RU2428530C1 - Способ получения волокнистого материала - Google Patents

Способ получения волокнистого материала Download PDF

Info

Publication number
RU2428530C1
RU2428530C1 RU2010120150/12A RU2010120150A RU2428530C1 RU 2428530 C1 RU2428530 C1 RU 2428530C1 RU 2010120150/12 A RU2010120150/12 A RU 2010120150/12A RU 2010120150 A RU2010120150 A RU 2010120150A RU 2428530 C1 RU2428530 C1 RU 2428530C1
Authority
RU
Russia
Prior art keywords
air
polystyrene
temperature
pressure
reactor
Prior art date
Application number
RU2010120150/12A
Other languages
English (en)
Inventor
Евгения Владимировна Веприкова (RU)
Евгения Владимировна Веприкова
Елена Анатольевна Терещенко (RU)
Елена Анатольевна Терещенко
Николай Васильевич Чесноков (RU)
Николай Васильевич Чесноков
Борис Николаевич Кузнецов (RU)
Борис Николаевич Кузнецов
Original Assignee
Учреждение Российской академии наук Институт химии и химической технологии Сибирского отделения РАН (ИХХТ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт химии и химической технологии Сибирского отделения РАН (ИХХТ СО РАН) filed Critical Учреждение Российской академии наук Институт химии и химической технологии Сибирского отделения РАН (ИХХТ СО РАН)
Priority to RU2010120150/12A priority Critical patent/RU2428530C1/ru
Application granted granted Critical
Publication of RU2428530C1 publication Critical patent/RU2428530C1/ru

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Изобретение относится к области производства нетканых волокнисто-пористых полимерных материалов, используемых в качестве сорбентов и фильтрующих материалов, например, для очистки водных поверхностей и почвогрунтов от нефти и нефтепродуктов. Способ получения волокнистого материала заключается в кратковременной обработке полистирола или его отходов в реакторе воздухом или паровоздушной смесью с содержанием пара 50% об. при температуре 90-120°С, давлении 3 МПа в течение 30 секунд. Технический результат изобретения - разработан простой, экономичный и экологически чистый способ получения волокнистого материала из полистирола или его отходов с высоким выходом и хорошими сорбционными свойствами. 1 табл.

Description

Изобретение относится к области производства нетканых волокнисто-пористых полимерных материалов, используемых в качестве сорбентов и фильтрующих материалов, например, для очистки водных поверхностей и почвогрунтов от нефти и нефтепродуктов.
Известные способы получения волокон из термопластов осуществляют продавливанием растворов или расплавов полимеров через отверстия фильер с последующим вытягиванием и охлаждением нитей (Химическая энциклопедия, М., Советская энциклопедия, 1998, т.5, с.117, RU 2179600, МПК D01D 5/08, опубл. 2002).
Недостатком этих способов получения волокон является сложность технологии и высокие энергозатраты. Кроме того, эти способы неприменимы при использовании в качестве сырья бытовых и промышленных отходов термопластов, которые неоднородны по химическому составу, содержат механические примеси и отличаются от стандартного сырья меньшей молекулярной массой и, как следствие, более низкой вязкостью расплава, температурой плавления и механической прочностью получаемых волокон.
Известен способ получения волокон из раствора полистирола или полиметилметакрилата путем электростатического формования в органическом растворителе (RU 2349769, МПК B01D 39/16, опубл. 2009).
К недостаткам данного способа следует отнести сложность технологии, а именно: использование органических растворителей в большом объеме, наличие стадии предварительной очистки реагентов и значительные энергозатраты на стадиях электроформования волокон и предварительного обеспыливания воздушной среды, используемой при электроформовании.
Известен способ получения сорбирующего волокнисто-пористого полимерного материала для сбора разливов нефти распылением термопластичного полимера потоком нагретого воздуха, струе которого сообщается закрученное по спирали направление. Волокна в факеле распыления, находясь в вязкотекучем состоянии, наслаиваются на подложку, совершающую вращение и возвратно-поступательное перемещение, где и происходит формирование волокнисто-пористого материала (RU 2126715, МПК B01J 20/22, C02F1/28, В23В 3/10, опубл. 1999).
Полученный материал состоит из хаотически расположенных волокон, часть из которых сформирована в жгуты и клубочки, образующие капилляры, за счет которых происходит быстрое дополнительное впитывание и удерживание жидкости, например масел и нефтепродуктов. Однако технология изготовления материала очень сложна и требует специального оборудования.
Известен способ получения волокнистого материала из термопластов (RU 2117719, МПК D01D 5/08, D04H 3/16, опубл. 1998), в котором плавление полимера и образование пленки расплава осуществляют внутри вращающегося реактора, выполненного в виде цилиндра, открытая часть которого выполнена в виде расходящегося конуса, при этом формирование и вытягивание волокон из пленки расплава производят за счет кинетической энергии, которая создается вращающимся реактором с линейной скоростью на его кромке не менее 10 м/с. Вязкость пленки расплава термопласта поддерживают близкой к вязкости расплава при температуре его деструкции путем нагревания вращающегося реактора. Формирующееся у кромки реактора волокно подвергают воздействию воздушного потока, который направляют поперек направления движения формирующихся волокон.
Недостатком данного способа является сложность и многостадийность технологии. Так, сырье предварительно расплавляют и перемешивают в экструдере, образуя гомогенный расплав, температура которого близка к температуре деструкции полимера. Из экструдера расплав подают во вращающийся реактор, где под действием центробежных и осевых сил происходит формование и вытягивание волокна из пленки расплава. Кроме того, способ характеризуется неудовлетворительными экологическими характеристиками, так как в отработанном воздухе содержатся токсичные газообразные продукты, образующиеся в результате высокотемпературной деструкции термопластов.
Известно, что лигноцеллюлозное сырье (древесину, щепу, корни, стебли злаков и т.д.) можно превратить в волокна, пряди, крошки, чешуйки и им подобные образования в автоклаве при обработке паром под давлением при 190-260°C при выдержке от 15 с до 10 мин с последующим его извлечением из автоклава при атмосферном давлении. В описанном способе сырье далее подвергают горячему прессованию с целью получения композитного материала (RU 2075384, МПК В27К 9/00, опубл. 1997).
Наиболее близким по технологической сущности к предлагаемому изобретению является способ разволокнения (разрыхления) лигноцеллюлозного сырья путем взрывного автогидролиза. Способ заключается в кратковременной обработке древесного сырья нагретым водяным паром и последующем мгновенном снижении давления до атмосферного (декомпрессия). Лигноцеллюлозное сырье обрабатывают при температуре 120-240°C, давлении 3-4 МПа в течение от нескольких секунд до 10 минут водяным паром. Один из путей модифицирования взрывного автогидролиза заключается в том, что древесину хвойных пород в водной среде обрабатывают не только водяным паром, но и кислородом или воздухом под давлением при температуре 120-238°C. (Гравитис А.Я. Теоретические и прикладные аспекты метода взрывного гидролиза растительной биомассы. Химия древесины. 1987. №5. С.10-11).
При автогидролизе происходит не только разволокнение (разрыхление), но и гидролиз слабых связей в структуре органического вещества. К недостаткам способа следует отнести жесткие параметры процесса: высокую температуру и значительную выдержку в реакторе, что приводит к невозможности получения волокна из полимеров в этих условиях, т.к. они разрушатся до газообразных продуктов.
Задачей предлагаемого изобретения является разработка простого, экономичного и экологически чистого способа получения волокнистого материала из полистирола и его отходов с высоким выходом и хорошими сорбционными свойствами.
Поставленная задача решается тем, что в способе получения волокнистого материала путем кратковременной обработки сырья в реакторе газообразным агентом при температуре и давлении и последующей декомпрессии, согласно изобретению, в качестве сырья используют полистирол или его отходы, которые обрабатывают воздухом или паровоздушной смесью с содержанием пара 50% об. при температуре 90-120°C, давлении 3 МПа в течение 30 с.
Способ осуществляют следующим образом.
Навеску вспененного полистирола или бисера полистирола загружают в реактор объемом 0,8 л, куда подают нагретый (60-95°C) воздух или парогазовую смесь, содержащую 50% об. водяного пара. Через 8-10 с температура в реакторе достигает (90-120°C) при давлении 3 МПа. Исходное сырье выдерживают при заданных условиях в течение 30 с, затем давление сбрасывают до атмосферного с помощью шарового крана, при этом волокнисто-полимерная масса «выстреливается» из реактора в приемник. Происходит термомеханическая деструкция исходного материала с образованием волокна. При нагревании бисера полистирола под давлением выход газообразных продуктов затруднен, что приводит к образованию внутри частицы полистирола избыточного давления газообразных веществ. При резком сбросе внешнего давления до атмосферного газообразные продукты взрывают частицы полистирола до волокнистого состояния. В случае вспененного полистирола и его отходов в результате нагревания избыточное давление внутри обрабатываемых частиц создается за счет расширения воздуха, находящегося в пористой структуре вспененного полистирола. Избыточное внешнее давление препятствует выделению горячего воздуха из объема частиц. При последующей декомпрессии происходят процессы, описанные выше.
Волокно представляет собой полидисперсную массу, состоящую из волокон разной длины (0,5-7,0 см) и диаметром (0,3-1,0 мм). В массе волокна присутствуют как отдельные волокна, так и волокна, скрученные в жгуты и рыхлые клубочки. Выход воздушно-сухого волокнистого материала составляет 90-98% мас., от исходного материала.
Оптимальная температура процесса, при котором происходит образование качественного волокна, составляет 90-120°C. Проведение процесса при температуре ниже 90°C нецелесообразно, так как в полученном волокне присутствуют неразрушившиеся конгломераты (до 30%). Аналогичные эффекты наблюдаются при уменьшении времени выдержки ниже 30 с и давления менее 3 МПа. Повышение температуры выше 120°C, времени выдержки более 30 с и давления выше 3 МПа приводит к снижению выхода волокнистого продукта за счет процессов химической деструкции исходного материала. Качество волокна снижается за счет содержания в нем оплавленных конгломератов.
В качестве газообразного носителя в заявляемом способе используется воздух или паровоздушная смесь с содержанием водяного пара не более 50% об. Превышение в составе горячего газообразного носителя пара выше 50% приводит к увеличению хрупкости получаемого волокна и, как следствие, повышению содержания порошкообразной фракции в готовом продукте.
Способ подтверждается конкретными примерами.
Пример 1. 20 г предварительно вспененного полистирола загружают в реактор. Вспененный полистирол получали из полистирольного бисера (марка ПСВ-С) путем обработки его водяным горячим паром. В реактор подают горячий воздух и создают температуру 80°C и давление 3 МПа. Исходный материал выдерживают при заданных условиях 30 с, после чего сбрасывают давление до атмосферного. Выход воздушно-сухого волокнистого материала составляет не более 10%, количество непрореагировавших остатков - около 90% (см. табл.)
Пример 2. Способ осуществляют аналогично примеру 1, но при температуре в реакторе 90°C. Выход воздушно-сухого волокнистого материала составляет 95%. Количество непрореагировавших остатков -около 5%. Показатели по нефтеемкости (НЕ) полученного волокна составили 8,5±0,5 г/г, а показатели по маслоемкости (ME) составили 9,4±0,3 г/г.
Пример 3. Способ осуществляют аналогично примеру 1, но при температуре в реакторе 100°C. Выход воздушно-сухого полистирольного волокнистого материала составляет 98%. Количество непрореагировавших остатков составило около 2%. Показатели (НЕ) полученного волокна составили 8,7±0,3 г/г, а показатели (ME) составили 9,6±0,3 г/г.
Пример 4. Способ осуществляют аналогично примеру 1, но при температуре 120°C. Выход воздушно-сухого полистирольного волокнистого материала составляет 98%. Количество непрореагировавших остатков составило около 2%. Показатели (НЕ) полученного волокна составили 8,7±0,3 г/г, а показатели (ME) составили 9,6±0,3 г/г.
Пример 5. Способ осуществляют аналогично примеру 1, но при температуре 130°C. Выход воздушно-сухого полистирольного волокнистого материала составляет 65%. Выход оплавленных конгломератов составляет 20%. Показатели (НЕ) полученного волокна составили 8,5±0,4 г/г, а показатели (ME) составили 9,1±0,3 г/г.
Пример 6. 50 г бисера полистирола марки ПСВ-С загружают в реактор, куда подают горячий воздух. В реакторе создают температуру 90°C и давление 3 МПа. Исходный материал выдерживают при заданных условиях 30 с, после чего сбрасывают давление до атмосферного. Выход воздушно-сухого полистирольного волокнистого материала составляет 98%. Количество непрореагировавших остатков - около 2%. Показатели (НЕ) полученного волокна составили 9,2±0,5 г/г, а показатели (ME) составили 9,7±0,3 г/г.
Пример 7. Способ осуществляют аналогично примеру 6, но при температуре 120°C. Выход воздушно-сухого полистирольного волокнистого материала составляет 98%. Количество непрореагировавших остатков - около 2%. Показатели (НЕ) полученного волокна составили 9,2±0,5 г/г, а показатели (ME) составили 9,7±0,3 г/г.
Пример 8. Способ осуществляют аналогично примеру 7 но в качестве газообразного агента используют парогазовую смесь, содержащую 50% об. водяного пара. Полученный полистирольный волокнистый материал сушат при 25±5°C. Выход воздушно-сухого полистирольного материала составляет 98%. Количество непрореагировавших остатков - около 2%. Показатели (НЕ) полученного волокна составили 9,2±0,5 г/г, а показатели (ME) составили 9,7±0,3 г/г.
Пример 9. 20 г отходов полистирола (крошка упаковочного пенопласта) загружают в реактор, подают горячий воздух. Создают температуру в реакторе 120°C и давление 3 МПа. В этих условиях сырье выдерживают в реакторе 30 с. Выход воздушно-сухого полистирольного волокнистого материала составляет 98%. Количество непрореагировавших остатков - около 2%. Показатели (НЕ) полученного волокна составили 9,2±0,5 г/г, а показатели (ME) составили 9,7±0,3 г/г (см. табл.)
Представленные в таблице данные подтверждают, что оптимальными условиями получения полистирольного волокна является температура 90-120°C и обработка исходного вещества воздухом и паровоздушной смесью с содержанием пара 50% при постоянном давлении 3 МПа и времени выдержки 30 с.
Таким образом, разработан простой, экономичный и экологически чистый способ получения волокнистого материала из полистирола и его отходов методом термомеханической деструкции с высоким выходом и хорошими сорбционными свойствами.
Таблица
Влияние температуры на характеристики полученного волокнистого материала при давлении 3 МПа и времени выдержки 30 секунд.
Пример Температура, °C Состав газообр. носителя, % Выход волокна, % Содержание непрореагир. остатков, % НЕ г/г ME г/г
1 80 Воздух, 100% 10 90
2 90 Воздух, 100% 95 5 8,5±0,5 9,4±0,3
3 100 Воздух, 100% 98 2 8,7±0,3 9,6±0,3
4 120 Воздух, 100% 98 2 8,7±0,3 9,6±0,3
5 130 Воздух, 100% 65 20 8,5±0,4 9,1+0,3
6 90 Воздух, 100% 98 2 9,2±0,5 9,7±0,3
7 120 Воздух, 100% 98 2 9,2±0,5 9,7±0,3
8 120 Воздух50% пар-50% 98 2 9,2+0,5 9,7±0,3
9 120 Воздух, 100% 98 2 9,2±0,5 9,7±0,3

Claims (1)

  1. Способ получения волокнистого материала путем кратковременной обработки сырья в реакторе газообразным агентом при температуре и давлении и последующей декомпрессии, отличающийся тем, что в качестве сырья используют полистирол или его отходы, которые обрабатывают в реакторе при температуре 90-120°С, давлении 3 МПа в течение 30 с, при этом в качестве газообразного агента используют воздух или паровоздушную смесь с содержанием пара 50 об.%.
RU2010120150/12A 2010-05-19 2010-05-19 Способ получения волокнистого материала RU2428530C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010120150/12A RU2428530C1 (ru) 2010-05-19 2010-05-19 Способ получения волокнистого материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010120150/12A RU2428530C1 (ru) 2010-05-19 2010-05-19 Способ получения волокнистого материала

Publications (1)

Publication Number Publication Date
RU2428530C1 true RU2428530C1 (ru) 2011-09-10

Family

ID=44757632

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010120150/12A RU2428530C1 (ru) 2010-05-19 2010-05-19 Способ получения волокнистого материала

Country Status (1)

Country Link
RU (1) RU2428530C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Гравитис А.Я. Теоретические и прикладные аспекты метода взрывного гидролиза растительной биомассы. Химия древесины, 1987, №5, с.10, 11. *

Similar Documents

Publication Publication Date Title
Xia et al. Microalgal-immobilized biocomposite scaffold fabricated by fused deposition modeling 3D printing technology for dyes removal
Barreto et al. Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites
Li et al. Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption
CA2931670A1 (en) Processes for isolating cellulose from cellulosic biomass, isolated cellulose of type i and composite materials comprising same
CN104828823B (zh) 三维空间网状结构的活性炭纤维骨架及其制备方法
Biswal et al. Exploring the adsorption efficiency of a novel cellulosic material for removal of food dye from water
US9868240B2 (en) Spunbond method for producing non-woven fabric with deodorant feature from bamboo cellulose
Khandanlou et al. Feasibility study and structural analysis of cellulose isolated from rice husk: Microwave irradiation, optimization, and treatment process scheme
Jadhav et al. Production of green composites from various sustainable raw materials
Ketabchi et al. Sonosynthesis of cellulose nanoparticles (CNP) from kenaf fiber: effects of processing parameters
Maghchiche et al. Extraction and characterization of Algerian Alfa grass short fibers (Stipa Tenacissima)
Abdul Khalil et al. High-Pressure Enzymatic Hydrolysis to Reveal Physicochemical and Thermal Properties of Bamboo Fiber Using a Supercritical Water Fermenter.
Kiper et al. Electrospun cellulose nanofibers from toilet paper
Sihag et al. Extraction and characterization of nanocellulose from wheat straw: facile approach
Reichert et al. Utilization of pineapple crown fiber and recycled polypropylene for production of sustainable composites
Zhuang et al. Preparation and characterization of sponge film made from feathers
RU2428530C1 (ru) Способ получения волокнистого материала
Anggoro Use of epoxidized waste cooking oil as bioplasticizer of sago starch-based biocomposite reinforced microfibrillated cellulose of bamboo
Tran et al. Enhanced adsorption of cationic and anionic dyes using cigarette butt-based adsorbents: Insights into mechanism, kinetics, isotherms, and thermodynamics
Samanta et al. Recycled fibrous and nonfibrous biomass for value-added textile and nontextile applications
Hashem et al. γ-induced graft copolymerization onto cellulosic fabric waste for cationic dye removal
CN106732386A (zh) 一种以聚乙二醇与有机生石灰复合干燥剂的制备方法
Mubarak et al. Recent developments in sugarcane bagasse fibre-based adsorbent and their potential industrial applications: A review
RU2435641C1 (ru) Способ получения сорбента
Ng et al. Comparison study of adsorbent produced from renewable resources: Oil palm empty fruit bunch and rice husk

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140520