RU2426138C1 - Измерительный преобразователь тока обратной последовательности - Google Patents

Измерительный преобразователь тока обратной последовательности Download PDF

Info

Publication number
RU2426138C1
RU2426138C1 RU2010108744/28A RU2010108744A RU2426138C1 RU 2426138 C1 RU2426138 C1 RU 2426138C1 RU 2010108744/28 A RU2010108744/28 A RU 2010108744/28A RU 2010108744 A RU2010108744 A RU 2010108744A RU 2426138 C1 RU2426138 C1 RU 2426138C1
Authority
RU
Russia
Prior art keywords
filter
current
resistor
capacitor
voltage
Prior art date
Application number
RU2010108744/28A
Other languages
English (en)
Inventor
Александр Николаевич Козлов (RU)
Александр Николаевич Козлов
Геннадий Евграфович Кувшинов (RU)
Геннадий Евграфович Кувшинов
Андрей Мусавирович Ханнанов (RU)
Андрей Мусавирович Ханнанов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Дальневосточный государственный технический университет (ДВПИ имени В.В. Куйбышева), ГОУВПО ДВГТУ
Государственное образовательное учреждение высшего профессионального образования Амурский государственный университет (ГОУВПО "АмГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Дальневосточный государственный технический университет (ДВПИ имени В.В. Куйбышева), ГОУВПО ДВГТУ, Государственное образовательное учреждение высшего профессионального образования Амурский государственный университет (ГОУВПО "АмГУ") filed Critical Государственное образовательное учреждение высшего профессионального образования Дальневосточный государственный технический университет (ДВПИ имени В.В. Куйбышева), ГОУВПО ДВГТУ
Priority to RU2010108744/28A priority Critical patent/RU2426138C1/ru
Application granted granted Critical
Publication of RU2426138C1 publication Critical patent/RU2426138C1/ru

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

Изобретение относится к области измерения электрических величин. Устройство содержит фильтр напряжения обратной последовательности, представляющий собой резисторно-конденсаторную цепь, подключенную к первому, второму и третьему входным зажимам, а также к первому и второму выходным зажимам этого фильтра, к которым также подключается нагрузка указанного измерительного преобразователя, при этом между первым входным и первым выходным зажимами этого фильтра подключен первый конденсатор, между первым выходным и вторым входным зажимами фильтра - первый резистор, между вторым входным и вторым выходным зажимами фильтра - второй конденсатор и между вторым выходным и третьим входным зажимами фильтра - второй резистор, причем при номинальном значении частоты трехфазной цепи, с которой связан указанный измерительный преобразователь, и при отключенной от выходных зажимов фильтра нагрузке ток участка резисторно-конденсаторной цепи, включенной между первым и вторым входными зажимами фильтра, опережает синусоидальную ЭДС источника, подключенного между этими зажимами, на π/6. Технический результат заключается в повышении избирательности и упрощении устройства. 3 ил.

Description

Измерительный преобразователь тока обратной последовательности относится к области измерения электрических величин. В частности, для измерения асимметрии в трехфазных сетях. Он содержит два дифференцирующих индукционных измерительных преобразователя тока, выходные напряжения которых определяются производными измеряемых ими двух токов трехфазной трехпроводной цепи, и фильтр напряжения обратной последовательности, который выделяет симметричную составляющую обратной последовательности из напряжений катушек дифференцирующих индукционных измерительных преобразователей тока. Такой преобразователь может быть использован для тех разновидностей релейной защиты элементов электроэнергетических систем, которые реагируют на симметричную составляющую тока обратной последовательности. В частности, с помощью этого преобразователя можно защищать электрический двигатель любой мощности от работы на двух фазах. Применяемый с этой целью измерительный преобразователь напряжения обратной последовательности не пригоден для защиты двигателей большой мощности из-за недостаточной чувствительности. Дело в том, что с ростом мощности двигателя снижается потеря напряжения в обмотках статора (ЭДС двигателя становится все ближе к напряжению сети), и напряжение на том зажиме статора двигателя, который отсоединен от сети, приближается к напряжениям на двух других зажимах. При этом снижается симметричная составляющая напряжения обратной последовательности. Относительное значение симметричной составляющей тока обратной последовательности при обрыве фазы не зависит от мощности двигателя. Но применение известных измерительных преобразователей тока обратной последовательности сдерживается большой массой, размерами и стоимостью трансформаторов тока, входящих в эти преобразователи. Их используют только там, где это крайне необходимо, и для защиты не одного, а большой группы двигателей, например в устройствах от обрыва фазы при питании судна с берега. Значительно меньшие массогабаритные показатели дифференцирующих индукционных измерительных преобразователей тока, по сравнению с трансформаторами тока, снимают указанный сдерживающий фактор и открывают возможность широкого использования измерительного преобразователя тока обратной последовательности в различных устройствах релейной защиты.
Известно большое разнообразие измерительных преобразователей тока обратной последовательности, содержащих трансформаторы тока и фильтры тока обратной последовательности. Наиболее полно разновидности измерительных преобразователей тока обратной последовательности представлены в [1]. Эти аналоги обладают двумя общими недостатками. Первый и наиболее важный из них - это высокие значения массы, габаритных размеров и стоимости трансформаторов тока, что приводит к редкому использованию таких измерительных преобразователей тока обратной последовательности в устройствах релейной защиты. Второй недостаток заключается в том, что фильтры тока обратной последовательности в качестве выходного сигнала имеют ток, замыкающийся через выходные зажимы этих фильтров. Такие фильтры должны работать в режиме, близком к короткому замыканию, то есть иметь низкое сопротивление нагрузки. В этом случае в качестве нагрузки обычно применяют токовое реле. Современные решения релейной защиты строятся на основе цифровой техники. При этом аналоговый сигнал измерительного преобразователя подается на обладающий высоким сопротивлением вход аналого-цифрового преобразователя. Следовательно, для сопряжения с аналого-цифровым преобразователем выходные зажимы фильтров тока обратной последовательности должны подключаться к шунту. А напряжение, снимаемое с этого шунта, подается на вход аналого-цифрового преобразователя. Очевидно, что при использовании шунта коэффициент добротности [1], равный отношению полной мощности на входе аналого-цифрового преобразователя к полной мощности той же последовательности на входе фильтров тока обратной последовательности, крайне мал. Этот вывод свидетельствует о нерациональном использовании конденсаторов и резисторов (или других элементов), из которых составлен фильтр.
От этих недостатков свободен измерительный преобразователь напряжения обратной последовательности, который наиболее близок по технической сущности к заявляемому устройству и выбран в качестве прототипа. Он состоит из фильтра напряжения обратной последовательности, представляющего собой резисторно-конденсаторную цепь, подключенную к первому, второму и третьему входным зажимам, а также к первому и второму выходным зажимам этого фильтра, к которым также подключается нагрузка указанного измерительного преобразователя. Между первым входным и первым выходным зажимами этого фильтра подключен первый конденсатор, между первым выходным и вторым входным зажимами фильтра - первый резистор, между вторым входным и вторым выходным зажимами фильтра - второй конденсатор и между вторым выходным и третьим входным зажимами фильтра - второй резистор. При номинальном значении частоты сети, с которой связан указанный преобразователь, и при отключенной от выходных зажимов фильтра нагрузке ток участка резисторно-конденсаторной цепи, включенной между первым и вторым входными зажимами фильтра, опережает синусоидальную ЭДС источника, подключенного между этими зажимами, на π/6, а сопротивление второго конденсатора в
Figure 00000001
раз больше сопротивления второго резистора. К входным зажимам этого фильтра подводятся не токи, пропорциональные токам трехфазной цепи, как у аналогов, а напряжения, пропорциональные напряжениям этой цепи. Если к входным зажимам фильтра подвести напряжения, пропорциональные токам этой цепи, то прототип превратится в измерительный преобразователь тока обратной последовательности.
У прототипа входные зажимы фильтра подключаются к трехфазному источнику напряжения так, чтобы, при отсутствии напряжений обратной и нулевой последовательностей, фазное напряжение второго входного зажима было отстающим на 2π/3, а третьего входного зажима - опережающим на 2π/3 по отношению к фазному напряжению первого входного зажима фильтра. Внутренние сопротивления трехфазного источника напряжения пренебрежимо малы по сравнению с сопротивлениями элементов резисторно-конденсаторной цепи фильтра. В этом случае при номинальном значении частоты источника напряжения, к которому подключен фильтр напряжения обратной последовательности, сопротивление первого конденсатора в
Figure 00000002
раз меньше сопротивления первого резистора. Ток участка резисторно-конденсаторной цепи, включенной между вторым и третьим входными зажимами фильтра, опережает синусоидальное напряжение между этими зажимами на π/3. Благодаря указанным соотношениям между параметрами элементов резисторно-конденсаторной цепи фильтра, при отсутствии у источника напряжений обратной последовательности, номинальной частоте источника и пренебрежимо малой проводимости нагрузки фильтра напряжение между его выходными зажимами равно нулю. При соблюдении перечисленных условий, но при наличии на входных зажимах фильтра напряжений обратной последовательности, напряжение между выходными зажимами фильтра в 1,5 раза превосходит линейное напряжение обратной последовательности. Сопротивления фильтра определяются расчетом исходя из условия отдачи максимальной мощности [2]. Такой фильтр, который называют четырехэлементным, признается одним из лучших и наиболее простых фильтров напряжения обратной последовательности [1, стр.96].
У трансформатора напряжения, который может входить в состав прототипа, во много раз выше отношение номинальной мощности к массе, чем у трансформаторов тока. Этим значительно снижается проявление первого недостатка аналогов - значительная масса и стоимость измерительных трансформаторов. Если же для подключения входных зажимов фильтра напряжения обратной последовательности используется трансформатор напряжения, питающий другую нагрузку, во много раз большую по мощности, по сравнению с мощностью, потребляемой этим фильтром, то первый недостаток аналогов устраняется полностью. Фильтр напряжения обратной последовательности работает в режиме, близком к холостому ходу. К выходу фильтра подключается нагрузка с высоким сопротивлением и малым током. В качестве такой нагрузки вполне допустимо использование входной цепи аналого-цифрового преобразователя. Этим обеспечивается многократное снижение суммарной массы элементов фильтра и повышение коэффициента его добротности. Тем самым устраняется и второй недостаток аналога.
Недостаток прототипа заключается в том, что он является измерительным преобразователем не тока, а напряжения обратной последовательности. Значение напряжения обратной последовательности поврежденной линии не остается постоянным вдоль этой линии. Как отмечено выше, напряжения обратной последовательности могут быть слишком малы для срабатывания релейной защиты на тех участках линии, к которым подключены, например, крупные асинхронные двигатели. Следовательно, по своим функциональным возможностям прототип как измерительный преобразователь напряжения обратной последовательности уступает измерительному преобразователю тока обратной последовательности. Этот недостаток можно устранить простым решением - подведением к входным зажимам фильтра напряжений вторичных обмоток трансформаторов тока, нагруженных на балластные резисторы. Но полученное таким образом устройство будет обладать первым недостатком аналогов - это высокие значения массы, габаритных размеров и стоимости трансформаторов тока. За счет применения балластных резисторов этот недостаток даже усилится. Поэтому указанное простое решение не является удовлетворительным.
Задачей, на решение которой направлено предлагаемое изобретение, является снижение массы и габаритных размеров измерительного преобразователя тока обратной последовательности трехфазной трехпроводной цепи, в состав которого входит фильтр напряжения обратной последовательности.
Технический результат, который достигается при решении такой задачи, выражается в следующем: с помощью устройства, содержащего малогабаритный фильтр напряжения обратной последовательности и малогабаритные измерительные преобразователи, преобразующие токи трехфазной трехпроводной цепи в напряжения, измеряется составляющая тока обратной последовательности; к выходу устройства подключается нагрузка с высоким входным сопротивлением, например вход аналого-цифрового преобразователя.
Для решения поставленной задачи в измерительный преобразователь тока обратной последовательности трехфазной трехпроводной цепи, содержащий фильтр напряжения обратной последовательности, представляющий собой резисторно-конденсаторную цепь, подключенную к первому, второму и третьему входным зажимам, а также к первому и второму выходным зажимам этого фильтра, к которым также подключается нагрузка указанного измерительного преобразователя, при этом между первым входным и первым выходным зажимами этого фильтра подключен первый конденсатор, между первым выходным и вторым входным зажимами фильтра - первый резистор, между вторым входным и вторым выходным зажимами фильтра - второй конденсатор и между вторым выходным и третьим входным зажимами фильтра - второй резистор, причем при номинальном значении частоты трехфазной цепи, с которой связан указанный измерительный преобразователь, и при отключенной от выходных зажимов фильтра нагрузке ток участка резисторно-конденсаторной цепи, включенной между первым и вторым входными зажимами фильтра, опережает синусоидальную ЭДС источника, подключенного между этими зажимами, на π/6, а сопротивление второго конденсатора в
Figure 00000003
раз больше сопротивления второго резистора, внесены следующие отличия: введены третий резистор, а также первый и второй дифференцирующие индукционные измерительные преобразователи тока, имеющие одинаковые параметры своих катушек, в том числе одинаковые взаимные индуктивности соответственно с первым и вторым токопроводами трехфазной цепи, причем для прямой симметричной составляющей напряжений этой цепи фазное напряжение первого токопровода на
Figure 00000004
опережает фазное напряжение второго токопровода, третий резистор включен последовательно со вторым конденсатором между вторым входным и вторым выходным зажимами упомянутого фильтра напряжения, к первому и третьему входным зажимам которого подключены соответственно начало катушки первого и конец катушки второго дифференцирующих индукционных измерительных преобразователей тока, а конец катушки первого и начало катушки второго дифференцирующих индукционных измерительных преобразователей тока подключены ко второму входному зажиму этого фильтра, кроме того, при номинальном значении частоты указанной трехфазной цепи абсолютные значения сопротивлений резисторно-конденсаторной цепи фильтра связаны следующими дополнительными соотношениями: сопротивление третьего резистора в
Figure 00000005
раз больше индуктивного сопротивления катушки второго дифференцирующего индукционного измерительного преобразователя тока, а емкостное сопротивление первого конденсатора равно сумме индуктивного сопротивления катушки первого дифференцирующего индукционного измерительного преобразователя тока и деленного на
Figure 00000006
сопротивления первого резистора.
Сопоставительный анализ признаков заявляемого решения и признаков аналога и прототипа свидетельствует о его соответствии критерию «новизна».
Отличительные признаки предлагаемого решения выполняют следующие функциональные задачи.
Признак «… в предлагаемый измерительный преобразователь введены… первый и второй дифференцирующие индукционные измерительные преобразователи тока, имеющие одинаковые параметры своих катушек, в том числе одинаковые взаимные индуктивности соответственно с первым и вторым токопроводами трехфазной цепи, причем для прямой симметричной составляющей напряжений этой цепи фазное напряжение первого токопровода на
Figure 00000007
опережает фазное напряжение второго токопровода, … к первому и третьему входным зажимам фильтра подключены соответственно начало катушки первого и конец катушки второго дифференцирующих индукционных измерительных преобразователей тока, а конец катушки первого и начало катушки второго дифференцирующих индукционных измерительных преобразователей тока подключены ко второму входному зажиму этого фильтра…» позволяет заменить громоздкие трансформаторы тока миниатюрными легкими катушками дифференцирующих индукционных измерительных преобразователей тока и обеспечить унификацию этих элементов.
Дифференцирующий индукционный измерительный преобразователь тока является, как и трансформатор тока, измерительным преобразователем трансформаторного типа. К нему можно применять и другое название - трансреактор. В настоящее время такой измерительный преобразователь, без магнитного сердечника, называют также катушкой Роговского. Этот преобразователь, в отличие от трансформатора тока, работает в режиме, близком к идеальному холостому ходу. Его выходное напряжение практически равно ЭДС, которая пропорциональна производной измеряемого тока, обычно проходящего по токопроводу внутри окна тороидальной катушки, индуктивно связанной с этим токопроводом (возможны и другие конструктивные решения этого измерительного преобразователя.) Указанная ЭДС наводится той частью магнитного потока, созданного измеряемым током, которая сцеплена с витками катушки преобразователя. Подобным же образом наводится ЭДС и во вторичной обмотке трансформатора тока. Но у последнего эта ЭДС, которая появляется на зажимах вторичной обмотки при обрыве цепи нагрузки, во много раз больше выходного напряжения, потому что трансформатор тока работает в режиме, близком к короткому замыканию. Так как и ток катушки дифференцирующего индукционного измерительного преобразователя тока намного меньше (в сотни и более раз) тока вторичной обмотки трансформатора тока, то масса дифференцирующего индукционного преобразователя тока, которая определяется произведением расчетной ЭДС на расчетный ток катушки, в сравнении с массой трансформатора тока, является ничтожной.
Признак «… в предлагаемый измерительный преобразователь введен третий резистор,» который «включен последовательно со вторым конденсатором между вторым входным и вторым выходным зажимами упомянутого фильтра напряжения, … кроме того, при номинальном значении частоты указанной трехфазной цепи абсолютные значения сопротивлений резисторно-конденсаторной цепи фильтра связаны следующими дополнительными соотношениями: сопротивление третьего резистора в
Figure 00000008
раз больше индуктивного сопротивления катушки второго дифференцирующего индукционного измерительного преобразователя тока, а емкостное сопротивление первого конденсатора равно сумме индуктивного сопротивления катушки первого дифференцирующего индукционного измерительного преобразователя тока и деленного на
Figure 00000009
сопротивления первого резистора», позволяет скомпенсировать влияние индуктивных сопротивлений катушек дифференцирующих индукционных измерительных преобразователей тока и получить при измерении токов прямой последовательности и отключенной нагрузке преобразователя выходное напряжение предлагаемого измерительного преобразователя, которое практически равно нулю. При измерении же токов обратной последовательности и отключенной нагрузке преобразователя это выходное напряжение в 1,5 раза превосходит ЭДС катушек дифференцирующих индукционных измерительных преобразователей тока.
На фиг.1 представлена функциональная схема измерительного преобразователя тока обратной последовательности, на фиг.2 и 3 показаны векторные диаграммы измерительного преобразователя тока обратной последовательности для тока прямой последовательности (фиг.2) и для тока обратной последовательности (фиг.3).
Измерительный преобразователь тока обратной последовательности состоит из фильтра 1 напряжения обратной последовательности, а также первого 2 и второго 3 дифференцирующих индукционных измерительных преобразователей тока (ДИИПТ). Каждый из этих преобразователей имеет катушку: 4 у первого 2 и 5 у второго 3 ДИИПТ. Катушки 4 и 5 индуктивно связаны соответственно с токопроводами 6 и 7 трехфазной трехпроводной цепи. Для прямой симметричной составляющей напряжений этой цепи фазное напряжение первого токопровода 6 (фазы А) на 2π/3 опережает фазное напряжение второго токопровода 7 (фазы B), а последнее на 2π/3 опережает фазное напряжение третьего токопровода 8 (фазы C). Фильтр напряжения обратной последовательности представляет собой резисторно-конденсаторную цепь, подключенную к первому 9, второму 10 и третьему 11 входным зажимам, а также к первому 12 и второму 13 выходным зажимам фильтра 1, к которым также подключается нагрузка 14 указанного измерительного преобразователя, например входная цепь аналого-цифрового преобразователя. Между первым входным 9 и первым выходным 12 зажимами фильтра 1 подключен первый конденсатор 15. Между первым выходным 12 и вторым входным 10 зажимами фильтра 1 подключен первый резистор 16. Между вторым входным 10 и вторым выходным 13 зажимами фильтра 1 подключено последовательное соединение второго конденсатора 17 и третьего резистора 18. Между вторым выходным 13 и третьим входным 11 зажимами фильтра 1 подключен второй резистор 19. Так как конденсаторы 15 и 17 имеют стандартные емкости, то резисторы 16, 18 и 19 выполняют с плавным изменением их сопротивлений, что позволяет устанавливать расчетные соотношения между сопротивлениями резисторно-конденсаторной цепи фильтра 1. Начало катушки 4 первого 2 ДИИПТ и конец катушки 5 второго 3 ДИИПТ подключены соответственно к первому 9 и третьему 11 входным зажимам фильтра 1. Конец катушки 4 первого 2 ДИИПТ и начало катушки 5 второго 3 ДИИПТ подключены ко второму входному зажиму 10 фильтра 1.
Измерительный преобразователь тока обратной последовательности в установившихся режимах, когда фазные токи и ЭДС, которые наводятся в катушках 2 и 3 ДИИПТ от действия этих токов, имеют синусоидальную форму, работает следующим образом.
ДИИПТ могут иметь различную конструкцию. Их катушки 4 и 5 могут располагаться на магнитном сердечнике с зазорами или на каркасе, например, тороидальном без магнитного сердечника. Через окно сердечника или каркаса проходит токопровод с измеряемым током (возможно и другое конструктивное решение: катушка, например, прямоугольная прилегает своей одной стороной к токопроводу). Мгновенное значение ЭДС, которая наводится в катушке 4 (или 5), равно произведению одинаковой для обеих катушек взаимной индуктивности М катушки с токопроводом 6 (или 7) на производную проходящего через него тока. В общем случае фазные токи
Figure 00000010
и
Figure 00000011
трехфазной трехпроводной цепи определяются суммой двух векторов: прямой
Figure 00000012
и обратной
Figure 00000013
последовательностей. Векторы фазных токов
Figure 00000010
и
Figure 00000011
и соответствующих им ЭДС
Figure 00000014
и
Figure 00000015
, которые наводятся в катушках 4 и 5, определяются формулами:
Figure 00000016
где j - мнимая единица, ω - круговая частота.
Удобнее рассматривать не векторы
Figure 00000015
и
Figure 00000017
, а противоположные им по направлению векторы, но приложенные от зажима 11 к зажиму 10 фильтра 1:
Figure 00000018
Как показывают формулы (1) и (2), векторы симметричных составляющих тока
Figure 00000019
и ЭДС
Figure 00000020
сдвинуты относительно соответствующих симметричных составляющих
Figure 00000021
и
Figure 00000022
на углы
Figure 00000023
, которые меньше исходных углов
Figure 00000024
в два раза. При этом векторные диаграммы, показанные на фиг.2 и 3, становятся более компактными.
Описание работы устройства становится более простым, если принять следующие, вполне допустимые, упрощения:
частота токов в трехфазной цепи с токопроводами 6, 7 и 8 равна номинальной, для которой справедливы принятые соотношения между сопротивлениями резисторно-конденсаторной цепи фильтра 1;
ток, потребляемый нагрузкой 14 фильтра 1, пренебрежимо мал по сравнению с токами, проходящими по элементам 15, 16, 17, 18 и 19 резисторно-конденсаторной цепи фильтра, и не учитывается;
векторы токов прямой
Figure 00000025
и обратной
Figure 00000026
последовательностей имеют одинаковые фазовые углы, которые принимаются равными нулю, поэтому на фиг.2 и 3 соответствующие этим составляющим ЭДС
Figure 00000027
и
Figure 00000028
направлены одинаково - вертикально;
активные сопротивления катушек ДИИПТ, которые много меньше их индуктивных сопротивлений, не учитываются;
активные проводимости конденсаторов 15 и 17 пренебрежимо малы и не учитываются.
С другой стороны, в отличие от общепринятого анализа работы фильтра 1 напряжения обратной последовательности, ниже будет учитываться влияние внутренних индуктивных сопротивлений источников напряжений, подключенных к входным зажимам этого фильтра. Этими источниками являются катушки 4 и 5 ДИИПТ. Активные составляющие сопротивлений этих катушек много меньше их индуктивных сопротивлений Xk=ωLk, где Lk - индуктивность указанных катушек. Можно, конечно, устанавливать такие ДИИПТ, что их индуктивные сопротивления при заданных значениях М станут пренебрежимо малыми, по сравнению с сопротивлениями остальных элементов резисторно-конденсаторной цепи фильтра 1, но это приведет к неоправданному росту массы катушек ДИИПТ. В предлагаемый измерительный преобразователь тока обратной последовательности можно устанавливать малогабаритные катушки ДИИПТ, индуктивные сопротивления которых соизмеримы с сопротивлениями остальных элементов резисторно-конденсаторной цепи фильтра 1. Если выбрать параметры фильтра 1 без учета индуктивных сопротивлений Xk, то, при наличии в трехфазной цепи токов только прямой последовательности, выходное напряжение предлагаемого измерительного преобразователя не будет равно нулю. Это отрицательное влияние индуктивных сопротивлений Xk компенсируется введением третьего резистора 18 и изменением сопротивления первого конденсатора, по сравнению со значением, рассчитанным по известным для фильтра напряжения обратной последовательности рекомендациям.
Ток
Figure 00000029
через первый резистор 16 и напряжение
Figure 00000030
на нем (напряжение между зажимами 15 и 10), которые вызваны действием ЭДС
Figure 00000031
катушки 4 первого ДИИПТ 2, определяются формулами:
Figure 00000032
где X1 - емкостное сопротивление первого конденсатора, R1 - сопротивление первого резистора. С учетом предложенного соотношения:
Figure 00000033
- из (3) находятся следующие выражения для относительного значения модуля напряжения
Figure 00000034
и его фазы по отношению к ЭДС
Figure 00000035
:
Figure 00000036
Ток
Figure 00000037
и напряжение
Figure 00000038
опережают ЭДС
Figure 00000039
на угол π/6. Ток
Figure 00000040
для предлагаемого способа компенсации влияния Xk не зависит от значения этого индуктивного сопротивления. Модуль и фазовый угол этого тока такой же, как и у фильтра напряжения обратной последовательности, подключенного не к катушкам ДИИПТ, а к источнику напряжения с нулевым значением внутреннего сопротивления, при том же значении сопротивления R1 первого резистора 16 и при емкостном сопротивлении
Figure 00000041
первого конденсатора 17.
Ток
Figure 00000042
через второй резистор 19 и напряжение
Figure 00000043
между зажимами 13 и 10, которые вызваны действием ЭДС
Figure 00000044
катушки 5 второго ДИИПТ 3, определяются формулами:
Figure 00000045
где X2 - емкостное сопротивление второго конденсатора, R2 и R3 - сопротивления второго и третьего резисторов. С учетом предложенных соотношений:
Figure 00000046
и
Figure 00000047
- из (5) находятся следующие выражения для относительного значения модуля напряжения
Figure 00000048
по отношению к ЭДС
Figure 00000049
, а также сдвига фазы тока
Figure 00000050
по отношению к напряжению
Figure 00000051
:
Figure 00000052
Напряжение
Figure 00000053
отстает от ЭДС
Figure 00000054
на угол π/6, а относительное значение ub модуля этого напряжения, по отношению к модулю ЭДС
Figure 00000055
, такое же, как и у ua, то есть равно
Figure 00000056
. Выражения (4) и (6) совпадают с теми, которые приводятся в литературе применительно к фильтрам напряжения обратной последовательности [1, 2]. Тем самым подтверждается справедливость предлагаемых рекомендаций по компенсации индуктивного сопротивления катушек ДИИПТ.
Ток
Figure 00000057
при изменении Xk и, следовательно, R3 не остается постоянным, как ток
Figure 00000058
. Относительное значение
Figure 00000059
тока
Figure 00000060
, выраженное в виде отношения этого тока к току
Figure 00000061
, соответствующему подключению идеального источника напряжения (Xk=0) с тем же значением ЭДС
Figure 00000062
к зажимам 11 и 10 фильтра 1, зависит от параметра
Figure 00000063
. От этого параметра зависит и фазовый сдвиг φ тока
Figure 00000064
по отношению к напряжению
Figure 00000065
. Зависимости модуля ib тока
Figure 00000066
, выраженного в относительных единицах, и угла φ от параметра m имеют следующий вид:
Figure 00000067
При увеличении индуктивного сопротивления Xk катушки 5 ДИИПТ 3 параметр m растет, а указанный модуль ib тока
Figure 00000068
и уголφ, на который этот ток опережает напряжение
Figure 00000069
, снижаются. Так, при m=0 эти величины имеют значения: ib=1, φ=π/2. А при m=1 эти величины снижаются до значений:
Figure 00000070
, φ=π/4.
Если в токах
Figure 00000071
и
Figure 00000072
содержатся только составляющие прямой последовательности, то вектор ЭДС
Figure 00000073
, в соответствии с выражениями (1) и (2), на угол π/3 опережает вектор ЭДС
Figure 00000074
, при этом имеют место следующие выражения:
Figure 00000075
Векторная диаграмма измерительного преобразователя тока обратной последовательности при действии в трехфазной цепи, с которой связан этот преобразователь токов только прямой последовательности, приведена на фиг.2. Диаграмма построена для частного случая, когда параметр m равен
Figure 00000076
. Тогда
Figure 00000077
, φ=π/3. Из выражений (3), (5) и (7) следует, что напряжение
Figure 00000078
, которое опережает
Figure 00000079
на угол π/6, равно напряжению
Figure 00000080
, которое отстает от
Figure 00000081
на такой же угол π/6. Это наглядно видно на фиг.2, на которой показаны также токи
Figure 00000082
и
Figure 00000083
, проходящие по элементам резисторно-конденсаторной цепи фильтра 1, и напряжения на всех этих элементах. Так как напряжения
Figure 00000084
и
Figure 00000085
равны друг другу, то выходное напряжение измерительного преобразователя тока обратной последовательности, которое находится по выражению
Figure 00000086
равно нулю.
При наличии в токах
Figure 00000087
и
Figure 00000088
только составляющих обратной последовательности, вектор ЭДС
Figure 00000089
, в соответствии с выражениями (1) и (2), на угол π/3 отстает от вектора ЭДС
Figure 00000090
, при этом имеют место следующие выражения:
Figure 00000091
Векторная диаграмма измерительного преобразователя тока обратной последовательности при действии в трехфазной цепи, с которой связан этот преобразователь токов только обратной последовательности, приведена на фиг.3. Диаграмма построена для того же, что на фиг.2, значения параметра
Figure 00000092
. Из выражений (3), (5) и (7) следует, что напряжение
Figure 00000093
опережает
Figure 00000094
на угол π/6, как и для прямой последовательности, а напряжение
Figure 00000095
, которое отстает от
Figure 00000096
на угол π/6, имеет такой же, как у напряжения
Figure 00000097
, модуль, но отстает от последнего на угол 2π/3. Это наглядно видно на фиг.3, на которой показаны также токи
Figure 00000098
и
Figure 00000099
, проходящие по элементам резисторно-конденсаторной цепи фильтра 1, и напряжения на всех этих элементах. Так как модули напряжений
Figure 00000100
и
Figure 00000101
равны друг другу, то модуль выходного напряжения измерительного преобразователя тока обратной последовательности, которое находится по выражению
Figure 00000102
, в
Figure 00000103
больше модулей напряжений
Figure 00000104
и
Figure 00000105
. Последние составляют
Figure 00000106
от ЭДС
Figure 00000107
или
Figure 00000108
катушек ДИИПТ 2 и 3. Следовательно, модуль выходного напряжения
Figure 00000109
равен
Figure 00000110
.
Измерительный преобразователь тока обратной последовательности является линейной системой, в которой как прямая, так и обратная последовательности токов трехфазной системы действуют независимо одна от другой. Поэтому в общем случае, когда в токах трехфазной системы имеются обе последовательности, выходное напряжение измерительного преобразователя пропорционально току обратной последовательности.
Результаты более детального анализа работы измерительного преобразователя тока обратной последовательности, выполненного с учетом активного сопротивления катушек ДИИПТ и сопротивления (активного) нагрузки 14, доказывают допустимость принятых упрощений, перечисленных выше. Так, если активное сопротивление катушки ДИИПТ в 20 раз меньше ее индуктивного сопротивления, а сопротивление нагрузки в 10 раз больше сопротивления R2, то при m=0,5 выходное напряжение преобразователя для токов прямой последовательности практически равно нулю. Его абсолютное значение составляет всего 0,11% от ЭДС
Figure 00000111
.
Таким образом, предлагаемый измерительный преобразователь тока обратной последовательности обладает весьма высокой избирательностью, пригоден для непосредственного сопряжения с аналого-цифровым преобразователем и имеет значительно меньшую суммарную массу по сравнению с аналогами и прототипом.
Источники информации
1. Атабеков Г.И. Теоретические основы релейной защиты высоковольтных сетей. - М., Л.: Госэнергоиздат, 1957. - 344 с. (Аналог - С.79-98, фиг.: 4-1, 4-3, 4-9 и 4-10, таблицы: 4-2 и 4-5).
2. Андреев В.А. Релейная защита и автоматика систем электроснабжения. - М.: Высш. шк., 1991. - 496 с. (Прототип - С.58-59, рис.1.18).

Claims (1)

  1. Измерительный преобразователь тока обратной последовательности трехфазной трехпроводной цепи, содержащий фильтр напряжения обратной последовательности, представляющий собой резисторно-конденсаторную цепь, подключенную к первому, второму и третьему входным зажимам, а также к первому и второму выходным зажимам этого фильтра, к которым также подключается нагрузка указанного измерительного преобразователя, при этом между первым входным и первым выходным зажимами этого фильтра подключен первый конденсатор, между первым выходным и вторым входным зажимами фильтра - первый резистор, между вторым входным и вторым выходным зажимами фильтра - второй конденсатор и между вторым выходным и третьим входным зажимами фильтра - второй резистор, причем при номинальном значении частоты трехфазной цепи, с которой связан указанный измерительный преобразователь, и при отключенной от выходных зажимов фильтра нагрузке ток участка резисторно-конденсаторной цепи, включенной между первым и вторым входными зажимами фильтра, опережает синусоидальную ЭДС источника, подключенного между этими зажимами, на π/6, а сопротивление второго конденсатора в
    Figure 00000112
    раз больше сопротивления второго резистора, отличающийся тем, что в предлагаемый измерительный преобразователь введены третий резистор, а также первый и второй дифференцирующие индукционные измерительные преобразователи тока, имеющие одинаковые параметры своих катушек, в том числе одинаковые взаимные индуктивности соответственно с первым и вторым токопроводами трехфазной цепи, причем для прямой симметричной составляющей напряжений этой цепи фазное напряжение первого токопровода на
    Figure 00000113
    опережает фазное напряжение второго токопровода, третий резистор включен последовательно со вторым конденсатором между вторым входным и вторым выходным зажимами упомянутого фильтра напряжения, к первому и третьему входным зажимам которого подключены соответственно начало катушки первого и конец катушки второго дифференцирующих индукционных измерительных преобразователей тока, а конец катушки первого и начало катушки второго дифференцирующих индукционных измерительных преобразователей тока подключены ко второму входному зажиму этого фильтра, кроме того, при номинальном значении частоты указанной трехфазной цепи абсолютные значения сопротивлений резисторно-конденсаторной цепи фильтра связаны следующими дополнительными соотношениями: сопротивление третьего резистора в
    Figure 00000112
    раз больше индуктивного сопротивления катушки второго дифференцирующего индукционного измерительного преобразователя тока, а емкостное сопротивление первого конденсатора равно сумме индуктивного сопротивления катушки первого дифференцирующего индукционного измерительного преобразователя тока и деленного на
    Figure 00000112
    сопротивления первого резистора.
RU2010108744/28A 2010-03-09 2010-03-09 Измерительный преобразователь тока обратной последовательности RU2426138C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010108744/28A RU2426138C1 (ru) 2010-03-09 2010-03-09 Измерительный преобразователь тока обратной последовательности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010108744/28A RU2426138C1 (ru) 2010-03-09 2010-03-09 Измерительный преобразователь тока обратной последовательности

Publications (1)

Publication Number Publication Date
RU2426138C1 true RU2426138C1 (ru) 2011-08-10

Family

ID=44754721

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010108744/28A RU2426138C1 (ru) 2010-03-09 2010-03-09 Измерительный преобразователь тока обратной последовательности

Country Status (1)

Country Link
RU (1) RU2426138C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510514C1 (ru) * 2012-07-13 2014-03-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Измерительный преобразователь тока обратной последовательности
RU2536784C1 (ru) * 2013-08-13 2014-12-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Измерительный преобразователь тока обратной последовательности для трехфазной трехпроводной цепи

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Атабеков Г.И. Теоретические основы релейной защиты высоковольтных сетей. - М., Л.: Госэнергоиздат, 1957. с.344. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2510514C1 (ru) * 2012-07-13 2014-03-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Измерительный преобразователь тока обратной последовательности
RU2536784C1 (ru) * 2013-08-13 2014-12-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Измерительный преобразователь тока обратной последовательности для трехфазной трехпроводной цепи

Similar Documents

Publication Publication Date Title
US5315527A (en) Method and apparatus providing half-cycle digitization of AC signals by an analog-to-digital converter
RU2507521C2 (ru) Устройство измерения тока и блок обработки, содержащий одно такое устройство
US5568047A (en) Current sensor and method using differentially generated feedback
US6181586B1 (en) Current-to-voltage converter and associate closed-loop control circuit
CN103827676A (zh) 用于测量电流的系统以及制造该系统的方法
TWI597913B (zh) 電源轉換系統及其電壓採樣裝置
CN1131434C (zh) 用于电表的电源电路
CN101297253A (zh) 功率因数校正升压电路
KR20020027491A (ko) 교류전류 검출장치
RU2428705C1 (ru) Измерительный преобразователь тока обратной последовательности
WO2005005995A3 (en) System and method for acquiring voltages and measuring voltage into an electrical service using a non-active current transformer
RU2426138C1 (ru) Измерительный преобразователь тока обратной последовательности
WO2021198590A3 (fr) Capteur de courant de type rogowski rapide et immune aux derives en tension
CN110261660A (zh) 电感电流检测电路
US20040239335A1 (en) Current measurement in electrical machines
CN210982711U (zh) 三相电流检测电路及电能计量芯片
RU2593380C1 (ru) Устройство отстройки от бросков тока намагничивания при включении под напряжение для дифференциальной защиты трансформатора
RU2536784C1 (ru) Измерительный преобразователь тока обратной последовательности для трехфазной трехпроводной цепи
RU123539U1 (ru) Измерительный преобразователь тока обратной последовательности
CN111220837A (zh) 宽频带pwm变频器输出电压检测器
CN212845847U (zh) 一种基于零磁通原理的电流传感器信号调理系统
RU138019U1 (ru) Измерительный преобразователь тока обратной последовательности для трехфазной трехпроводной цепи
CN211603306U (zh) 隔离变送器
JPS6212646B2 (ru)
RU106754U1 (ru) Фильтр тока прямой последовательности на основе однофазного трансформатора с вращающимся магнитным полем

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20120706

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190310