RU2427861C2 - Способ одновременного исследования методами радиоактивного каротажа и устройство для его осуществления - Google Patents

Способ одновременного исследования методами радиоактивного каротажа и устройство для его осуществления Download PDF

Info

Publication number
RU2427861C2
RU2427861C2 RU2009142314/28A RU2009142314A RU2427861C2 RU 2427861 C2 RU2427861 C2 RU 2427861C2 RU 2009142314/28 A RU2009142314/28 A RU 2009142314/28A RU 2009142314 A RU2009142314 A RU 2009142314A RU 2427861 C2 RU2427861 C2 RU 2427861C2
Authority
RU
Russia
Prior art keywords
gamma
neutron
methods
pulse
time
Prior art date
Application number
RU2009142314/28A
Other languages
English (en)
Other versions
RU2009142314A (ru
Inventor
Дмитрий Иванович Киргизов (RU)
Дмитрий Иванович Киргизов
Владимир Валентинович Баженов (RU)
Владимир Валентинович Баженов
Виктор Алексеевич Лифантьев (RU)
Виктор Алексеевич Лифантьев
Лев Николаевич Воронков (RU)
Лев Николаевич Воронков
Рамиль Сафиевич Мухамадиев (RU)
Рамиль Сафиевич Мухамадиев
Original Assignee
Общество с Ограниченной Ответственностью "ТНГ-Групп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с Ограниченной Ответственностью "ТНГ-Групп" filed Critical Общество с Ограниченной Ответственностью "ТНГ-Групп"
Priority to RU2009142314/28A priority Critical patent/RU2427861C2/ru
Publication of RU2009142314A publication Critical patent/RU2009142314A/ru
Application granted granted Critical
Publication of RU2427861C2 publication Critical patent/RU2427861C2/ru

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Использование: для радиоактивного каротажа. Сущность: заключается в том, что осуществляют одновременное измерение сечения захвата тепловых нейтронов и регистрацию гамма-квантов естественного радиоактивного фона, а также гамма-квантов, образующихся при распаде ядер активированного кислорода в интервале времени между двумя импульсами излучения нейтронов, причем в интервале времени между двумя импульсами излучения нейтронов формируют последовательность временных окон, в которых временные окна в интервале времен от 0 до 6 мс после импульса нейтронного излучения используются для регистрации методом ИНГК, а оставшееся временное окно до следующего импульса нейтронного излучения используется для регистрации методами КНАМ и ГК, при этом разделение методов КНАМ и ГК происходит за счет разделения поступающих γ-квантов по энергиям, для регистрации γ-квантов от радиоактивных изотопов устанавливают порог дискриминации в диапазоне от 2000 до 4000 кэВ, а для регистрации γ-квантов естественного радиоактивного фона устанавливают порог от 30 до 2000 кэВ. Технический результат: повышение точности и достоверности получаемых результатов исследования. 2 н.п. ф-лы, 3 ил.

Description

Изобретение относится к области нефте- и газопромысловой геофизики и может быть использовано при контроле за разработкой залежей нефти и газа для определения насыщенности пластов.
Известен способ импульсного-нейтронного каротажа (ИНК). При ИНК горную породу облучают прерывистым потоком быстрых нейтронов и в перерывах облучения на фиксированном расстоянии от источника регистрируют плотность тепловых нейтронов (импульсный нейтрон-нейтронный каротаж) или вызванных ими γ-квантов радиационного захвата (импульсный нейтрон-гамма-каротаж). После обработки этих временных спектров получают нейтронные параметры исследуемого продуктивного пласта: ∑ - макросечение поглощения тепловых нейтронов, L3 - длину замедления быстрых (14 МэВ) нейтронов и Д - коэффициент диффузии тепловых нейтронов. Так как нейтронные параметры контролируются соответствующими петрофизическими параметрами, а именно ∑н - нефтенасыщенностью (при достаточной минерализации пластовой воды), L3 и Д - общей пористостью пласта, то при измерении нейтронных параметров определяют общую пористость и нефтенасыщенность продуктивного пласта [1, 4].
Также известен способ гамма-каротажа (ГК), при котором регистрируют за определенное время γ-кванты естественного радиоактивного излучения окружающей среды. По данным ГК выделяют пласты повышенной радиоактивности, которые являются надежными реперами для корреляции разрезов скважин [1, 4].
При кислородно-нейтрон-активационном методе (КНАМ) порода облучается быстрыми нейтронами, и регистрируются γ-кванты радиоактивных изотопов. При облучении быстрыми нейтронами сред, содержащих кислород 16О, в результате реакции 16O(пр)16N образуется искусственная радиоактивность. Порог реакции равен 10.2 МэВ, период полураспада изотопа 16N равен 7.35 с. В результате бета-распада ядер азота 16N испускаются гамма-кванты с энергией 6.13 МэВ и 7.10 МэВ. Если путем временной селекции (блокировки входа временного канала в интервале времен от 0 до 6 мс относительно импульса посылки быстрых нейтронов) исключить возможность регистрации жесткого гамма-излучения радиационного захвата и регистрировать гамма-кванты с энергией более 3 МэВ, то регистрируемое гамма-излучение будет полностью обусловлено активационным эффектом на ядрах 16О. Это свойство используется для определения интервалов обводнения в нефтедобывающих скважинах и выявления возможных заколонных перетоков воды к интервалам перфорации [1, 4].
Во всех вышеуказанных методах предполагается использование отдельных для каждого метода сцинцилляционных кристаллов NaJ(Tl) для регистрации γ-квантов, ФЭУ и соответствующим образом настроенных усилителей импульсов. Это является недостатком, так как требует не менее 3-х отдельных детекторных секций. Кроме того, вышеуказанные способы каротажа не допускают одновременного использования другого метода.
Наиболее близкими к заявленным изобретениям являются способ и устройство для определения текущей нефте- и газонасыщенности коллекторов в обсаженных скважинах. Способ основан на одновременном измерении сечения захвата или времени жизни тепловых нейтронов, параметра активации кислорода и естественной радиоактивности пород. Измерения сечения захвата тепловых нейтронов и регистрацию гамма-квантов, образующихся при распаде ядер кислорода, проводят по показаниям каждого из детекторов последовательно в интервале времени между двумя импульсами излучения нейтронов. По полученным данным определяют коэффициент водонасыщенности коллекторов, а затем определяют коэффициенты газонасыщенности и нефтенасыщенности коллекторов. Устройство содержит скважинный прибор с управляемым импульсным источником быстрых нейтронов, несколько детекторов гамма-квантов с формирователями импульсов, схемы пропускания, одновибраторы, счетчики. Наземная часть содержит цифровой регистратор с программно управляемым источником питания [2].
Недостатками указанных технических решений является то, что в указанном способе определение ∑ - макросечения поглощения тепловых нейтронов - проводят интегральным методом (ИНГК), что не обеспечивают достаточную точность полученных результатов при определении нефтенасыщенности пласта. Кроме того, устройство содержит несколько детекторов гамма-квантов, что увеличивает габаритные размеры прибора и усложняет процесс исследования.
Задачей предлагаемого изобретения является разработка способа каротажа, позволяющего повысить точность и достоверность получаемых результатов исследования, а также создание компактного надежного устройства для реализации предлагаемого способа.
Поставленная задача решается тем, что в способе одновременного исследования методами радиоактивного каротажа путем одновременного измерения сечения захвата тепловых нейтронов и регистрацию гамма-квантов естественного радиоактивного фона, а также гамма-квантов образующихся при распаде ядер активированного кислорода в интервале времени между двумя импульсами излучения нейтронов, в интервале времени между двумя импульсами излучения нейтронов формируют последовательность временных окон, в которых временные окна в интервале времен от 0 до 6 мс после импульса нейтронного излучения используются для регистрации методом ИНГК, а оставшееся временное окно до следующего импульса нейтронного излучения используется для регистрации методами КНАМ и ГК, при этом разделение методов КНАМ и ГК происходит за счет разделения поступающих γ-квантов по энергиям, для регистрации γ-квантов от радиоактивных изотопов устанавливают порог дискриминации в диапазоне от 2000 до 4000 кэВ, а для регистрации γ-квантов естественного радиоактивного фона устанавливают порог от 30 до 2000 кэВ.
Поставленная задача также решается тем, что устройство для одновременного исследования методами радиоактивного каротажа содержит управляемый импульсный излучатель быстрых нейтронов, блок цифровой обработки, детектор гамма-квантов, двух усилителей-дискриминаторов импульсов, при этом усилители-дискриминаторы импульсов соединены с одним выходом детектора гамма-квантов, а каждый выход усилителей-дискриминаторов, настроенной на пропускание импульсов определенной амплитуды, соответствующей гамма-квантам различной энергии, выходы усилителей-дискриминаторов подсоединены к входам двух счетчиков импульсов, которые соединены с блоком цифровой обработки, выход которого через одножильный геофизический кабель соединен с наземным оборудованием.
Предлагаемые способ и устройство позволяют объединить регистрацию тремя методами в ИНГК, ГК и КНАМ одной детекторной секции, содержащей один сцинцилляционный кристалл, одно ФЭУ и усилитель, и проводить исследования одновременно, за один спуск-подъем скважинного прибора.
Многоканальная методика определения ∑ - макросечения поглощения тепловых нейтронов методом ИНГК позволяет более точно определять насыщенность пластов, а также оптимально разделять пластовую и скважинную экспоненту во временном спаде, в случае использования двухэкспонентного анализа методом наименьших квадратов. В этом случае временной спектр гамма-излучения радиационного захвата, зарегистрированный детектором, можно представить как математическую гипотезу вида
N(t)=aw*exp(-t/τw)+ac*exp(-t/τc),
где aw и τw - соответственно амплитуда и время жизни скважинной компоненты, ас и τc - соответственно амплитуда и время жизни пластовой компоненты. Нейтронный параметр (макроскопическое сечение) ∑ определяется как функция пластовой и компоненты τc. В широком диапазоне вариаций скважинной геометрии, литологии и пористости имеет хорошее приближение: ∑=а/τc - где а - коэффициент, согласующий единицы измерений ∑ и τc.
Использование многоканальной методики позволяет уменьшить влияние на измеряемый параметр (макроскопическое сечение ∑) нестабильности излучения вакуумной нейтронной трубки [1, 3].
Отличием предложенных технических решений от известных является то, что исследования проводят путем временного и энергетического разделения режима работы детекторного зонда, что обеспечивает одновременное проведение исследование методами ИНГК, ГК и КНАМ.
Сущность изобретения поясняется чертежами, где:
на фиг.1 представлена блок-схема скважинного прибора для осуществления предлагаемого способа;
на фиг.2 показан режим работы детекторной секции;
на фиг.3 показаны результаты скважинных исследований предлагаемым устройством.
Устройство для проведения исследования состоит из детектора гамма-квантов (3), состоящий из кристалла сцинтиллятора и фотоэлектронного умножителя. В детекторе энергия гамма-квантов преобразуется в электрические импульсы. Выход детектора соединен с входами двух усилителей-дискриминаторов (7) и (8). Один усилитель-дискриминатор (7) усиливает и пропускает импульсы от гамма-квантов с энергией 50 кэВ и более, другой усилитель-дискриминатор (8) усиливает и пропускает импульсы от гамма-квантов с энергией 3000 кэВ и более. Выходы усилителей-дискриминаторов соединены с входом счетчиков (9) и (10). Выходы счетчиков соединены с блоком цифровой обработки (6). В блоке цифровой обработки происходит временное накопление импульсов, распределение их по временным окнам, преобразование накопленных данных в кодовую посылку для передачи и осуществляется передача по одножильному геофизическому кабелю на поверхность. Блок цифровой обработки (6) управляет работой излучателя нейтронов (2). Кроме этого, в состав скважинного прибора входит основной блок питания (4), который преобразует напряжение 200 В, поступающее с поверхности, в напряжения 5, 12 и 65 В, необходимое для питания блоков прибора. Излучатель нейтронов (2) необходим для генерации нейтронов с энергией 14МэВ. Блок формирования +4кВ (1) преобразует напряжение 200 В в высоковольтное напряжение 4000 В, и его выход соединен с излучателем нейтронов 2. Блок формирования - 2 кВ 5 преобразует напряжение 200В, в высоковольтное напряжение 2000В и его выход соединен с детектором гамма-квантов (3).
Способ с помощью устройства осуществляют следующим образом.
Сразу после окончания нейтронной вспышки (длительностью порядка 2 мкс) блок цифровой обработки (6) формирует временные интервалы, в которых происходит подсчет электрических импульсов поступающих от детектора гамма-квантов (3). Временное распределение электрических импульсов соответствует временному распределению поля γ-квантов (фиг.2). Временные окна с №2 по №19 длительностью 100 мкс и окно №20 длительностью 4 мс используются для регистрации данных методом ИНГК. Из теории метода предполагается, что процессы тепловой термолизации быстрых нейтронов к этому времени заканчиваются. Временное окно №21 используется для регистрации методами КНАМ и ГК. Разделение методов КНАМ и ГК в 21-ом окне происходит за счет разделения поступающих γ-квантов по энергиям. Для регистрации γ-квантов от радиоактивных изотопов устанавливают порог дискриминации более 3 МэВ посредством усилителя-дискриминатора (8), а для регистрации γ-квантов естественного радиоактивного фона устанавливают порог 0,6 МэВ в канале дискриминатора (7). Полученные счета по всем временным окнам накапливаются за определенный квант глубины и передаются на поверхность для последующей обработки.
Новым является то, что в устройстве обеспечивается временное и энергетическое разделение потока γ-квантов, идущих от одного детекторного зонда, что позволяет получить исходные данные, необходимые для обработки по методам ИНГК, ПС и КНАМ, с малым влиянием одного метода на другой.
Предлагаемый способ был опробован в аппаратно-программном комплексе импульсного нейтронного каротажа, разработанном в Научно-Техническом Управлении ООО «ТНГ-Групп». Разработанный скважинный импульсный генератор нейтронов позволяет проводить исследования в работающих скважинах без остановки их работы методами ИНГК, КНАМ и ГК за один спуск-подъем. Кроме того, предлагаемый скважинный прибор очень компактен, так имеет малый диаметр (внешний диаметр, скважинного прибора равен 30 мм). В России разработанное устройство является первым скважинным прибором, который имеет столь малый диаметр, это дает возможность проводить исследования в достаточно сложных случаях, когда ограничена проходимость исследуемой зоны. Например, проводить скважинные исследования через зазор между обсадной колонной и насосно-компрессорными трубами (НКТ) без остановки работы скважинного насоса.
Технический результат, достигаемый при осуществлении заявленного изобретения, заключается в обеспечении оптимизации измерений при различных технико-геологических условиях, улучшении точности измерения и технологических параметров.
На сегодняшний день предлагаемым способом с помощью разработанного прибора исследовано более сотни скважин. Пример получаемых геофизических данных приведен на фиг 4. На нем показаны результаты обработки получаемых данных по методу ИНГК, ГК и КНАМ и дублирующего замера для контроля надежности работы аппаратуры. Также на фиг.4 для сравнения приведены замеры ИНГК, ГК, полученные в этой скважине другой серийно выпускаемой аппаратурой стороннего производителя.
Таким образом, предлагаемый прибор, имеющий одну детекторную секцию, содержащую один сцинтилляционный кристалл, одно ФЭУ и один усилитель, позволяет получать результаты наравне с теми приборами, которые имеют сложную конструкцию с несколькими детекторами.
СПИСОК ЛИТЕРАТУРЫ
1. Скважинная ядерная геофизика. Справочник геофизика. Под ред. д.т.н. В.М.Запорожца. Москва, «Недра», 1978 г. УДК 550.835.539.261.622.241.
2. Патент РФ 2232409, МПК G01V 5/10, 2003.
3. Разведочная ядерная геофизика. Справочник геофизика. Под ред. д.т.н. В.М.Запорожца. Москва. «Недра», 1977 г.
4. УДК 550.835. Кантор С.А. Теоретические основы нейтронных методов исследования горных пород, пересеченных скважиной. Докт. дисс. М., ВНИИЯГ, 1980.

Claims (2)

1. Способ одновременного исследования методами радиоактивного каротажа путем одновременного измерения сечения захвата тепловых нейтронов и регистрации гамма-квантов естественного радиоактивного фона, а также гамма-квантов, образующихся при распаде ядер активированного кислорода в интервале времени между двумя импульсами излучения нейтронов, отличающийся тем, что в интервале времени между двумя импульсами излучения нейтронов формируют последовательность временных окон, в которых временные окна в интервале времен от 0 до 6 мс после импульса нейтронного излучения используются для регистрации методом ИНГК, а оставшееся временное окно до следующего импульса нейтронного излучения используется для регистрации методами КНАМ и ГК, при этом разделение методов КНАМ и ГК происходит за счет разделения поступающих γ-квантов по энергиям, для регистрации γ-квантов от радиоактивных изотопов устанавливают порог дискриминации в диапазоне от 2000 до 4000 кэВ, а для регистрации γ-квантов естественного радиоактивного фона устанавливают порог от 30 до 2000 кэВ.
2. Устройство для одновременного исследования методами радиоактивного каротажа, содержащее управляемый импульсный излучатель быстрых нейтронов, блок цифровой обработки, детектор гамма-квантов, двух усилителей-дискриминаторов импульсов, отличающееся тем, что усилители-дискриминаторы импульсов соединены с одним выходом детектора гамма-квантов, а выходы усилителей-дискриминаторов, настроенных на пропускание импульсов определенной амплитуды, соответствующей гамма-квантам различной энергии, подсоединены к входам двух счетчиков импульсов, которые соединены с блоком цифровой обработки, выход которого через одножильный геофизический кабель соединен с наземным оборудованием.
RU2009142314/28A 2009-11-17 2009-11-17 Способ одновременного исследования методами радиоактивного каротажа и устройство для его осуществления RU2427861C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009142314/28A RU2427861C2 (ru) 2009-11-17 2009-11-17 Способ одновременного исследования методами радиоактивного каротажа и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009142314/28A RU2427861C2 (ru) 2009-11-17 2009-11-17 Способ одновременного исследования методами радиоактивного каротажа и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2009142314A RU2009142314A (ru) 2011-05-27
RU2427861C2 true RU2427861C2 (ru) 2011-08-27

Family

ID=44734357

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009142314/28A RU2427861C2 (ru) 2009-11-17 2009-11-17 Способ одновременного исследования методами радиоактивного каротажа и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2427861C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180593A1 (ru) * 2012-06-01 2013-12-05 Общество С Ограниченной Ответственностью "Сплит" Способ определения коэффициента нефтегазонасыщенности по комплексу гис на основании импульсных нейтронных методов каротажа
RU2523026C1 (ru) * 2012-12-28 2014-07-20 федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Импульсный генератор нейтронов
RU2530471C1 (ru) * 2013-05-13 2014-10-10 Закрытое акционерное общество Научно-производственная фирма "ГИТАС" (ЗАО НПФ "ГИТАС") Способ регистрации данных радиоактивного каротажа и устройство для его осуществления
RU2568305C2 (ru) * 2014-04-08 2015-11-20 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Генератор быстрых моноэнергетических нейтронов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130256522A1 (en) * 2012-03-28 2013-10-03 Luke T. Perkins Titanium based gas reservoir for low power sealed tube neutron generators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180593A1 (ru) * 2012-06-01 2013-12-05 Общество С Ограниченной Ответственностью "Сплит" Способ определения коэффициента нефтегазонасыщенности по комплексу гис на основании импульсных нейтронных методов каротажа
RU2523026C1 (ru) * 2012-12-28 2014-07-20 федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) Импульсный генератор нейтронов
RU2530471C1 (ru) * 2013-05-13 2014-10-10 Закрытое акционерное общество Научно-производственная фирма "ГИТАС" (ЗАО НПФ "ГИТАС") Способ регистрации данных радиоактивного каротажа и устройство для его осуществления
RU2568305C2 (ru) * 2014-04-08 2015-11-20 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Генератор быстрых моноэнергетических нейтронов

Also Published As

Publication number Publication date
RU2009142314A (ru) 2011-05-27

Similar Documents

Publication Publication Date Title
US7294829B2 (en) Method and apparatus for an improved formation density indicator using pulsed neutron instruments
US7148471B2 (en) Well logging apparatus and method for measuring formation properties
US7253402B2 (en) Apparatus and method for determining thermal neutron capture cross section of a subsurface formation from a borehole using multiple detectors
US6703606B2 (en) Neutron burst timing method and system for multiple measurement pulsed neutron formation evaluation
US3379882A (en) Method and apparatus for neutron well logging based on the lifetime of neutrons in the formations
US7081616B2 (en) Downhole gamma-ray detection
US4152590A (en) Simultaneous thermal neutron decay time and porosity logging system
US3780303A (en) Pulsed neutron logging with background compensation
EP0443936A1 (en) Method and apparatus for evaluating the cement in a well
US9477006B2 (en) Pulsed neutron well logging method for determining multiple formation parameters
US4020342A (en) Earth formation salinity by comparison of inelastic and capture gamma ray spectra
RU2427861C2 (ru) Способ одновременного исследования методами радиоактивного каротажа и устройство для его осуществления
US8927920B2 (en) Correcting gamma-ray energy spectra for pileup degradation
US5521378A (en) Method and apparatus for gamma ray logging of underground formations
US3925659A (en) Inelastic gamma ray logging system
US4071757A (en) Detection of behind casing water flow at an angle to the axis of a well borehole
US3838279A (en) Determination of borehole washout by use of inelastic neutron scattering gamma ray measurements
US4189638A (en) Water injection profiling by nuclear logging
CA1150856A (en) Measurement of flowing water salinity within or behind wellbore casing
US3928762A (en) Pulsed neutron combination well logging system
RU2468393C1 (ru) Способ и устройство определения пористости и насыщенности пластов одновременно по тепловым и надтепловым нейтронам
RU2788331C1 (ru) Малогабаритный мультиметодный многозондовый прибор импульсного нейтронного каротажа нефтегазовых скважин
RU2462736C1 (ru) Способ определения пористости пластов на основе регистрации надтепловых нейтронов и устройство для его осуществления
US11733421B2 (en) Method for obtaining near-wellbore true borehole sigma and true formation sigma by using a nuclear logging tool during oil and gas exploration
RU2690095C1 (ru) Устройство для измерения нейтронной пористости

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191118