RU2424425C1 - Способ разработки залежи нефти в карбонатных коллекторах - Google Patents
Способ разработки залежи нефти в карбонатных коллекторах Download PDFInfo
- Publication number
- RU2424425C1 RU2424425C1 RU2010104375/03A RU2010104375A RU2424425C1 RU 2424425 C1 RU2424425 C1 RU 2424425C1 RU 2010104375/03 A RU2010104375/03 A RU 2010104375/03A RU 2010104375 A RU2010104375 A RU 2010104375A RU 2424425 C1 RU2424425 C1 RU 2424425C1
- Authority
- RU
- Russia
- Prior art keywords
- horizontal
- oil
- wells
- fracturing
- reservoir
- Prior art date
Links
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Предложение относится к области разработки нефтяных месторождений, в частности залежей, представленных карбонатными трещиноватыми коллекторами. Техническим результатом является повышение нефтеотдачи и эффективности разработки залежей нефти. Способ включает бурение добывающих и нагнетательных скважин, закачку рабочего агента через нагнетательные и отбор продукции через добывающие скважины, проведение исследований по определению преобладающего направления трещиноватости залежи, зон с минимальной и средней плотностью трещиноватости. В зонах с минимальной и средней плотностью трещиноватости с нефтенасыщенными толщинами пласта не менее 10 м дополнительно бурят горизонтальные и/или разветвленные горизонтальные скважины. Горизонтальные стволы размещают в пласте под углом 50-70° к преобладающему направлению трещиноватости залежи. В качестве нагнетательных скважин дополнительно используют скважины, расположенные в соответствующих зонах плотности трещиноватости на минимальном расстоянии от горизонтальных и/или разветвленных горизонтальных стволов скважин. 1 ил.
Description
Предлагаемый способ относится к области разработки нефтяных месторождений, в частности залежей, представленных карбонатными трещиноватыми коллекторами.
Известен способ разработки неоднородного нефтяного месторождения (патент RU №2347893, МПК Е21В 43/20, опубл. 27.02.2009. Бюл. №6), включающий бурение нагнетательных и добывающих скважин, заводнение пласта и извлечение нефти на поверхность, уточнение геологического строения по результатам бурения и моделирования и бурение дополнительных скважин с горизонтальным стволом или горизонтальных стволов из старых скважин. Определяют расположение границ зон различной проницаемости пластов, а горизонтальные стволы бурят вдоль зон пластов с высокой проницаемостью. Затем из горизонтальных стволов бурят дополнительные горизонтальные стволы, направленные в зоны с низкой проницаемостью. После этого скважины с горизонтальными стволами переводят в добывающие, а скважины, расположенные в зонах с низкой проницаемостью, - в нагнетательные.
Недостатком данного способа является то, что для эффективной разработки по предложенному способу необходимо знать точную границу зон с различной проницаемостью. Проведение горизонтальных стволов в зоне с повышенной проницаемостью может привести к быстрому обводнению продукции скважины и снижению эффективности разработки месторождения.
Наиболее близким по технической сущности к предлагаемому является способ разработки неоднородной нефтяной залежи (патент RU №2206725, 7 Е21В 43/20, опубл. 20.06.2003. Бюл. №17), включающий определение направления трещиноватости коллектора по возбуждению сейсмической волны от источников возбуждения, расположенных на удалении от скважины под различными азимутальными углами. По стволу скважины регистрируют сейсмические волны. Выделяют прямую продольную сейсмическую волну - Р-волну - и обменную отраженную или проходящую сейсмическую волну - PS-волну. В интервале 300-500 м над продуктивным пластом определяют интенсивность PS-волны. Находят отношение амплитуд - PS/Р-волн. Строят эллипс по векторам отношений амплитуд PS/Р-волн по разным азимутальным углам. По направлению малой оси эллипса определяют направление доминирующей трещиноватости. По отношению длин большой оси к малой оси эллипса определяют коэффициент анизотропии пород в исследуемом пласте. После определения направления трещиноватости коллектора проводят определение границ участка залежи с определенной трещиноватостью коллектора. Формирование рядов добывающих скважин проводят под углом к выявленному направлению трещиноватости внутри границ участка залежи с определенной трещиноватостью коллектора. Нагнетательные скважины размещают за границами участка залежи с определенной трещиноватостью коллектора.
Недостатком известного способа является то, что при выделении участка залежи с высокой проницаемостью вероятность обводнения продукции добывающих скважин значительно увеличивается, что ведет к снижению дебитов нефти и конечной нефтеотдаче пласта.
Технической задачей является повышения нефтеотдачи и эффективности разработки залежей нефти в карбонатных трещиноватых коллекторах.
Указанная задача решается способом разработки залежей нефти в карбонатных коллекторах, включающим бурение добывающих и нагнетательных скважин, закачку рабочего агента через нагнетательные и отбор продукции через добывающие скважины, проведение исследований по определению преобладающего направления трещиноватости залежи, зон с минимальной и средней плотностью трещиноватости.
Новым является то, что в зонах с минимальной и средней плотностью трещиноватости с нефтенасыщенными толщинами пласта не менее 10 м дополнительно бурят горизонтальные и/или разветвленные горизонтальные скважины, причем горизонтальные стволы размещают в пласте под углом 50-70° к преобладающему направлению трещиноватости залежи, в качестве нагнетательных скважин дополнительно используют скважины, расположенные в соответствующих зонах плотности трещиноватости на минимальном расстоянии от горизонтальных и/или разветвленных горизонтальных стволов скважин.
На чертеже изображена схема осуществления предлагаемого способа разработки залежей нефти в карбонатных коллекторах.
Заявляемый способ осуществляют в следующей последовательности.
Нефтяную залежь 1 с карбонатными коллекторами разбуривают вертикальными скважинами 2-17 по проектной сетке. Уточняют геологическое строение залежи, структурные планы продуктивных пластов. Определяют преобладающее направление трещиноватости 18 на залежи, например, по результатам аэрокосмогеологических исследований (АКГИ), для чего на крупномасштабных космоснимках выделяют зоны линеаментов, то есть линейные или дугообразные структурные элементы планетарного значения, связанные с глубинными разломами и которые являются поверхностными проявлениями новейших зон повышенной трещиноватости горных пород. Проводят лабораторные исследования керна, гидродинамические исследования в скважинах с определением пластового давления, проницаемости, продуктивности коллекторов и осуществляют моделирование процесса разработки.
Затем выбирают участок залежи 1 с нефтенасыщенными толщинами более десяти метров в пределах изопахиты 19. Задача повышения нефтеотдачи пласта решается за счет рационального размещения горизонтальных и разветвленных горизонтальных скважин в карбонатных коллекторах.
По результатам АКГИ определяют плотность линеаментной трещиноватости, которая рассчитывается как отношение удельной длины линеамента на квадратный сантиметр площади, и выделяют зоны с тремя градациями их интенсивности: минимальной 20, средней 21 и повышенной 22. Минимальная плотность трещиноватости 20 соответствует интервалу от 0 до 33% разброса плотности трещиноватости для рассматриваемой залежи. Средняя плотность трещиноватости 21 соответствует интервалу от 33 до 66% разброса плотности трещиноватости, остальное - повышенная плотность трещиноватости 22.
Скважины, пробуренные в зонах с минимальной 20 и средней 21 плотностью трещиноватости, имеют более высокие дебиты нефти по сравнению со скважинами, пробуренными в зоне с повышенной трещиноватостью, так как в более плотных коллекторах добывающие скважины работают в безводном режиме значительно дольше и обводняются медленнее.
Затем дополнительно бурят, по крайней мере, одну горизонтальную 23 и/или одну разветвленную горизонтальную 24 добывающие скважины в зонах с минимальной 20 или средней 21 трещиноватостью на участке залежи 1 с нефтенасыщенными толщинами пласта, составляющими не менее десяти метров - изопахита 19. Траектории горизонтальных стволов 23 и 24 проводят под углом 50-70° к преобладающему направлению трещиноватости 18 залежи 1, в результате чего увеличивается охват воздействием коллекторов и снижается вероятность быстрого обводнения продукции.
Горизонтальные стволы 23 и 24 имеют нисходящий или субгоризонтальный профили с учетом возможности отсечения нижней обводнившейся части. Длина горизонтальных стволов 23 и 24 равна шагу проектной сетки (200-350 м), однако на практике при бурении скважин под населенные пункты или водоохранные зоны она может быть увеличена и зависит от технических возможностей.
В соответствующих зонах плотности трещиноватости 20 и 21 из числа вертикальных добывающих скважин 2, 3, 6-8, 12-15 дополнительно выбирают скважины 2 и 14 (с дебитами нефти ниже рентабельного, обводнившиеся и т.д.), расположенные на минимальном расстоянии (в шаге сетки) от горизонтальных стволов 23 и 24 и переводят их под нагнетание для обеспечения направления потока закачиваемого агента в нагнетательные скважины 2 и 14 по минимально возможному расстоянию к горизонтальным стволам скважин 23 и 24. Распределение потока закачиваемого агента в зоне минимальной и средней трещиноватости происходит более равномерно. Повышение охвата выработкой запасов нефти карбонатных коллекторов позволяет значительно увеличить дебиты нефти добывающих скважин.
Пример конкретного выполнения.
Осуществление данного способа рассмотрим на примере участка, характерного для массивных залежей башкирского яруса.
Нефтяную залежь 1 с карбонатными коллекторами разбуривают вертикальными скважинами 2-17 по сетке 300х300 м. Уточняют геологическое строение залежи, структурный план башкирского яруса. По результатам аэрокосмогеологических исследований (АКГИ) определяют, что преобладающее направление трещиноватости 18 на залежи - северо-западное. Проводят лабораторные исследования керна и определяют коллекторские свойства пласта: пористость равна 12,6%, нефтенасыщенность - 75,1%. Затем проводят гидродинамические исследования в скважинах 2-17 и определяют пластовое давление пласта, которое составляет 8 МПа, проницаемость - 0,168 мкм2, продуктивность коллекторов - 4,58 м3/сут·МПа), и осуществляют моделирование процесса разработки.
Выбирают участок залежи 1 с нефтенасыщенными толщинами от 10 до 15 м 19. По результатам АКГИ определяют плотность линеаментной трещиноватости, которая рассчитывается как отношение удельной длины линеамента на квадратный сантиметр площади, и выделяют зоны с тремя градациями их интенсивности: минимальной 20, средней 21 и повышенной 22. Минимальная плотность трещиноватости 20 соответствует интервалу от 0 до 33% разброса плотности трещиноватости для рассматриваемой залежи или от 0 до 30 условных единиц. Средняя плотность трещиноватости 21 соответствует интервалу от 33 до 66% разброса плотности трещиноватости или от 30 до 50 условных единиц, остальное - свыше 50 условных единиц - повышенная плотность трещиноватости 22.
Скважины 2, 3, 6-8, 12-15, пробуренные в зонах с минимальной 20 и средней 21 плотностью трещиноватости, имеют более высокие дебиты нефти (4,8-8,5 т/сут) по сравнению со скважинами 4, 5, 9-11, 16-17 (3,2-4,5 т/сут), пробуренными в зоне с повышенной трещиноватостью, причем обводненность последних за два года эксплуатации возросла с 7,2 до 54%.
Затем размещают горизонтальную скважину 23 в зоне с минимальной трещиноватостью 20, а разветвленную горизонтальную скважину 24 в зоне со средней трещиноватостью 21. Траектории горизонтальных стволов 23 и 24 проводят под углом 65 и 70° к преобладающему направлению трещиноватости 18 залежи 1.
Горизонтальный ствол 23 имеет нисходящий профиль северо-восточного направления, а горизонтальные стволы разветвленной скважины 24 имеют субгоризонтальный и нисходящий профили юго-западного и восточного направлений. Длина каждого горизонтального ствола составляет 300 м.
При проведении траектории горизонтальных стволов необходимо учитывать наличие рентабельных удельных запасов нефти, приходящихся на одну скважину, что ведет к уменьшению срока окупаемости затрат на строительство скважины и добычу каждой тонны нефти. В рассматриваемом случае количество удельных извлекаемых запасов нефти, приходящихся на горизонтальную скважину 23, равно 36 тыс.т, на горизонтальную разветвленную скважину 24-65 тыс.т.
В зонах минимальной и средней плотности трещиноватости 20 и 21 из числа вертикальных добывающих скважин 2, 3, 6-8, 12-15 дополнительно выбирают скважины 2 и 14 как малодебитные (среднесуточный дебит нефти составляет менее одной тонны), расположенные на расстоянии 300 м от горизонтальных стволов 23 и 24, и переводят их под нагнетание. Распределение потока закачиваемого агента в зоне минимальной и средней трещиноватости происходит более равномерно.
Предлагаемый способ разработки карбонатных коллекторов позволяет повысить охват выработкой запасов нефти в карбонатных коллекторах, увеличить дебита нефти добывающих скважин, повысить конечную нефтеотдачу пласта.
Claims (1)
- Способ разработки залежей нефти в карбонатных коллекторах, включающий бурение добывающих и нагнетательных скважин, закачку рабочего агента через нагнетательные и отбор продукции через добывающие скважины, проведение исследований по определению преобладающего направления трещиноватости залежи, зон с минимальной и средней плотностью трещиноватости, отличающийся тем, что в зонах с минимальной и средней плотностью трещиноватости с нефтенасыщенными толщинами пласта не менее 10 м дополнительно бурят горизонтальные и/или разветвленные горизонтальные скважины, причем горизонтальные стволы размещают в пласте под углом 50-70° к преобладающему направлению трещиноватости залежи, в качестве нагнетательных скважин дополнительно используют скважины, расположенные в соответствующих зонах плотности трещиноватости на минимальном расстоянии от горизонтальных и/или разветвленных горизонтальных стволов скважин.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010104375/03A RU2424425C1 (ru) | 2010-02-08 | 2010-02-08 | Способ разработки залежи нефти в карбонатных коллекторах |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010104375/03A RU2424425C1 (ru) | 2010-02-08 | 2010-02-08 | Способ разработки залежи нефти в карбонатных коллекторах |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2424425C1 true RU2424425C1 (ru) | 2011-07-20 |
Family
ID=44752595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010104375/03A RU2424425C1 (ru) | 2010-02-08 | 2010-02-08 | Способ разработки залежи нефти в карбонатных коллекторах |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2424425C1 (ru) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2526430C1 (ru) * | 2013-10-14 | 2014-08-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки низкопроницаемой нефтяной залежи горизонтальными скважинами с поддержанием пластового давления |
RU2546704C1 (ru) * | 2014-04-15 | 2015-04-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяной малоразведанной залежи |
EA025372B1 (ru) * | 2013-04-09 | 2016-12-30 | Республиканское Унитарное Предприятие "Производственное Объединение "Белоруснефть" | Способ разработки залежи нефти в трещиноватых карбонатных коллекторах |
RU2660973C1 (ru) * | 2017-09-26 | 2018-07-11 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяной залежи с трещиноватым коллектором |
RU2676343C1 (ru) * | 2017-08-03 | 2018-12-28 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяной малоразведанной залежи |
RU2717847C1 (ru) * | 2019-11-26 | 2020-03-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" | Способ разработки нефтяной залежи |
RU2821497C1 (ru) * | 2024-02-13 | 2024-06-25 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи нефти, расположенной под газовой залежью |
-
2010
- 2010-02-08 RU RU2010104375/03A patent/RU2424425C1/ru not_active IP Right Cessation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA025372B1 (ru) * | 2013-04-09 | 2016-12-30 | Республиканское Унитарное Предприятие "Производственное Объединение "Белоруснефть" | Способ разработки залежи нефти в трещиноватых карбонатных коллекторах |
RU2526430C1 (ru) * | 2013-10-14 | 2014-08-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки низкопроницаемой нефтяной залежи горизонтальными скважинами с поддержанием пластового давления |
RU2546704C1 (ru) * | 2014-04-15 | 2015-04-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяной малоразведанной залежи |
RU2676343C1 (ru) * | 2017-08-03 | 2018-12-28 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяной малоразведанной залежи |
RU2660973C1 (ru) * | 2017-09-26 | 2018-07-11 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяной залежи с трещиноватым коллектором |
RU2717847C1 (ru) * | 2019-11-26 | 2020-03-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" | Способ разработки нефтяной залежи |
RU2821497C1 (ru) * | 2024-02-13 | 2024-06-25 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи нефти, расположенной под газовой залежью |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Theories and practices of carbonate reservoirs development in China | |
US20240263548A1 (en) | Methods and systems to control flow and heat transfer between subsurface wellbores connected hydraulically by fractures | |
CN105952427B (zh) | 一种低渗透油藏注水诱导裂缝的预测与评价方法 | |
CN102606129B (zh) | 一种薄互层油田开发方法及系统 | |
RU2387812C1 (ru) | Способ разработки нефтяной залежи с водонефтяными зонами | |
RU2424425C1 (ru) | Способ разработки залежи нефти в карбонатных коллекторах | |
RU2291955C1 (ru) | Способ разработки нефтяного месторождения | |
RU2439299C1 (ru) | Способ разработки нефтяной залежи | |
CN113655542B (zh) | 一种基于地球物理的干热岩开发阶段储层信息获取方法 | |
RU2672292C1 (ru) | Способ разработки нефтяной залежи горизонтальными скважинами с проведением многостадийного гидроразрыва пласта | |
WO2017035370A1 (en) | Methods and materials for evaluating and improving the production of geo-specific shale reservoirs | |
CN113669043B (zh) | 用于干热花岗岩地热开发的控震压裂人工热储建造方法 | |
RU2556094C1 (ru) | Способ разработки нефтяных месторождений | |
CN108612518B (zh) | 一种煤层气井径向微井眼钻孔、水力压裂参数的确定方法 | |
RU2357073C2 (ru) | Способ разработки месторождений полезных ископаемых, добываемых через скважины | |
CN110259421A (zh) | 一种裂缝性的致密油藏注水补充能量方法 | |
RU2681796C1 (ru) | Способ разработки залежи сверхвязкой нефти с глинистой перемычкой | |
RU2431740C1 (ru) | Способ разработки залежи нефти, осложненной вертикальным разломом | |
RU2513216C1 (ru) | Способ разработки нефтяной залежи | |
CN103628914A (zh) | 一种缓倾角煤层分层开采探放低渗厚层基岩含水层的方法 | |
RU2526037C1 (ru) | Способ разработки трещиноватых коллекторов | |
RU2335628C2 (ru) | Способ проведения локального направленного гидроразрыва пласта | |
RU2513962C1 (ru) | Способ разработки нефтяной залежи | |
RU2580562C1 (ru) | Способ разработки нефтяной залежи | |
RU2579039C1 (ru) | Способ разработки низкопроницаемых нефтегазовых пластов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190209 |