RU2433424C2 - Способ и устройство оптической локации с помощью сенсора ультрафиолетового излучения - Google Patents

Способ и устройство оптической локации с помощью сенсора ультрафиолетового излучения Download PDF

Info

Publication number
RU2433424C2
RU2433424C2 RU2009139986/28A RU2009139986A RU2433424C2 RU 2433424 C2 RU2433424 C2 RU 2433424C2 RU 2009139986/28 A RU2009139986/28 A RU 2009139986/28A RU 2009139986 A RU2009139986 A RU 2009139986A RU 2433424 C2 RU2433424 C2 RU 2433424C2
Authority
RU
Russia
Prior art keywords
radiation
reflected
angle
emitter
coordinate
Prior art date
Application number
RU2009139986/28A
Other languages
English (en)
Other versions
RU2009139986A (ru
Inventor
Игорь Дмитриевич Родионов (RU)
Игорь Дмитриевич Родионов
Александр Петрович Калинин (RU)
Александр Петрович Калинин
Алексей Игоревич Родионов (RU)
Алексей Игоревич Родионов
Original Assignee
Закрытое акционерное общество "Научно-технический центр "Реагент"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научно-технический центр "Реагент" filed Critical Закрытое акционерное общество "Научно-технический центр "Реагент"
Priority to RU2009139986/28A priority Critical patent/RU2433424C2/ru
Publication of RU2009139986A publication Critical patent/RU2009139986A/ru
Application granted granted Critical
Publication of RU2433424C2 publication Critical patent/RU2433424C2/ru

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Способ включает в себя импульсное излучение в диапазоне ультрафиолетовых длин волн и последующий прием и обработку отраженного сигнала. Короткий импульс излучения производят на основании выдачи короткого строба на излучатель, а регистрацию отдельных отраженных фотонов осуществляют на основании выдачи длинного строба. Угол прихода отраженного фотона, расстояние до объекта и его координаты определяют посредством время-координатно-чувствительного детектора. Устройство оптической локации содержит широкоугольный излучатель ультрафиолетового излучения и приемник излучения. В качестве приемника ультрафиолетового излучения применен время-координатно-чувствительный детектор, снабженный контроллером и соединенный с объективом. Детектор обеспечивает регистрацию отдельных отраженных фотонов, определение угла прихода отраженного фотона, определение расстояния до объекта и его координат. Технический результат - обеспечение получения необходимой информации независимо от наличия естественных или искусственных помех. 2 н. и 2 з.п. ф-лы, 3 ил.

Description

Заявляемое изобретение относится к способу и устройству определения расстояния до отдельных точек объекта и угла, под которым видна эта точка, и на этой основе создание систем трехмерного зрения, позволяющих получать трехмерные изображения в цифровом виде.
Для определения расстояния до объекта можно использовать различные системы, в том числе и радиолокационные. Однако радиолокационные системы, как правило, дают низкую точность определения координат, а их работа может быть затруднена помехами от подстилающей поверхности. Кроме того, они характеризуются высокой стоимостью и достаточно значительными массогабаритными показателями.
Другой подход - использовать оптические системы локации, работающие в видимом и ИК-диапазоне. Отметим, что к недостаткам этих систем относятся природные и антропогенные источники помех, наличие бликов от Солнца. Это заставляет применять узконаправленные (одноэлементные или многоканальные - до 100-200 каналов) механически сканирующие системы. Высокочувствительные ПК-системы дороги и сложны в эксплуатации и имеют сильно ограниченный ресурс, а доступные системы обладают низкой чувствительностью.
Современные оптические локаторы обычно выполняются в виде механически сканирующих модулей из соосно установленных фотоэлектронных умножителей (ФЭУ) с узкоугольной оптикой и лазера. Механическое сканирование связки ФЭУ и лазера, необходимое для создания систем локации некоторой конкретной области пространства, является серьезным фактором, ограничивающим возможность таких локаторов. Развитие лавинопролетных фотоприемных диодов и эффективных источников излучения на базе излучающих диодов обеспечивает современную реализацию этой концепции, продвигающую характеристики системы за счет многоканального сканирования. Однако при этом все равно сохраняются принципы механического сканирования и однопозиционный принцип приема-регистрации отраженного излучения.
Одной из причин такого построения современных оптических локаторов являются атмосферные фоновые засветки как в видимом, так и в ИК-диапазонах. Поэтому узкоугольная оптика позволяет максимально блендировать естественные фоновые засветки, а высокий уровень мощности поступающего в апертуру приемника отраженного сигнала обеспечивает превышение сигнала над остаточным фоном и внутренними шумами приемника. Вследствие этого обеспечивается неэффективное использование лазерного излучения подсветки - от тысяч до сотен тысяч отдельных фотонов на входе фотоприемника для измерения одной точки исследуемого пространства. Кроме того, обычно используются достаточно протяженные импульсы излучения в 10 нс и более, а временная привязка с точностью на уровне 1 нс достигается привязкой по фронту принимаемого сигнала, что также требует достаточно высокого уровня подсветки и ограничивает возможности применения в мутных средах.
Известен способ оптической локации (Заявка RU №94026858/09, МПК G01S 15/00, опубл. 20.05.1996 г.), включающий в себя импульсное излучение в световом диапазоне и последующий прием и обработку отраженного сигнала. При реализации этого способа оптико-механическое сканирующее устройство осуществляет сканирование однострочной развертки по вертикали в одном направлении, одновременно осуществляет также сканирование этой развертки по азимуту в режиме кругового или секторного обзоров и при этом инфракрасный приемник осуществляет развертку, опережающую лазерную по углу места, и тем самым увеличивается точность локации целей.
К недостаткам этого способа относится необходимость выполнения оптико-механического сканирования в комбинации с приемом и обработкой инфракрасного излучения от объекта, что в целом приводит к усложнению способа и снижению надежности при его применении.
Задачей, поставленной при создании настоящего изобретения, является преодоление указанных недостатков, повышение надежности и расширение функциональных возможностей способа оптической локации.
Техническим результатом является создание надежного способа определения положения в пространстве сразу нескольких объектов в трехмерном измерении независимо от состояния атмосферы.
Поставленная задача решается, а указанный результат достигается тем, что в способе оптической локации, включающем в себя импульсное излучение в световом диапазоне и последующий прием и обработку отраженного сигнала, излучение ведут в диапазоне ультрафиолетовых длин волн, краткосрочный импульс излучения производят на основании выдачи короткого строба на излучатель, а регистрацию отдельных отраженных фотонов осуществляют на основании выдачи длинного строба, при этом угол прихода отраженного фотона, определение расстояния до объекта и его координаты определяют посредством время-координатно-чувствительного детектора. Излучение ведут в ультрафиолетовом спектре в диапазоне длин волн 250-280 нм. Продолжительность короткого строба составляет 1 нс, а продолжительность длинного строба определяется требуемой дальностью локации.
Известно также устройство для оптической локации (Заявка RU №94026858/09, МПК G01S 15/00, опубл. 20.05.1996 г.), содержащее излучатель и приемник излучения, в котором наряду с лазерным передатчиком использован инфракрасный приемник излучения.
Недостатком известного устройства является сложная система сканирования и использование ИК-излучения, которое делает этот локатор чувствительным к природным и антропогенным источникам помех.
Задачей настоящего изобретения является упрощение конструкции локатора и повышение надежности его работы.
Техническим результатом является обеспечение получения необходимой информации независимо от наличия естественных или искусственных помех.
Поставленная задача решается, а указанный результат достигается тем, что в устройстве оптической локации, содержащем излучатель и приемник излучения, в качестве излучателя применен широкоугольный излучатель ультрафиолетового излучения, а в качестве приемника ультрафиолетового излучения подключенный к излучателю широкоугольный приемник, причем излучатель и приемник по отдельным каналам связи подключены к электронному блоку управления устройства.
В качестве широкоугольного приемника излучения может быть применен время-координатно-чувствительный детектор, состоящий из солнечно-слепого объектива с кристаллическим фильтром, пропускающим излучение ультрафиолетового излучения и задерживающим излучение других диапазонов, снабженный контроллером, позволяющий определять время прихода регистрируемого фотона и угол его прихода. Преимуществом предлагаемого способа и устройства, функционирующего на его основе, является использование УФ-С диапазона длин волн для оптической локации и применение специальных широкоугольных источника УФ-С диапазона (подсвечивающего объект) и УФ-С приемника (сенсора), позволяющего определять не только расстояние до различных точек объекта, но и находить угол, под которым сенсор «видит» эти точки. Это обеспечивает получение трехмерных изображений зондируемых объектов.
В предлагаемом изобретении используется УФ-С диапазон длин волн для оптической локации, так как в этом диапазоне солнечное излучение не будет создавать помехи и оптическую локацию можно будет проводить в дневное время и при прямых солнечных засветках. Применение широкоугольных источника УФ-С излучения и УФ-С приемника позволяет избежать сканирование источником и приемником излучения. В данном изобретении предлагается использовать такой приемник УФ-С излучения, который будет регистрировать не только время прихода отраженного от объекта фотона (и тем самым позволять определять расстояния до точки объекта, от которого отразился фотон), но и определять угол прихода фотона (т.е. определять угол, под которым эта точка видна регистрирующим устройством). При этом реализуется предельно эффективное использование энергии подсветки по принципу «один зарегистрированный фотон - одна трехмерная координата местности». Таким образом, комбинация этих возможностей позволяет создавать системы трехмерного оптического зрения. Достижение трехмерности зрения достигается тем, что в описываемой системе наряду с широкоугольным УФ-С излучателем используется специальный широкоугольный монофотонный сенсор УФ-С излучения с системой фильтров и линз, пропускающих только УФ-С излучение, а для регистрации этого излучения используется время-координатно-чувствительный детектор (ВКЧД). Этот детектор позволяет не только регистрировать время прихода фотона, но и определять углы прихода этого фотона.
Сущность предлагаемого способа и устройства, функционирующего на его основе, поясняется схематично чертежами,
где на фиг.1 схематично представлено устройство, с помощью которого реализуется предлагаемый способ;
на фиг.2 представлен алгоритм работы предлагаемого устройства;
на фиг.3 поясняется метод определения расстояния до точек объектов в поле зрения предлагаемого локатора.
Устройство, в котором реализуется предлагаемый способ, содержит широкоугольный УФ-С излучатель 1, широкоугольный приемник УФ-С излучения 2, в котором имеется объектив 3, пропускающий только длины волн заданного УФ-С диапазона и формирующий изображение на входе время-координатно-чувствительного детектора 4, контроллер 5, позволяющий определять время прихода регистрируемого фотона и угол его прихода, блок электроники 6, управляющий работой всего устройства. Зондируемые объекты обозначены позициями 7 и 8.
Оптический локатор работает следующим образом: в одном цикле приемник УФ-С излучения выдает в широкоугольный УФ-источник короткий строб (фиг.2) на начало и конец излучения (~1 нс), запускает сброшенный счетчик времени; источник и выдает широкий строб на приемник излучения, в течение которого разрешен прием отраженного фотона. УФ за время строба выдает световой импульс малой длительности (~1 нс) в широком угловом диапазоне; приемник УФ-излучения фиксирует по счетчику времени время прихода фотонов, отраженных от отдельных точек диагностируемых объектов в течение времени, определяемого вторым стробом, который значительно больше времени первого строба и определяется тем максимальным расстоянием от предлагаемого устройства, на котором должно производиться дистанционное зондирование. За время большого строба приемнику разрешается зарегистрировать только один отраженный фотон. Также для каждого отраженного и зарегистрированного фотона определяется угол, под которым эта точка объекта видна приемником излучения. При последовательном осуществлении описанного выше цикла получаются данные, которые позволяют получить трехмерные изображения всех объектов, которые находятся в поле зрения излучателя и приемника.
На фиг.3 поясняется принцип определения расстояния до точки объекта и угол, под которым приходит зарегистрированный фотон (рисунок плоский) от зарегистрированного фотона по времени прохождения фотона от излучателя 9 до объекта и от объекта до приемника 10. Так как расстояния L1 с большой степенью точности равно L2, a L3=L4, то среднее расстояние до каждой точки объекта определяется по формуле
L=t*C/2
Здесь t - время прохождения импульса фотонов до точки объекта и обратно, С - скорость света.
Определение угла и времени фотона осуществляется с помощью время-координатно-чувствительного детектора. В качестве примера такого устройства может быть ВКЧД, использующий микроканальные пластины для усиления сигнала от отраженного фотона, и специальный коллектор, позволяющий определять координаты прихода фотона на вход ВКЧД, а по ним определять углы прихода этого фотона.
Отличительной особенностью предлагаемого локатора является отсутствие сканирования, одновременный прием фотонов, отраженных как с различных углов зрения, так и от различных объектов, находящихся на одной линии и частично прозрачных. Кроме того, возможность за счет математической обработки отфильтровывать рассеянные на неоднородностях среды фотоны, что обеспечивает его применение в мутных слабопрозрачных средах, в которых с одного направления могут приходить фотоны как от среды, так и от объектов, находящихся на пути луча.
Таким образом, возможно использование единичных фотонов для определения координат по времени задержки и координатам точки отражения в режиме единичного счета - однофотонного режима. Реализуется принцип «один фотон - одна трехмерная точка местности».

Claims (4)

1. Способ оптической локации с помощью сенсора ультрафиолетового излучения, включающий в себя импульсное излучение в световом диапазоне и последующий прием и обработку отраженного сигнала, отличающийся тем, что излучение ведут в диапазоне ультрафиолетовых длин волн, короткий импульс излучения производят на основании выдачи короткого строба на излучатель, а регистрацию отдельных отраженных фотонов осуществляют на основании выдачи длинного строба, при этом угол прихода отраженного фотона, определение расстояния до объекта и его координаты определяют посредством время-координатно-чувствительного детектора.
2. Способ по п.1, отличающийся тем, что излучение ведут в диапазоне волн 250-280 нм.
3. Способ по п.1, отличающийся тем, что продолжительность короткого строба составляет 1 нс, а продолжительность длинного строба определяется требуемой дальностью локации.
4. Устройство оптической локации с помощью сенсора ультрафиолетового излучения, содержащее излучатель и приемник излучения, отличающееся тем, что в качестве излучателя применен широкоугольный излучатель ультрафиолетового излучения, а в качестве приемника ультрафиолетового излучения применен время-координатно-чувствительный детектор, снабженный контроллером и соединенный с объективом, обеспечивающий регистрацию отдельных отраженных фотонов, а также определение угла прихода отраженного фотона, определение расстояния до объекта и его координат, широкоугольный излучатель подключен к приемнику, кроме того, излучатель и приемник по отдельным каналам связи подключены к электронному блоку управления устройства.
RU2009139986/28A 2009-10-30 2009-10-30 Способ и устройство оптической локации с помощью сенсора ультрафиолетового излучения RU2433424C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009139986/28A RU2433424C2 (ru) 2009-10-30 2009-10-30 Способ и устройство оптической локации с помощью сенсора ультрафиолетового излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009139986/28A RU2433424C2 (ru) 2009-10-30 2009-10-30 Способ и устройство оптической локации с помощью сенсора ультрафиолетового излучения

Publications (2)

Publication Number Publication Date
RU2009139986A RU2009139986A (ru) 2011-05-10
RU2433424C2 true RU2433424C2 (ru) 2011-11-10

Family

ID=44732185

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009139986/28A RU2433424C2 (ru) 2009-10-30 2009-10-30 Способ и устройство оптической локации с помощью сенсора ультрафиолетового излучения

Country Status (1)

Country Link
RU (1) RU2433424C2 (ru)

Also Published As

Publication number Publication date
RU2009139986A (ru) 2011-05-10

Similar Documents

Publication Publication Date Title
US11789127B2 (en) Multi-beam laser scanner
US10739445B2 (en) Parallel photon counting
US11808887B2 (en) Methods and systems for mapping retroreflectors
CN109791202A (zh) 具有不规则脉冲序列的激光雷达
US11703567B2 (en) Measuring device having scanning functionality and settable receiving ranges of the receiver
CN101449181B (zh) 测距方法和用于确定目标的空间维度的测距仪
CN109188451A (zh) 一种激光雷达系统
CN203909297U (zh) 基于高速单光子探测的激光测距仪
CN109425324A (zh) 具有扫描功能和接收器的可设定接收范围的全站仪或经纬仪
US7148974B1 (en) Method for tracking the location of mobile agents using stand-off detection technique
CN103760567A (zh) 一种具有测距功能的被动成像系统及其测距方法
US11531104B2 (en) Full waveform multi-pulse optical rangefinder instrument
CN106226782A (zh) 一种大气风速分布探测的装置和方法
US20210333371A1 (en) Lidar system with fog detection and adaptive response
CN110832347B (zh) 用于高性能光学扫描仪的聚焦区光学元件
US20150092179A1 (en) Light ranging with moving sensor array
CN108459328A (zh) 一种具有均匀接收光学系统的探测装置
RU2433424C2 (ru) Способ и устройство оптической локации с помощью сенсора ультрафиолетового излучения
CN205826867U (zh) 一种大气风速分布探测的装置
US20230007979A1 (en) Lidar with photon-resolving detector
RU2521203C1 (ru) Способ обнаружения объектов, измерения скорости, дальности и угловых координат и устройство для его осуществления
RU2659615C2 (ru) Система обнаружения светящихся объектов
TR2021015058A2 (tr) Yüksek çözünürlüklü li̇dar görüntüleme si̇stemi̇
WO2022216531A9 (en) High-range, low-power lidar systems, and related methods and apparatus
KR20200050008A (ko) 3차원 공간 스캐닝 기술을 활용한 라이다 장치