RU2424607C2 - Многолучевая приемная антенна - Google Patents

Многолучевая приемная антенна Download PDF

Info

Publication number
RU2424607C2
RU2424607C2 RU2009130503/07A RU2009130503A RU2424607C2 RU 2424607 C2 RU2424607 C2 RU 2424607C2 RU 2009130503/07 A RU2009130503/07 A RU 2009130503/07A RU 2009130503 A RU2009130503 A RU 2009130503A RU 2424607 C2 RU2424607 C2 RU 2424607C2
Authority
RU
Russia
Prior art keywords
phase
lens
quasi
optical lens
receiving
Prior art date
Application number
RU2009130503/07A
Other languages
English (en)
Other versions
RU2009130503A (ru
Inventor
Константин Николаевич Климов (RU)
Константин Николаевич Климов
Борис Григорьевич Боделан (RU)
Борис Григорьевич Боделан
Дмитрий Александрович Хрупало (RU)
Дмитрий Александрович Хрупало
Павел Вячеславович Логачёв (RU)
Павел Вячеславович Логачёв
Original Assignee
Открытое акционерное общество "Научно-производственное объединение "Лианозовский электромеханический завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное объединение "Лианозовский электромеханический завод" filed Critical Открытое акционерное общество "Научно-производственное объединение "Лианозовский электромеханический завод"
Priority to RU2009130503/07A priority Critical patent/RU2424607C2/ru
Publication of RU2009130503A publication Critical patent/RU2009130503A/ru
Application granted granted Critical
Publication of RU2424607C2 publication Critical patent/RU2424607C2/ru

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к комбинированным конструкциям СВЧ-антенн, конкретно - к многолучевым приемным антеннам с использованием квазиоптических линз и активных антенных элементов. Антенна содержит последовательно соединенные активную линейную антенную решетку и квазиоптическую линзу, снабженную приемными и передающими СВЧ-волноводами, и формирователь многолепестковой суммарно-разностной приемной диаграммы. Формирователь содержит блок синфазно-противофазных мостов, соединенных по синфазным и противофазным входам с соответствующими выходами смежных пар передающих СВЧ-волноводов, входы которых равномерно распределены на выходной выпуклой поверхности квазиоптической линзы. Приемные и передающие СВЧ-волноводы квазиоптической линзы выполнены равной длинны соответственно для соединения с активными элементами линейной антенной решетки и с синфазно-противофазными мостами формирователя суммарно-разностных приемных диаграмм антенны. Техническим результатом является повышение угловой разрешающей способности. 3 з.п.ф-лы, 4 ил.

Description

Изобретение относится к комбинированным конструкциям СВЧ-антенн, конкретно к многолучевым приемным антеннам с использованием квазиоптических линз и активных антенных элементов.
Известны многолучевые приемные антенны (P.Simon, "Analysis and synthesis of Rotman lenses." 22nd AIAA International Communication Satellite Systems Conference (ICSSC). 9-12 May 2004, Monterey, California, USA; US 6982676, МПК: H01Q 19/06, 2004), основанные на использовании квазиоптических линз и активных антенных элементов.
Наиболее близкой из известных по назначению и технической сущности к заявляемому техническому решению является многолучевая приемная антенна (US 6982676, МПК: H01Q 19/06, 2004), содержащая последовательно соединенные активную линейную антенную решетку и квазиоптическую линзу, снабженную приемными и передающими СВЧ-волноводами.
При этом квазиоптическая линза выполнены в виде плоско-выпуклой линзы Ротмана, приемные СВЧ-волноводы квазиоптической линзы, соединяющие ее входы с активными элементами линейной антенной решетки, а также ее передающие СВЧ-волноводы, соединяющие выходы линзы с соответствующими приемными каналами РЛС, выполнены разной длинны и установлены соответственно с противоположных выпуклых сторон и в одной плоскости с линзой.
Недостатком известной многолучевой приемной антенны РЛС является недостаточная разрешающая способность воздушных объектов по угловым координатам, связанная с малой крутизной центральной части каждого углового лепестка диаграммы направленности многолучевой антенны.
В основу настоящего изобретения поставлена задача повышения угловой разрешающей способности многолучевой антенны для повышения точности измерения угловых координат воздушных объектов.
Техническим результатом, обеспечивающим решение указанной технической задачи, является синфазно-противофазная обработка сигналов.
Достижение заявленного технического результата и, как следствие, решение поставленной технической задачи обеспечивается тем, что многолучевая приемная антенна, содержащая последовательно соединенные активную линейную антенную решетку и квазиоптическую линзу, снабженную приемными и передающими СВЧ-волноводами, согласно изобретению она дополнительно содержит формирователь многолепестковой суммарно-разностной приемной диаграммы, содержащий блок синфазно-противофазных мостов, соединенных по синфазным и противофазным входам с соответствующими выходами смежных пар передающих СВЧ-волноводов, входы которых равномерно распределены на выходной выпуклой поверхности квазиоптической линзы, причем приемные и передающие СВЧ-волноводы квазиоптической линзы выполнены равной длины соответственно для соединения с активными элементами линейной антенной решетки и с синфазно-противофазными мостами формирователя суммарно-разностных приемных диаграмм антенны.
При этом каждый синфазно-противофазный мост выполнен в виде двойного волноводного Т-моста, на волноводных выхода которого установлены коаксиально-волноводные переходы, а полость моста заполнена фторопластом, квазиоптическая линза выполнена в виде линзы Климова, линзы Ротмана, линзы Люнеберга, линзы Руза или линзы Гента, а СВЧ-волноводы квазиоптической линзы - в виде коаксиальных и/или СВЧ-линий полоскового типа.
Введение в антенну формирователя многолепестковой суммарно-разностной приемной диаграммы направленности, установленного на выходе квазиоптической линзы и содержащего блок синфазно-противофазных мостов, соединенных по синфазным и противофазным входам с соответствующими выходами смежных пар передающих СВЧ-волноводов, входы которых равномерно распределены на выходной выпуклой поверхности квазиоптической линзы, позволяет совместить суммарную и разностную диаграмму направленности соседних угловых лепестков в общем угловом направлении, увеличить суммарную мощность сигнала в синфазном канале приема и одновременно увеличить крутизну дискриминационной характеристики в противофазном канале приема, обеспечивающих повышение угловой разрешающей способности приемной антенны и, как следствие, резкое повышение точности измерения угловых координат воздушных объектов. Выполнение приемных и передающих СВЧ-волноводов квазиоптической линзы равной длины соответственно для соединения с активными элементами линейной антенной решетки и с синфазно-противофазными мостами формирователя суммарно-разностных приемных диаграмм антенны позволяет уменьшить фазовые рассогласования, связанные с задержкой сигналов в СВЧ-волноводах и, тем самым, дополнительно повысить точность измерения угловых координат воздушных объектов.
На фиг.1 представлена функциональная схема многолучевой приемной антенны РЛС, на фиг.2 - конструкция квазиоптической линзы Климова, на фиг.3 конструкция синфазно-противофазного моста, на фиг.4 - синфазно-противофазная диаграмма направленности многолучевой приемной антенны.
Многолучевая приемная антенна (фиг.1) содержит последовательно соединенные активную линейную антенную решетку 1, квазиоптическую линзу 2 и формирователь 3 многолепестковой суммарно-разностной приемной диаграммы направленности. Активная линейная антенная решетка 1 содержит СВЧ-приемники 1.1…1.N с управляемыми фазовращателями. Выходы приемников 1.1…1.N соединены приемными СВЧ-волноводами 4 с СВЧ-входами квазиоптической линзы 2. СВЧ-волноводы 4 выполнены в виде коаксиальных и/или СВЧ-линий полоскового типа равной длинны. Квазиоптическая линза является диаграммообразующей системой оптического типа. Она выполнена в виде линзы Люнеберга, линзы Гента, линзы Руза, линзы Климова или линзы Ротмана (Proposed by W.Rotman in IEEE Trans, Antennas Propagat, Vol. AP-11, No. 6, Nov. 1963, pp. 623-632; Modified by R.C.Hansen in IEEE Trans, Antennas Propagat., Vol. 39, No. 4, Apr. 1991, pp. 464-472). Преимуществом линзы Климова (фиг.2) перед другими квазиоптическими линзами 2 является простота изготовления. Она содержит металлический корпус 5 с выфрезированной полостью 6 для установки усеченной с боковых сторон эллипсоидальной фторопластовой пластины 7, а также содержит металлическую крышку 8 с приемными (входными) 9.1..9.N и передающими (выходными) зондами 10.1…10.N1, где N1<<N. Зонды 9.1..9.N и 10.1…10N1 равномерно распределены на входной и выходной выпуклой поверхности квазиоптической линзы, выполнены сборно-разборными коаксиального типа, а их центральные электроды заглублены вертикально во фторопластовую пластину 7 соответственно вблизи передней и задней границы усеченного эллипса пластины 7. Крутизна передней и задней границы усеченного эллипса пластины 7 выбрана из условия фокусировки электромагнитных волн зондов 9.2..9.(N-1) между соседними парами зондов 10.2…10.(N1-1) со смежных угловых направлений. Для устранения краевых эффектов крайние зонды 9.1, 10.1, N, N1 подключены к согласованным нагрузкам 11, а боковые торцы фторопластовой пластины 7 покрыты пленочным поглотителем 12 электромагнитных волн. Выходные зонды 10.2…10.(N1-1) попарно соединены коаксиальными кабелями 13 равной длины с синфазными 14 и противофазными 15 входами соответствующих синфазно-противофазных мостов 16 формирователя 3 многолепестковой суммарно-разностной приемной диаграммы направленности. При этом каждый синфазно-противофазный мост 16 (фиг.3) выполнен в виде двойного волноводного Т-моста, на суммарном 17 и разностном 18 волноводных выходах которого установлены коаксиально-волноводные переходы, аналогичные по конструкции зондам 9, 10 линзы 7, а полость моста заполнена фторопластом.
Многолучевая приемная антенна работает следующим образом. Энергия с фронтом 19 волны, приходящая от источника СВЧ-излучения с углового направления [3, принимается приемными элементами 1.1..1.N антенны 1 и передается по кабелям 4 равной длины на приемные зонды 9.1..9.N квазиоптической линзы 2. Линза 2 фокусирует принятую энергию СВЧ-излучения во фторопластовой пластине 7 в области расположения двух соседних зондов из группы 10.1..10N1, соответствующих угловому направлению β. Принятое соответствующими соседними зондами из группы 10.1…10N1 СВЧ-излучение U1 и U2 по кабелям 13 равной длины передается соответственно на входы 14 и 15 моста 16 формирователя 3 суммарно-разностных диаграмм направленности (фиг.4) на источник излучения, находящийся на угловом направлении β. При этом с выхода 17 моста 16 снимается суммарный сигнал U+=U1+U2, а с выхода 18 этого моста - разностный сигнал U-=U1-U2. При этом точному угловому положению βист соответствует центр суммарной диаграммы 20 и наибольшая крутизна дискриминационной характеристики разностной диаграммы 21 направленности. Численные значения суммарно-разностных сигналов U+ и U- далее используются в цифровой следящей системе и измерителе координат для точного определения местоположения источника радиоизлучения.
Изобретение разработано на уровне физической и цифровой модели. Результаты моделирования показали, что точность пеленгации (измерения угловых координат) источников излучений с помощью предлагаемой антенны увеличилась не менее чем на порядок.

Claims (4)

1. Многолучевая приемная антенна, содержащая последовательно соединенные активную линейную антенную решетку и квазиоптическую линзу, снабженную приемными и передающими СВЧ-волноводами, отличающаяся тем, что она дополнительно содержит формирователь многолепестковой суммарно-разностной приемной диаграммы направленности, содержащий блок синфазно-противофазных мостов, соединенных по синфазным и противофазным входам с соответствующими выходами смежных пар передающих СВЧ-волноводов, входы которых равномерно распределены на выходной выпуклой поверхности квазиоптической линзы, причем приемные и передающие СВЧ-волноводы квазиоптической линзы выполнены равной длины соответственно для соединения с активными элементами линейной антенной решетки и с синфазно-противофазными мостами формирователя суммарно-разностных приемных диаграмм антенны.
2. Многолучевая приемная антенна по п.1, отличающаяся тем, что синфазно-противофазный мост выполнен в виде двойного волноводного Т-моста, на волноводных выходах которого установлены коаксиально-волноводные переходы, а полость моста заполнена фторопластом.
3. Многолучевая приемная антенна по п.1, отличающаяся тем, что квазиоптическая линза выполнена в виде линзы Ротмана, линзы Люнеберга, линзы Руза, линзы Гента или линзы Климова.
4. Многолучевая приемная антенна по п.1, отличающаяся тем, что СВЧ-волноводы квазиоптической линзы выполнены в виде коаксиальных и/или СВЧ-линий полоскового типа.
RU2009130503/07A 2009-08-11 2009-08-11 Многолучевая приемная антенна RU2424607C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009130503/07A RU2424607C2 (ru) 2009-08-11 2009-08-11 Многолучевая приемная антенна

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009130503/07A RU2424607C2 (ru) 2009-08-11 2009-08-11 Многолучевая приемная антенна

Publications (2)

Publication Number Publication Date
RU2009130503A RU2009130503A (ru) 2011-02-20
RU2424607C2 true RU2424607C2 (ru) 2011-07-20

Family

ID=44752742

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009130503/07A RU2424607C2 (ru) 2009-08-11 2009-08-11 Многолучевая приемная антенна

Country Status (1)

Country Link
RU (1) RU2424607C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2610460C2 (ru) * 2013-02-26 2017-02-13 Интел Корпорейшн Система связи прямой видимости свч-диапазона с несколькими входами и выходами для применения в помещении

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2610460C2 (ru) * 2013-02-26 2017-02-13 Интел Корпорейшн Система связи прямой видимости свч-диапазона с несколькими входами и выходами для применения в помещении

Also Published As

Publication number Publication date
RU2009130503A (ru) 2011-02-20

Similar Documents

Publication Publication Date Title
Demmerle et al. A biconical multibeam antenna for space-division multiple access
Vashist et al. A review on the development of Rotman lens antenna
US11688941B2 (en) Antenna device for beam steering and focusing
Ershadi et al. Rotman lens design and optimization for 5G applications
Wu et al. Single-layer 1-bit prephased single-beam metasurface using true-time delayed unit cells
Mayo et al. A cost-effective modular phased array
RU2424607C2 (ru) Многолучевая приемная антенна
RU90266U1 (ru) Многолучевая приемная антенна &#34;лэмз&#34;
Okorogu et al. Design and simulation of a low cost digital beamforming (DBF) receiver for wireless communication
Liu et al. Optimization of RIS configurations for multiple-RIS-aided mmwave positioning systems based on CRLB analysis
Nahar et al. Wideband antenna array beam steering with free-space optical true-time delay engine
RU73550U1 (ru) Антенна френеля с управляемыми параметрами на основе полупроводникового материала с оптически управляемыми электромагнитными параметрами
Rotman et al. Wideband phased arrays with true time delay beamformers challenges and progress
Okorochkov et al. The spatial separation of signals by the curvature of the wave front
Tulupov et al. Coverage impact of reconfigurable intelligent surfaces in 6G mobile networks
Meng et al. Design of diffractive Cassegrain antenna at W band
Abd Rahman et al. Design of Shaped-Beam Parabolic Reflector Antenna for Peninsular Malaysia Beam Coverage and its Overlapping Feed Issues
CN114122728B (zh) 一种基于微波光子移相器的均匀圆形相控阵测向方法
Matsuno et al. Practical evaluation method for large IRS: RCS pattern synthesis of sub-IRS with mutual coupling
Boriskin et al. Synthesis of arbitrary-shaped lens antennas for beam-switching applications
Kazim et al. Application and Future Direction of RIS
Maci Per-Simon Kildal: friend, scientist, educator, entrepreneur
Manu et al. Radiation pattern analysis and advanced phase shifter development for designing phased smart antenna arrays
Xing et al. Simulation research on adaptive nulling technology based on wavelength selective switching delay network
Yi et al. SHAPING FLATTENED SCATTERING PATTERNS IN BROADBAND USING PASSIVE RECONFIGURABLE INTELLIGENT SURFACES FOR INDOOR NLOS WIRELESS SIGNAL COVERAGE ENHANCEMENT

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20191029