RU2429379C2 - Пластинчатый насос - Google Patents

Пластинчатый насос Download PDF

Info

Publication number
RU2429379C2
RU2429379C2 RU2009102415/06A RU2009102415A RU2429379C2 RU 2429379 C2 RU2429379 C2 RU 2429379C2 RU 2009102415/06 A RU2009102415/06 A RU 2009102415/06A RU 2009102415 A RU2009102415 A RU 2009102415A RU 2429379 C2 RU2429379 C2 RU 2429379C2
Authority
RU
Russia
Prior art keywords
windows
rotor
cover
housing
stator
Prior art date
Application number
RU2009102415/06A
Other languages
English (en)
Other versions
RU2009102415A (ru
Inventor
Илья Леонидович Коробков (RU)
Илья Леонидович Коробков
Михаил Леонидович Коробков (RU)
Михаил Леонидович Коробков
Original Assignee
Клоян Омари Отариевич
Илья Леонидович Коробков
Михаил Леонидович Коробков
Лобанов Алексей Александрович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Клоян Омари Отариевич, Илья Леонидович Коробков, Михаил Леонидович Коробков, Лобанов Алексей Александрович filed Critical Клоян Омари Отариевич
Priority to RU2009102415/06A priority Critical patent/RU2429379C2/ru
Publication of RU2009102415A publication Critical patent/RU2009102415A/ru
Application granted granted Critical
Publication of RU2429379C2 publication Critical patent/RU2429379C2/ru

Links

Images

Landscapes

  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

Изобретение относится к роторным пластинчатым насосам объемного типа и может быть использовано для перекачивания газов, жидкостей, мультифазных смесей. В пластинчатом насосе в боковой впускной крышке 9 выполнены два основных впускных окна 10 и два дополнительных впускных окна 11, а два основных выпускных окна 12 и два дополнительных выпускных окна 13 выполнены в противоположной боковой выпускной крышке 14. Каждые два окна расположены внутри плоского сектора с центральными углами, рассчитанными по формуле. Плоские сектора крышки 9 развернуты относительно плоских секторов крышки 14 на прямой угол. Боковые крышки 9 и 14 закреплены на корпусе с размещением указанных плоских секторов напротив плавных переходных участков внутренней поверхности корпуса. Статор 2, ротор 3, рабочие пластины 5 и боковые крышки 9 и 14 выполнены твердосплавными. Изобретение направлено на расширение функциональных возможностей насоса путем обеспечения перекачивания мультифазных смесей с высоким содержанием механических примесей за счет исключения образования застойных зон внутри насоса и возможности использования твердосплавных материалов для изготовления трущихся деталей насоса. 2 з.п. ф-лы, 4 ил.

Description

Предлагаемое устройство относится к классу роторных пластинчатых насосов объемного типа и может быть использовано для перекачивания мультифазных смесей с высоким содержанием механических частиц и откачки пластовых жидкостей из нефтяных скважин.
Известен пластинчатый гидравлический насос двойного действия, содержащий ротор с пластинами, свободно перемещающимися в его пазах, корпус с профилированной внутренней поверхностью и расположенные определенным образом впускные и выпускные окна (Пластинчатые насосы и гидромоторы. Зайченко И.З. и Мышлевский Л.М., Машиностроение, 1970, с.28, рис.16). Конструкция насоса позволяет ему надежно работать в чистых средах с хорошими смазывающими свойствами и развивать высокие давления перекачки жидкостей.
Однако конструктивные особенности не позволяют данному насосу работать со средами, являющимися мультифазными смесями с высоким содержанием взвешенных механических примесей, например, при откачке пластовых жидкостей из нефтяных скважин.
Наиболее близким к заявляемому является пластинчатый нефтяной насос, содержащий корпус, ротор с радиальными пазами, в которых размещены рабочие пластины, постоянно находящиеся в контакте с внутренней профилированной поверхностью корпуса во время вращения ротора, между которыми расположены камеры перекачивания смесей (Патент РФ №2191926, F04C 2/344, 2002 г.).
Полость корпуса выполнена в виде цилиндрической поверхности, образованной двумя парами симметрично расположенных дуг с различными радиусами и плавными дугообразными переходами от дуг большего радиуса к дугам меньшего радиуса. Поверхности одинаковых радиусов расположены напротив друг друга. Ротор насоса имеет цилиндрическую поверхность, образованную окружностью с радиусом, меньшим, чем малый радиус внутренней поверхности корпуса. Рабочие пластины числом не менее 8 подпружинены в радиальных пазах с возможностью радиального перемещения, а на внутренней поверхности паза выполнены канавки, соединяющие объем паза под рабочей пластиной с камерами перекачивания. Рабочие пластины выполнены из износостойкого полиуретана с добавлением смеси дисульфида молибдена, графита окисленного и др. Внутренняя поверхность полости корпуса и подшипники скольжения выполнены из того же полиуретана, а боковые крышки - из стали.
Недостатками известного технического решения являются:
- Невозможность перекачивания насосом сред с высоким содержанием механических частиц, так как жидкость заходит в насос радиально, затем перемещается на определенный угол в рабочей камере и вытесняется опять в радиальном направлении, оставляя при этом у верхних кромок пазов ротора зоны отложения твердых частиц и солей, а канавки, соединяющие объем паза под рабочей пластиной с камерами перекачивания, не позволяют обеспечить проточное течение перекачиваемой жидкости в камере под рабочей пластиной, что приводит также к образованию застойных зон в этих камерах и накоплению в них твердых частиц. Конструкция насоса не позволяет обеспечить изготовление всех трущихся деталей насоса только из твердых сплавов, например карбидов титана, вольфрама или кремния, твердость которых выше твердости механических частиц в перекачиваемой жидкости.
- Невозможность работы насоса при температурах перекачиваемой среды выше 200°C, ввиду выполнения внутренней поверхности полости корпуса и подшипников из полиуретана, жаропрочность и жаростойкость которого ограничена.
Кроме того, известная конструкция насоса сложна и трудоемка при изготовлении, а также недостаточно технологична.
Техническая задача заключается в расширении функциональных возможностей путем обеспечения перекачивания мультифазных смесей с высоким содержанием механических примесей за счет исключения образования застойных зон внутри насоса и возможности использования твердосплавных материалов для изготовления трущихся деталей насоса.
Заявляется пластинчатый насос, содержащий ротор с рабочими пластинами, перемещающимися в его пазах, и расположенный внутри корпуса, внутренняя поверхность которого образована двумя парами симметрично расположенных дуг разных радиусов и плавными переходными участками от дуг большего радиуса к дугам меньшего радиуса, и ограниченный с торцов боковыми крышками, в котором согласно первому пункту формулы, в боковой впускной крышке выполнены по меньшей мере два основных впускных окна и по меньшей мере два дополнительных впускных окна, а по меньшей мере два основных выпускных окна и по меньшей мере два дополнительных выпускных окна выполнены в противоположной боковой выпускной крышке, при этом каждые по меньшей мере два окна расположены внутри плоского сектора с центральными углами, рассчитанными по формуле: 90-360°/n, где n - число рабочих пластин. Указанные плоские сектора боковой впускной крышки развернуты относительно плоских секторов боковой выпускной крышки на прямой угол, причем указанные боковые крышки закреплены на корпусе с размещением указанных плоских секторов напротив плавных переходных участков внутренней поверхности корпуса. Статор, ротор, рабочие пластины и боковые крышки выполнены твердосплавными.
Заявляемое выполнение основных и дополнительных окон в боковых крышках позволяет осуществлять преимущественно осевое направление движения перекачиваемой смеси, что способствует более качественной промывке всего внутреннего объема насоса, исключению образования застойных зон, а также исключает неравномерный износ верхней кромки рабочей пластины за счет отсутствия радиальных впускных и выпускных окон на статоре.
Выполнение дополнительных впускных окон на одной из боковых крышек, а дополнительных выпускных окон на противоположной боковой крышке в зонах изменения объемов между пазами ротора и нижней плоскостью пластин, позволяет перекачивать дополнительное количество жидкости и осуществлять промывание пространства под пластинами, а также исключить непроизводительную операцию на роторе - получение канавок, особенно если ротор выполнен из твердого сплава.
При расположении каждой пары окон внутри плоского сектора с центральными углами, рассчитанными по формуле: 90°-360°/n, где n - число рабочих пластин, а также если указанные плоские сектора боковой впускной крышки развернуты относительно плоских секторов боковой выпускной крышки на прямой угол, причем указанные боковые крышки закреплены на корпусе с размещением указанных плоских секторов напротив плавных переходных участков внутренней поверхности корпуса, обеспечивает перемещение рабочих пластин в пазах ротора только в тех случаях, когда перепад давлений не действует на переднюю и заднюю плоскости рабочих пластин, и, соответственно, обеспечивает статичное положение рабочих пластин относительно пазов ротора на протяжении цикла, при котором на переднюю и заднюю плоскости пластин действует перепад давлений. Это позволяет практически исключить попадание твердых механических частиц в зону контакта пары «пластина-паз ротора» и снизить силы трения в этой паре. Выполнение всех трущихся элементов насоса (статора, ротора, рабочих пластин, боковых крышек) из твердых сплавов, например, карбидов титана, вольфрама или кремния, дает возможность перекачивать насосом среды с высоким содержанием механических частиц.
Корпус насоса может быть выполнен либо цельным, либо составным, т.е. включать наружную обечайку и статор, жестко соединенные между собой при условии, что твердость материала статора выше, чем твердость материала наружной обечайки. Во втором случае технологичность и универсальность конструкции насоса повышается, снижается материалоемкость и увеличивается ремонтопригодность. Появляется возможность менять параметры насоса простой заменой статора с одной внутренней профилированной поверхностью на статор с профилированной поверхностью другого типа, оставляя при этом одну и ту же обечайку для большого числа типоразмеров насоса.
Кроме того, выполнение канавки на сопряженных с пазом ротора поверхностях рабочих пластин позволяет осуществлять дополнительное охлаждение трущихся поверхностей.
Конструкция пластинчатого насоса представлена на следующих фигурах.
На фиг.1 показан общий вид насоса заявляемой конструкции. На фиг.2 - разрез А-А на фиг.1, на фиг.3 - аксонометрическое изображение насоса при выполнении корпуса сплошным. На фиг.4 - аксонометрическое изображение насоса при выполнении корпуса составным.
Пластинчатый насос включает корпус, выполненный сплошным, либо составным, который включает обечайку 1, внутри которой жестко установлен статор 2. Ротор 3 выполнен с радиальными пазами 4, вдоль которых перемещаются рабочие пластины 5, имеющие переднюю 6, заднюю 7 и нижнюю 8 плоскости. В боковой впускной крышке 9 выполнены пара основных впускных окон 10 и пара дополнительных впускных окон 11.
Пара основных выпускных окон 12 и пара дополнительных выпускных окон 13 расположены на боковой выпускной крышке 14. Каждая пара окон 10, 11 и 12, 13 на обоих крышках 9 и 14 расположена внутри плоского сектора В с центральными углами Y и а, которые рассчитываются по формуле: 90°-360°/n, т.е. могут отличаться по площади. При этом n - число рабочих пластин 5, которое может изменяться от 5 до 19. Указанные сектора В крышек 9 и 14 развернуты на угол 90° относительно друг друга.
Рабочая камера 15 образована внутренней профильной поверхностью корпуса или статора 1, наружной поверхностью ротора 3, передней 6 и задней 7 плоскостями пластин 5 и ограничена в осевом направлении торцовыми поверхностями боковых крышек 9 и 14.
Нижняя подпластинчатая камера 16 образована поверхностью радиального паза 4 ротора 3, нижней плоскостью 8 рабочих пластин 5 и ограничена в осевом направлении торцовыми поверхностями крышек 9 и 14.
На сопряженных с радиальным пазом 4 ротора 3 поверхностям 6 и 7 рабочих пластин 5 могут быть выполнены канавки 17.
Внутренняя поверхность D корпуса или статора 1 образована двумя парами симметрично расположенных дуг разных радиусов г и R и плавными переходными участками 18.
Плоские сектора В боковых крышек 9 и 14 размещены напротив переходных участков 18 внутренней поверхности корпуса (статора 2).
Насос работает следующим образом.
При вращении ротора 3 центробежные силы прижимают пластины 5, установленные в радиальных пазах 4, к внутренней поверхности статора 2, жестко связанного с обечайкой 1. Между ротором 3, статором 2, крышками 9 и 10 и каждой передней 6, задней 7 каждой пары пластин 5, имеются рабочие камеры 15, количество которых равно числу лопаток 5. Внутри секторов В с центральными углами γ и δ располагаются основные и дополнительные впускные и выпускные окна 10, 11 и 12, 13, соответственно, через которые перекачиваемая мультифазная смесь с механическими примесями заходит в рабочие камеры 15 и в подпластинчатые камеры 16, затем выходит из них.
При вращении ротора 3 объемы рабочих камер 15 на участках профилированной поверхности корпуса (статора 2), ограниченных углами γ и δ изменяются, так как пластины 5 в эти моменты совершают движение относительно пазов 4 ротора 3, и через основные впускные окна 10 и дополнительные впускные окна 11 перекачиваемая жидкость поступает в рабочие камеры 15 и подпластинчатые камеры 16, соответственно.
Далее при вращении ротора 3 на участках профилированной поверхности корпуса (статора 2), ограниченных углами аир, объемы рабочих камер 15 и подпластинчатых камер 16 остаются постоянными, происходит перемещение перекачиваемой жидкости к основным выпускным окнам 12 и дополнительным выпускным окнам 13. При достижении пластиной 5 переходного участка профилированной поверхности корпуса (статора 2), ограниченного углами у и 5, начинается перемещение пластины 5 в пазе 4 ротора 3, при этом давление жидкости со всех сторон пластины 5 становится одинаковым (пластина оказывается целиком на линии нагнетания) и происходит вытеснение перекачиваемой жидкости из рабочих камер 15 и подпластинчатых камер 16 в напорную линию насоса через основные выпускные окна 12 и дополнительные выпускные окнам 13, соответственно.
Таким образом, осуществляется перекачивание мультифазной смеси с механическими примесями не только рабочими камерами 15, но и камерами 16, а рабочие пластины 5 совершают движение относительно пазов 4 ротора 3 только в тех случаях, когда на них не действует перепад давлений, и соответственно пластины неподвижны относительно радиальных пазов 4, когда на пластины 5 действует перепад давлений.
Предлагаемый насос является более технологичным и простым в изготовлении, отличается низкой материалоемкостью, малыми габаритами, служит для перекачивания мультифазных смесей при температурах до 400°C, не обладающих высокими смазывающими свойствами и содержащих высокое количество взвешенных механических примесей. Может быть использован для откачки пластовых жидкостей с возможностью регулирования расхода в диапазоне от 0,1 до 5 от номинальных значений без существенных потерь рабочего давления и к.п.д. при высокой технологичности изготовления элементов устройства.

Claims (3)

1. Пластинчатый насос, содержащий ротор с рабочими пластинами, перемещающимися в его пазах, и расположенный внутри корпуса, внутренняя поверхность которого образована двумя парами симметрично расположенных дуг разных радиусов и плавными переходными участками от дуг большего радиуса к дугам меньшего радиуса, и ограниченный с торцов боковыми крышками, отличающийся тем, что в боковой впускной крышке выполнены по меньшей мере два основных впускных окна и по меньшей мере два дополнительных впускных окна, а по меньшей мере два основных выпускных окна и по меньшей мере два дополнительных выпускных окна выполнены в противоположной боковой выпускной крышке, при этом каждые по меньшей мере два окна расположены внутри плоского сектора с центральными углами, рассчитанными по формуле: 90°-360°/n, где n - число рабочих пластин, а указанные плоские сектора боковой впускной крышки развернуты относительно плоских секторов боковой выпускной крышки на прямой угол, причем указанные боковые крышки закреплены на корпусе с размещением указанных плоских секторов напротив плавных переходных участков внутренней поверхности корпуса, а статор, ротор, рабочие пластины и боковые крышки выполнены твердосплавными.
2. Пластинчатый насос по п.1, отличающийся тем, что корпус выполнен составным и включает наружную обечайку и статор, жестко соединенные между собой, при этом твердость материала статора выше, чем твердость материала наружной обечайки.
3. Пластинчатый насос по п.1, отличающийся тем, что на сопряженных с пазом ротора поверхностях рабочих пластин выполнены канавки.
RU2009102415/06A 2009-01-23 2009-01-23 Пластинчатый насос RU2429379C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009102415/06A RU2429379C2 (ru) 2009-01-23 2009-01-23 Пластинчатый насос

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009102415/06A RU2429379C2 (ru) 2009-01-23 2009-01-23 Пластинчатый насос

Publications (2)

Publication Number Publication Date
RU2009102415A RU2009102415A (ru) 2010-07-27
RU2429379C2 true RU2429379C2 (ru) 2011-09-20

Family

ID=42697899

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009102415/06A RU2429379C2 (ru) 2009-01-23 2009-01-23 Пластинчатый насос

Country Status (1)

Country Link
RU (1) RU2429379C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2564961C2 (ru) * 2014-01-09 2015-10-10 Александр Васильевич Михеев Пластинчатый насос
RU182672U1 (ru) * 2018-04-03 2018-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Насос

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2564961C2 (ru) * 2014-01-09 2015-10-10 Александр Васильевич Михеев Пластинчатый насос
RU182672U1 (ru) * 2018-04-03 2018-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Насос

Also Published As

Publication number Publication date
RU2009102415A (ru) 2010-07-27

Similar Documents

Publication Publication Date Title
CA2619195C (en) Screw pump rotor and method of reducing slip flow
US11988208B2 (en) Sealing in helical trochoidal rotary machines
RU165039U1 (ru) Винтовая машина
RU124931U1 (ru) Винтовая машина
RU2429379C2 (ru) Пластинчатый насос
RU2395720C1 (ru) Многоступенчатое насосное устройство
RU83813U1 (ru) Пластинчатый насос
RU2638113C2 (ru) Шестеренный насос объемного типа
RU91604U1 (ru) Пластинчатый насос
RU83809U1 (ru) Многоступенчатое насосное устройство
CA2509808C (en) Fluid cannon positive displacement pump
RU116188U1 (ru) Винтовая машина
RU2191926C2 (ru) Пластинчатый нефтяной насос
US3240155A (en) Helical rotary pumps
RU224933U1 (ru) Объемно-роликовый насос
RU226027U1 (ru) Пластинчатый роторный насос
US3567347A (en) Hydraulic pump
RU2338884C1 (ru) Роторно-вихревая машина с керамическими рабочими элементами
RU119043U1 (ru) Многоступенчатое насосное устройство
RU177656U1 (ru) Винтовая машина
RU128678U1 (ru) Винтовая машина
RU177851U1 (ru) Винтовая машина
RU2800620C1 (ru) Статор винтового героторного насоса
RU2700972C1 (ru) Пластинчатый нефтяной насос
RU2756825C1 (ru) Роторно-пластинчатое устройство для преобразования возвратно-поступательного движения во вращательное, без кривошипно-шатунного механизма

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120124