявления периодических составляющих в ритме сердца, заключающийся в том, что осуществляют запись электрокардиосигнала, отличающийся тем, что формируют последовательность прямоугольных импульсов, периодичность повторения которых совпадает с ритмом сердца, а длительность пропорциональна длительности соответствующего цикла сердечных сокращений, причем пауза между смежными импульсами имеет одинаковую длительность для всей последовательности этих импульсов, и ее начало совпадает с началом очередного цикла сердечных сокращений, полученную последовательность импульсов фильтруют одновременно с помощью набора фильтров, состоящего из фильтра нижних частот и полосовых фильтров, по наличию сигналов на выходах фильтров судят о наличии соответствующих периодических составляющих в сердечном ритме.
RU2010132072/14A 2010-07-29 2010-07-29 Способ выявления периодических составляющих в ритме сердца RU2440023C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010132072/14A RU2440023C1 (ru) 2010-07-29 2010-07-29 Способ выявления периодических составляющих в ритме сердца

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010132072/14A RU2440023C1 (ru) 2010-07-29 2010-07-29 Способ выявления периодических составляющих в ритме сердца

Publications (1)

Publication Number Publication Date
RU2440023C1 true RU2440023C1 (ru) 2012-01-20

Family

ID=45785557

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010132072/14A RU2440023C1 (ru) 2010-07-29 2010-07-29 Способ выявления периодических составляющих в ритме сердца

Country Status (1)

Country Link
RU (1) RU2440023C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109512422A (zh) * 2018-09-25 2019-03-26 维灵(杭州)信息技术有限公司 一种ecg波形混乱程度计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Кардиомониторы. Аппаратура непрерывного контроля ЭКГ. /Под. ред. А.Л. Барановского и др. - М.: Радио и связь, 1993, с.67-72. КОРЕНЕВСКИЙ Н.А. и др. Проектирование электронной медицинской аппаратуры для диагностики и лечебных воздействий. - СПб.: 1999, с.394-395. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109512422A (zh) * 2018-09-25 2019-03-26 维灵(杭州)信息技术有限公司 一种ecg波形混乱程度计算方法

Similar Documents

Publication Publication Date Title
JPH0245041A (ja) 光パルス検出方法および装置
CN104203089B (zh) 搏动检测装置以及电子设备
Huang et al. A±6ms-accuracy, 0.68 mm2, and 2.21 µW QRS detection ASIC
US11253204B2 (en) Method for assessing electrocardiogram signal quality
JP2003175008A (ja) 交互のメジアン搏動の三次スプラインへの整列によりt波オルタナンスを測定する方法及びシステム
Kuzmin et al. Mobile ECG monitoring system prototype and wavelet-based arrhythmia detection
Illanes-Manriquez et al. An algorithm for robust detection of QRS onset and offset in ECG signals
CN104068841B (zh) 一种测量心脏收缩时间参数的测量方法及装置
Foroozan et al. Robust beat-to-beat detection algorithm for pulse rate variability analysis from wrist photoplethysmography signals
US20060155199A1 (en) Frequency processing of an rr series in an analogue cardiac signal
US7160250B2 (en) Method and equipment for analyzing biological signals representing intracranial and blood pressure fluctuations
RU2440023C1 (ru) Способ выявления периодических составляющих в ритме сердца
Chanwimalueang et al. Modelling stress in public speaking: evolution of stress levels during conference presentations
Ding et al. Multimodal information fusion for robust heart beat detection
RU2296501C2 (ru) Способ пульсовой диагностики сердечной деятельности
RU2294139C1 (ru) Способ выделения начала кардиоцикла и устройство для его осуществления
Agrawal et al. FPGA-based peak detection of ECG signal using histogram approach
RU2308876C2 (ru) Устройство многокомпонентной диагностики сердечной деятельности человека по пульсу
RU2481060C1 (ru) Способ обработки электрокардиосигнала
KR20130087940A (ko) 심박변이도 계측방법 및 그를 위한 계측장치
RU168518U1 (ru) Устройство для акселерационной фотоплетизмографии
Fallet et al. An adaptive organization index to characterize atrial fibrillation using wrist-type photoplethysmographic signals
Gorodetska et al. Differentiation of Heart Rhythms from ECG by Joint Use of Quantile Peak Localization and Windowed Cyclostationarity Analysis
Amit et al. Automatic extraction of physiological features from vibro-acoustic heart signals: correlation with echo-doppler
Pyko et al. Phase synchronization in a double-loop feedback model of blood pressure regulation

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120730