RU2433429C2 - Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки - Google Patents

Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки Download PDF

Info

Publication number
RU2433429C2
RU2433429C2 RU2010103095/28A RU2010103095A RU2433429C2 RU 2433429 C2 RU2433429 C2 RU 2433429C2 RU 2010103095/28 A RU2010103095/28 A RU 2010103095/28A RU 2010103095 A RU2010103095 A RU 2010103095A RU 2433429 C2 RU2433429 C2 RU 2433429C2
Authority
RU
Russia
Prior art keywords
geomagnetic field
magnetometric
geophysical
variations
transducer
Prior art date
Application number
RU2010103095/28A
Other languages
English (en)
Other versions
RU2010103095A (ru
Inventor
Сергей Борисович Курсин (RU)
Сергей Борисович Курсин
Павел Григорьевич Бродский (RU)
Павел Григорьевич Бродский
Александр Николаевич Добротворский (RU)
Александр Николаевич Добротворский
Константин Георгиевич Ставров (RU)
Константин Георгиевич Ставров
Валерий Павлович Леньков (RU)
Валерий Павлович Леньков
Юрий Николаевич Жуков (RU)
Юрий Николаевич Жуков
Людмила Александровна Ленькова (RU)
Людмила Александровна Ленькова
Владимир Васильевич Чернявец (RU)
Владимир Васильевич Чернявец
Юрий Владимирович Румянцев (RU)
Юрий Владимирович Румянцев
Original Assignee
Сергей Борисович Курсин
Александр Николаевич Добротворский
Павел Григорьевич Бродский
Константин Георгиевич Ставров
Валерий Павлович Леньков
Юрий Николаевич Жуков
Людмила Александровна Ленькова
Владимир Васильевич Чернявец
Юрий Владимирович Румянцев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Борисович Курсин, Александр Николаевич Добротворский, Павел Григорьевич Бродский, Константин Георгиевич Ставров, Валерий Павлович Леньков, Юрий Николаевич Жуков, Людмила Александровна Ленькова, Владимир Васильевич Чернявец, Юрий Владимирович Румянцев filed Critical Сергей Борисович Курсин
Priority to RU2010103095/28A priority Critical patent/RU2433429C2/ru
Publication of RU2010103095A publication Critical patent/RU2010103095A/ru
Application granted granted Critical
Publication of RU2433429C2 publication Critical patent/RU2433429C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Изобретение относится к области морских геофизических исследований. Сущность: на акватории размещают опорные геофизические пункты, оснащенные гравиметрами и магнитометрами. Определяют опорные значения ускорения силы тяжести и вектора индукции геомагнитного поля. По замкнутым маршрутам с замыканием на опорные пункты выполняют гравиметрическую и магнитную съемки. Искомые значения ускорения силы тяжести и модуля вектора индукции в каждой точке измерения определяют как суммы приращений измеренного параметра к предыдущему, начиная с опорного геофизического пункта. Технический результат: расширение спектра измеряемых параметров. 1 ил.

Description

Изобретение относится к области геофизики, а более конкретно, к способам определения вариаций геомагнитного поля при проведении магнитных съемок, преимущественно при морской магнитной съемке.
Известны способы определения вариаций стационарного геомагнитного поля [1-4], в которых используют данные магнитовариационных станций (МВС), установленных в районе съемки; необходимое количество МВС и их максимальное удаление определяется степенью неоднородности поля вариаций геомагнитного поля в данной зоне [3, 4]. Ввиду отсутствия серийных морских МВС способы [1, 2] в основном применяются при съемки со льда, когда в качестве МВС используют сухопутные магнитометры. Точность вышеуказанных способов не превышает 5-10 нТл.
В известных способах [5, 6] учет вариаций геомагнитного поля основан на анализе расхождений значений ("невязок") геомагнитного поля, возникающих при съемке, в точках пересечений рядовых и секущих галсов (профилей). Точность данных способов составляет порядка 10 нТл и возрастает с увеличением количества секущих.
Известны также модификации способов [5, 6], в которых для контроля используют данные МВС, расположенные в относительной близости от района исследований [7].
В известных способах [2, 8] анализируются соотношения, связывающие характеристики геомагнитных вариаций на поверхности Земли с параметрами межпланетной среды и магнитосферы контролирующими их источниками. Погрешности таких способов, использующих методы потенциального, регрессивного и спектрального анализов данных, полученных посредством аппаратуры, установленной на обсерваториях, достигает десятков нанотесл.
Известны также способы [9-11], позволяющие автоматически учитывать вариации в процессе съемки. Данные способы используют и непосредственно для измерения вариаций геомагнитного поля с движущегося носителя. Сущность этих способов заключается в одновременном измерении поля двумя (или более) магнитометрическими преобразователями, установленными на движущихся носителях, разнесенных на известное (заданное) расстояние вдоль направления движения, вычитании полученных сигналов и интегрировании (суммировании) полученного результата, начиная с опорного значения геомагнитного поля. Вычитание сигналов магнитометрических преобразователей исключает из результатов измерений вариации (однородные в пределах базы градиентометра), а интегрирование разностного сигнала восстанавливает значение стационарного геомагнитного поля. Для выделения вариаций восстановленные значения поля вычитают из непосредственно измеренных.
Геомагнитное поле (ГМП), измеряемое в движении, является сложной функции времени Т[x(t), y(t), z(t), t], полная производная которой равна [12]:
Figure 00000001
где
Figure 00000002
- вектор скорости носителя.
В первом приближении измеренные значения можно представить в виде суммы стационарной и вариационной составляющих: Т [x(t), у (t), z(t), t]≈Tc(x,y,z)+Тв(t).
Тогда при движении в плоскости по направлению
Figure 00000003
из (1) следует
Figure 00000004
откуда видно, что при одновременном измерении полного поля Т и градиента его стационарного Тс, можно вычислить вариации Тв, если известна скорость носителя. При дискретных измерениях значение градиента (производной) поля по направлению
Figure 00000003
на базе Δх на i-шаге вычисляют как
Figure 00000005
интегрирование данных преобразуется в суммирование
Figure 00000006
а разность Т(xn, t)-Tc(xn)=Тв (t) определяет вариации.
В общем случае суммарную относительную погрешность измерения вариаций данным методом δв можно выразить [12] через
Figure 00000007
где Mu - инструментальная погрешность магнитометра;
δl - погрешность, обусловленная колебаниями базы измерений;
δв - погрешность, обусловленная градиентами вариаций;
δν - погрешность за счет ошибок судового лага;
δг - погрешность интегратора;
А - средняя амплитуда измеряемых вариаций ГМП;
n - число циклов суммирования.
Из анализа выражения (5) видно, что при суммировании данных происходит накапливание ошибок, т.е. возможности метода ограничены числом циклов n, при котором σв не выйдет за пределы заданного значения σ3. В процессе измерений при накапливании погрешности до σ3 рекомендуется [12] начать новый цикл интегрирования от нового уровня. Например, при измерениях в море при цикле Δt=10c и общей продолжительности интегрирования около 3 часов (n=103), используя жестко установленный градиентометр (δ=0) с Muв=0,1 нТл и считая погрешности интегратора и измерения скорости малым (δu≈δν≈0), по формуле (5) можно оценить, что при средней амплитуде вариаций А=100 нТл средняя квадратичная погрешность измерения вариаций σ≤6%. По данному способу можно учесть и измерить вариации ГМП с частотой f≤νx/Δx, что при Δх=100 м и νx=10 уз. будет соответствовать f≤0,05 Гц (Тв>20 с). С увеличением скорости судна и уменьшением разноса датчиков частотный диапазон учитываемых вариаций возрастает, однако при этом уменьшается разность измеряемых величин ГМП. Так, при средней величине градиента ГМП в океане 40 нТл/км приращение ΔT на базе 1-5 м составит 0,04-0,2 нТл, что потребует повышения точности измерения ГМП до ~10-3 нТл. В настоящее время такие чувствительности принципиально возможно получить с помощью криогенных и некоторых типов квантовых магнитометрических преобразователей [13].
Таким образом, на основе градиентометрического способа вполне реально обеспечить измерение и учет геомагнитных вариаций в движении с относительной погрешностью порядка 5…10%, при этом в результате обработки на судовом вычислительном комплексе автоматически учитываются вариации ГМП, частотный диапазон которых будет определяться длиной базы измерения и скоростью носителя.
Отметим, что наличие в дисперсии ошибок (5) линейной составляющей, нарастающей пропорционально количеству измерений, является одним из основных ограничений градиентометрического способа по длине галса (максимальному периоду выделяемых вариаций). Использование для снижения этих погрешностей данных либо косвенного метода учета вариаций, либо данных МВС, установленных на концах галсов, предлагаемое в [5, 10, 14], лишает градиентометрический способ его универсальности.
Общим недостатком известных способов является относительно низкая точность измерения вариаций стационарного геомагнитного поля.
Известен также способ определения стационарного геомагнитного поля при проведении морской магнитной съемки [19], заключающийся в одновременном измерении вариаций геомагнитного поля двумя или более магнитометрическими преобразователями, установленными на движущихся носителях, разнесенных на заданное расстояние вдоль направления движения, в котором, в отличие от аналогов [16-18], один магнитометрический преобразователь дополнительно разнесен по вертикали на расстояние 100-200 метров от морской поверхности, с возможностью перемещаться вдоль направления движения первого магнитометрического преобразователя, с последующим его перемещением поперек направления движения первого магнитометрического преобразователя, со скоростью движения, превышающей скорость первого магнитометрического преобразователя, по крайней мере, на порядок.
При этом появляются новые возможности повышения точности учета вариаций за счет использования приплощадной съемки не только научно-исследовательского судна (НИС), снабженного буксируемым дифференциальным магнитометром (градиентометром) и идущее по маршрутному галсу, но и его штатного вертолета, оборудованного более простым модульным прибором. При этом учет вариаций с коротким периодом обеспечивается непосредственно по данным судового градиентометра, а для исключения его линейных ошибок, накапливающихся при длительных измерениях, используют данные опорного маршрута вертолетной съемки. Используя значительное преимущество вертолета в скорости, этот маршрут прокладывают вдоль основного направления движения судна и завершают в точке окончания его галса, начиная с которой вертолет будет выполнять рядовые маршруты (поперек опорного), возвращаясь на судно-носитель.
Выделение магнитотеллурической составляющей на фоне помех облегчается, так как помехи по электрическому и магнитному каналам вызваны различными источниками (являются некоррелированными) при измерении электрических и магнитных полей на разных носителях.
Ввиду того, что магнитные составляющие естественного электромагнитного поля (ЕЭМП) меньше, чем электрические, зависят от характера геоэлектрического разреза вдали от горизонтальных неоднородностей, то с точностью до 5% в средних широтах возможен горизонтальный разнос электрических и магнитных датчиков на величину Δr≤(0,013…0,025)r, где r - расстояние от района работ до проекции источника на поверхность Земли. При этом разнос датчиков по вертикали на расстояние до 200 м практически не сказывается на результатах измерений [15].
Таким образом, технический результат известного способа [19] для целей магнитотеллурического зондирования (МТЗ) на море достигается только в средних широтах за счет использования синхронных измерений электрической компоненты ЕЭМП буксируемым за НИС измерителем (на относительно малых скоростях) и магнитной компоненты (с помощью компонентного дифференциального магнитометра, установленного на низколетящем вертолете или другом летательном аппарате (ЛА), удаленном на расстояние до 50-100 км).
При этом незначительная величина магнитного наклонения в низких широтах позволяет использовать для измерения горизонтальной составляющей δH в движении вместо компонентного градиентометра модульный, который легче реализуется. В работе [15] показано, что модульный δT-вариометр можно использовать как δН-вариометр при определении импеданса в поверхностной установке Тихонова-Каньяра с относительной погрешностью не более 20% в поясе широт ±20 градусов и менее 6% - в поясе широт ±15 градусов.
Известно, что при использовании в качестве вариометра прибора, измеряющего модуль полного вектора
Figure 00000008
(например, протонного или квантового), фактически регистрируется проекция вариации δТ на направление вектора
Figure 00000009
, так как
Figure 00000010
. Кроме того, в глубоководных районах (с глубиной h) буксируемый со скоростью ν Т-магнитометр регистрирует практически только переменную часть ГМП на частотах
Figure 00000011
.
Отсюда следует, что в глубоководных районах вблизи магнитного экватора существует возможность на основе синхронных измерений с помощью буксируемого Г-магнитометра и измерителя горизонтальной составляющей электрического поля оценить величину входного импеданса и построить часть кривой МТЗ в диапазоне частот f1<f<f2, где
Figure 00000012
определяется по теореме Котельникова из минимальной дискретности измерений Δt.
При МТЗ у поверхности необходимо использовать указанные выше методы снижения гидродинамических (в первую очередь волновых) помех. Отметим, что использование ЛА облегчает снижение влияния гидродинамических помех ввиду высокой скорости носителя. Кроме того, магнитные поля волн на высотах полета ЛА затухают на 2-3 порядка.
Установка на ЛА (например, на судовой вертолет) магнитометра и проведение измерений синхронно с судовым магнитометром-градиентометром позволяет значительно снизить погрешность измерений δT, вызываемую накоплением ошибок при интегрировании (5).
Однако в авроральной зоне и вблизи магнитного экватора разнос измерителей электрических и магнитных компонент приводит к большим (до 50%) погрешностям измерений импеданса Zn [15]. В высоких и экваториальных широтах съемки проводят преимущественно при расположении магнитометра и измерителя электрического поля на одном судне, что также не является оптимальным вариантом обеспечения требуемой высокоточной съемки особенно на границах шельфовой зоны арктических морей.
Задачей предлагаемого технического решения является определение стационарного геомагнитного поля, определение значений модуля вектора индукции геомагнитного поля и ускорений силы тяжести преимущественно в шельфовой зоне арктических морей посредством измерительных устройств, размещенных как на подвижных, так и на стационарных носителях (опорные пункты).
Поставленная задача достигается тем, что в способе определения стационарного геомагнитного поля при проведении морской магнитной съемки на определенной акватории, заключающемся в одновременном измерении вариаций геомагнитного поля двумя или более магнитометрическими преобразователями, установленными на подвижных носителях, разнесенных на заданное расстояние вдоль направления движения, использующем дополнительный магнитометрический преобразователь, разнесенный по вертикали на расстояние 100-200 метров от морской поверхности, с возможностью его перемещения вдоль направления движения первого магнитометрического преобразователя, с последующим перемещением поперек направления движения первого магнитометрического преобразователя со скоростью движения, превышающей скорость первого магнитометрического преобразователя, по крайней мере, на порядок, дополнительно размещают на акватории опорные геофизические пункты, оснащенные гравиметрами и магнитометрами, посредством которых определяют опорные значения ускорения силы тяжести и вектора индукции геомагнитного поля, проводят съемку по замкнутым маршрутам с замыканием на опорные геофизические пункты, определяют искомые значения ускорения силы тяжести и модуля вектора индукции в каждой точке измерения как суммы приращений измеренного параметра к предыдущему, начиная с опорного геофизического пункта.
Реализация способа поясняется на чертеже, где изображена схема выполнения галсов при определении стационарного геомагнитного поля при проведении морской магнитной съемки.
Способ реализуется следующим образом.
На акватории размещают опорные геофизические пункты, оснащенные гравиметрами и магнитометрами, посредством которых определяют опорные значения ускорения силы тяжести и вектора индукции геомагнитного поля. Съемка выполняется по замкнутым маршрутам с замыканием на опорные геофизические пункты. Искомые значения ускорения силы тяжести и модуля вектора индукции в каждой точке измерения определяют как суммы приращений измеренного параметра к предыдущему, начиная с опорного геофизического пункта.
Посредством измерительной аппаратуры, установленной на судне и вертолете, выполняют измерения на опорном маршруте l (фиг.1а) со скоростью νв=nνc, где νc - скорость судна, νв - скорость вертолета. При этом в конечной точке маршрута l в данные, полученные посредством аэромагнитометра, вводят поправку за вариации δT(t1) по данным судового градиентометра, где
Figure 00000013
. Поскольку линейная часть дисперсии погрешности градиентометра σ в соответствии с (5) пропорциональна времени t1, (фиг.1б), то при достижении судном точки N (фиг.1в) в момент tN=l/νc она будет учтена по данным вертолетной съемки с погрешностью
Figure 00000014
, т.е накопление ошибок идет в
Figure 00000015
раз медленнее. Таким образом, при такой комплексной вертолетно-судовой съемке на одном цикле за время tN производится съемка полигона размером l×L (фиг.1г), где
Figure 00000016
;
Figure 00000017
, где n - коэффициент отношения νв к νс, k - величина, обратная величине между галсовыми расстояниями (степень плотности галсов), m - расстояние между галсами. Далее цикл съемки повторят.
Реализация способа технической сложности не представляет, так как для его осуществления могут быть использованы серийные средства измерения и обработки измеренной информации.
Источники информации
1. Инструкция по морской магнитной съемке (ИМ-86) / МО СССР, ГУНиО, 1987. - С.22-26, 50-54, 96-103.
2. Ставров К.Г., Кулагина Т.М. Развитие методов учета геомагнитных возмущений при морской магнитной съемке / В/ч 62728-1979. - Деп. в ЦИВТИ МО СССР, 1980, № Д4489.
3. Ривин Ю.Р., Ставров К.Г. Временные вариации геомагнитного поля / Раздел монографии "Учет временных вариаций при проведении морской магнитной съемки". М.: ИЗМИР АН, 1984. - С.3-18.
4. Магниторазведка: Справочник геофизика под ред. В.Е.Никитского, Ю.С.Глебовского. - М.: Недра, 1990. - С.151, 179-188, 216-220.
5. Гордин В.М., Розе Е.Н., Углов Б.Д. Морская магнитометрия. - М.: Недра, 1986, с.58-71, 97-103.
6. Ставров К.Г., Паламарчук В.К., Демин Б.Н. Комплексный метод учета вариаций при морской магнитной съемке в интересах навигации // Тезисы докладов Первой Российской научно-технической конференции "Современное состояние, проблемы морской и воздушной навигации". - СПб: "Судостроение", 1992. 174 с.
7. Ставров К.Г., Демин Б.Н., Паламарчук В.К., Филабок Н.Н. Технология разновысотных магнитных съемок при поисках и освоении нефтяных и газовых месторождений на континентальном шельфе арктических морей / Труды Первой Международной конференции "Освоение шельфа Арктических морей России". - М.: 1994. - С.128-132.
8. Ставров К.Г. О создании автоматизированной системы обеспечения оповещениями об опасных гелио-геофизических возмущениях на акваториях Мирового океана / Сборник докладов 4-й Российской научно-технической конференции "Современное состояние, проблемы навигации и океанографии" ("НО-2001"), т.2. СПб: ГНИНГИ, 2001. - С.265 с.
9. SU 739454, 05.06.80.
10. Розе Е.Н., Марков И.М. Градиентометрический метод измерения геомагнитного поля в океане // Учет временных вариаций при проведении морской магнитной съемки. - М.: ИЗМИРАН, 1984. - С.194-224.
11. Семевский Р.Б. и др. Специальная магнитометрия. - СПб.: Наука, 2002. - 228 с.228.
12. Семевский Р.Б., Чернобуров Е.И., Поддубный А.И. Измерение вариаций геомагнитного поля в движении // Геофизическая аппаратура. 1977. - Вып.61. - С.46-50.
13. Афанасьев Ю.В., Студенцов А.В., Хорев В.Н. и др. Средства измерений параметров магнитного поля. - Л.: Энергия, 1979. С.120-139, 229-242.
14. Ставров К.Г., Бурцев Ю.А., Паламарчук В.К. и др. Оценка вариаций геомагнитного поля по результатам градиентометрических гидромагнитных съемок / Методы и средства исследований структуры геомагнитного поля, М., ИЗМИР АН, 1987.
15. Сочельников В.В. Основы теории естественного электромагнитного поля в море. - Л.: Гидрометеоиздат, 1979. - С.140-155, 162-165.
16. SU 1073607, 15.02.1984.
17. US 6765383, 20.07.2004.
18. RU 2248016, 10.03.2005.
19. RU 2331090, 10.08.2008.

Claims (1)

  1. Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки на определенной акватории двумя или более магнитометрическими преобразователями, установленными на носителях и разнесенными на заданное расстояние вдоль направления движения носителей, при этом один магнитометрический преобразователь дополнительно разнесен по вертикали на расстояние 100-200 м от морской поверхности с возможностью его перемещения вдоль направления движения первого магнитометрического преобразователя, с последующим его перемещением поперек направления движения первого магнитометрического преобразователя со скоростью движения, превышающей скорость первого магнитометрического преобразователя, по крайней мере, на порядок, отличающийся тем, что на акватории размещают опорные геофизические пункты, оснащенные гравиметрами и магнитометрами, посредством которых определяют опорные значения ускорения силы тяжести и вектора индукции геомагнитного поля, съемка выполняется по замкнутым маршрутам с замыканием на опорные геофизические пункты, искомые значения ускорения силы тяжести и модуля вектора индукции в каждой точке измерения определяют как суммы приращений измеренного параметра к предыдущему, начиная с опорного геофизического пункта.
RU2010103095/28A 2010-01-29 2010-01-29 Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки RU2433429C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010103095/28A RU2433429C2 (ru) 2010-01-29 2010-01-29 Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010103095/28A RU2433429C2 (ru) 2010-01-29 2010-01-29 Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки

Publications (2)

Publication Number Publication Date
RU2010103095A RU2010103095A (ru) 2011-08-10
RU2433429C2 true RU2433429C2 (ru) 2011-11-10

Family

ID=44754084

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010103095/28A RU2433429C2 (ru) 2010-01-29 2010-01-29 Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки

Country Status (1)

Country Link
RU (1) RU2433429C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2501047C2 (ru) * 2011-12-07 2013-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана имени академика И.С. Грамберга" Способ прогнозирования глубокозалегающих горизонтов на акваториях по результатам тренд-анализа магнитных и гравитационных аномалий

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2501047C2 (ru) * 2011-12-07 2013-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана имени академика И.С. Грамберга" Способ прогнозирования глубокозалегающих горизонтов на акваториях по результатам тренд-анализа магнитных и гравитационных аномалий

Also Published As

Publication number Publication date
RU2010103095A (ru) 2011-08-10

Similar Documents

Publication Publication Date Title
Bell et al. Gravity gradiometry resurfaces
Edwards et al. First results of the MOSES experiment: sea sediment conductivity and thickness determination, Bute Inlet, British Columbia, by magnetometric offshore electrical sounding
US20100026304A1 (en) Method and Apparatus for Analysing Geological Features
Nelson Calculation of the magnetic gradient tensor from total field gradient measurements and its application to geophysical interpretation
Simonelli et al. First deep underground observation of rotational signals from an earthquake at teleseismic distance using a large ring laser gyroscope
CN103562753A (zh) 重力梯度计勘测技术
AU2016203396B2 (en) Magnetometer signal sampling within time-domain EM transmitters and method
Karshakov et al. Promising map-aided aircraft navigation systems
RU2304794C2 (ru) Способ гидрометеорологоакустического наблюдения за акваторией морского полигона
Schiffler et al. Application of Hilbert‐like transforms for enhanced processing of full tensor magnetic gradient data
Braitenberg et al. GOCE observations for detecting unknown tectonic features
RU2436134C1 (ru) Способ оперативного исследования атмосферы, земной поверхности и океана
RU2331090C1 (ru) Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки
RU2456644C2 (ru) Способ геохимической разведки
Winsborrow et al. Acquisition and inversion of Love wave data to measure the lateral variability of geo-acoustic properties of marine sediments
Hamoudi et al. Aeromagnetic and marine measurements
US20170315255A1 (en) Method and system for broadband measurements using multiple electromagnetic receivers
RU2433429C2 (ru) Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки
Karshakov et al. Promising aircraft navigation systems with use of physical fields: Stationary magnetic field gradient, gravity gradient, alternating magnetic field
RU2440592C2 (ru) Способ морской гравиметрической съемки
Rudd et al. Commercial operation of a SQUID-based airborne magnetic gradiometer
Li et al. Compensation method for the carrier magnetic interference of underwater magnetic vector measurement system
Gavrilov et al. Geomagnetic Effects of Remote Earthquakes
RU2433427C1 (ru) Способ определения стационарного геомагнитного поля при проведении морской магнитной съемки
RU2436132C1 (ru) Измерительный комплекс для проведения георазведки