RU2421698C2 - Измерительный преобразователь давления с акустическим датчиком давления - Google Patents

Измерительный преобразователь давления с акустическим датчиком давления Download PDF

Info

Publication number
RU2421698C2
RU2421698C2 RU2008116824/28A RU2008116824A RU2421698C2 RU 2421698 C2 RU2421698 C2 RU 2421698C2 RU 2008116824/28 A RU2008116824/28 A RU 2008116824/28A RU 2008116824 A RU2008116824 A RU 2008116824A RU 2421698 C2 RU2421698 C2 RU 2421698C2
Authority
RU
Russia
Prior art keywords
pressure
fluid
sensor
acoustic
pressure sensor
Prior art date
Application number
RU2008116824/28A
Other languages
English (en)
Other versions
RU2008116824A (ru
Inventor
Роберт К. ХЕДТКЕ (US)
Роберт К. ХЕДТКЕ
Original Assignee
Роузмаунт Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роузмаунт Инк. filed Critical Роузмаунт Инк.
Publication of RU2008116824A publication Critical patent/RU2008116824A/ru
Application granted granted Critical
Publication of RU2421698C2 publication Critical patent/RU2421698C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/38Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
    • G01F1/383Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/04Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Acoustics & Sound (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Настоящее изобретение относится к измерительным преобразователям, используемым для определения технологических параметров в производственных процессах, в частности, к измерительным преобразователям давления, которые сконфигурированы для измерения давления в таких процессах. Техническим результатом изобретения является получение результата дополнительного измерения линейного давления, предназначенного для использования при диагностическом контроле первичного датчика, непосредственного датчика измерения линейного давления или для использования при определении других технологических параметров. Измерительный преобразователь содержит датчик давления, содержащий в себе удерживающую давление структуру, причем датчик давления сконфигурирован для связи с давлением текучей среды и обеспечения выходного сигнала давления, зависящего от давления процесса, акустический детектор, связанный с удерживающей давление структурой, сконфигурированный для приема акустического сигнала, и измерительную схемотехнику, соединенную с удерживающей давление структурой, и акустическим детектором. Способ измерения технологического параметра производственного процесса заключается в том, что связывают датчик давления с текучей средой процесса через импульсный трубопровод, измеряют давление текучей среды процесса, используя датчик давления, связанный с текучей средой процесса и обеспечивающий выходной сигнал, зависящий от давления процесса, принимают акустический сигнал, который распространяется через удерживающую давление структуру, и получают выходной сигнал, зависящий от давления текучей среды процесса, �

Description

Уровень техники
Настоящее изобретение относится к измерительным преобразователям, используемым для определения технологических параметров в производственных процессах. В частности, настоящее изобретение относится к измерительным преобразователям давления, которые сконфигурированы для измерения давления в таких процессах.
Измерительные преобразователи используют в системах контроля и управления процессами для измерения различных технологических параметров производственных процессов. Измерительным преобразователем одного вида измеряется давление технологической текучей среды в процессе. Давление может быть использовано непосредственно или использовано для определения других технологических параметров, таких как скорость потока. Одна методика, используемая для измерения потока, основана на дифференциальном давлении, создаваемом в технологической текучей среде. Известно соотношение между дифференциальным давлением и скоростью потока. Однако соотношение зависит не только от дифференциального давления. Для более точного определения скорости потока могут быть измерены дополнительные технологические параметры, включая абсолютное или линейное давление, а также температуру. Одна методика, используемая для измерения линейного давления, заключается в применении отдельного датчика линейного давления. Другая методика описана в заявке №11/140681, обычным образом переуступленной настоящему заявителю.
В дополнение к альтернативному способу для измерения линейного давления, рассмотренному выше, имеются другие ситуации, в которых желательно измерять линейное давление. Они включают в себя получение результата дополнительного измерения линейного давления, предназначенного для использования при диагностическом контроле первичного датчика, непосредственного датчика измерения линейного давления или для использования при определении других технологических параметров.
Сущность изобретения
Измерительный преобразователь сконфигурирован для измерения технологического параметра производственного процесса и включает в себя датчик давления, сконфигурированный для связи с давлением текучей среды и обеспечения выходного сигнала, зависящего от давления процесса. Акустический детектор сконфигурирован для приема акустического сигнала от текучей среды. Измерительные схемы соединены с датчиком давления и акустическим детектором, при этом имеют выходной сигнал, зависящий от давления текучей среды.
В другой конфигурации предложен измерительный преобразователь, включающий в себя датчик линейного давления, который измеряет линейное давление на основании акустического сигнала или определяет температуру процесса текучей среды с использованием акустического сигнала в известных условиях давления.
Краткое описание чертежей
На чертежах:
Фиг.1 - график зависимости глубины от скорости акустического сигнала;
Фиг.2 - упрощенный вид измерительных схем, соединенных с удерживающей давление структурой, согласно изобретению;
Фиг.3 - вид, иллюстрирующий периферийное оборудование измерительного преобразователя давления;
Фиг.4 - упрощенная структурная схема, иллюстрирующая компоненты измерительного преобразователя давления по фиг.3;
Фиг.5 - упрощенный разрез измерительного преобразователя по фиг.3, иллюстрирующий датчик давления.
Подробное описание
Как рассматривалось в разделе, относящемся к уровню техники, датчики давления используют при различных производственных процессах и в установках контроля с измерительными преобразователями давления. Для измерения давления используют несколько различных методик. Например, давление, прикладываемое к отклоняющейся мембране, может быть измерено на основании изменения электрической емкости, измеряемой между мембраной и электродом. В других методиках измерения используют, например, результат измерения механического напряжения или других характеристик компонента, которые изменяются в ответ на приложенное давление.
Настоящим изобретением обеспечивается датчик давления, в котором приложенное давление измеряют на основании изменения акустического сигнала, который проходит через текучую среду, находящуюся под давлением. Акустическое входное устройство или источник находится в связи с текучей средой для излучения акустического сигнала. Акустический детектор или приемник принимает сигнал. Измерительные схемы могут быть сконфигурированы для получения на основании принятого сигнала выходного сигнала, зависящего от давления текучей среды.
Согласно настоящему изобретению может использоваться известное соотношение между скоростью акустического сигнала, проходящего через текучую среду, температурой и давлением текучей среды. Например, известно, что скорость звука в морской воде зависит от температуры, солености и давления воды.
На фиг.1 представлен график зависимости глубины в такой среде от скорости. На графике из фиг.1 скорость акустического сигнала сначала уменьшается в зависимости от глубины. Это обусловлено снижением температуры воды. Однако по мере того как на больших глубинах температура воды становится постоянной, скорость начинает возрастать с увеличением глубины (давления). В воде скорость звука находится в пределах от около 1400 до около 1570 м/с (от 4593 до 5151 фут/с). Это составляет около 1,5 км/с (немного меньше 1 мили в секунду) или в 4 раза быстрее, чем звук распространяется в воздухе.
Кроме того, в дисперсионной среде, такой как вода, скорость звука является функцией частоты. Это означает, что распространяющиеся акустические возмущения будут непрерывно изменяться, поскольку каждая частотная составляющая распространяется со своей фазовой скоростью, тогда как энергия возмущения распространяется с групповой скоростью. С другой стороны, воздух представляет собой недисперсионную среду, и скорость звука не зависит от частоты. Поэтому в воздухе скорость переноса энергии и скорость распространения звука являются одинаковыми.
На фиг.2 представлен упрощенный вид датчика 10 давления согласно одному варианту осуществления. Датчик 10 давления содержит удерживающую давление структуру 12, которая содержит текучую среду под давлением технологической текучей среды. Это может быть сама технологическая текучая среда или изолированная текучая среда, которая подвергается воздействию того же самого давления со стороны технологической текучей среды. Акустическое входное устройство или источник 14 связан с удерживающей давление структурой 12 и сконфигурирован для излучения акустического сигнала 16 через текучую среду в удерживающей давление структуре 12. Акустический детектор или приемник 18 принимает акустический сигнал 16 и в ответ формирует выходной сигнал. Акустическое входное устройство 14 и акустический детектор 18 соединены с измерительными схемами 20. Измерительные схемы 20 определяют давление текучей среды в удерживающей давление структуре на основании известного соотношения между давлением текучей среды и изменениями акустического сигнала 16. Также показан необязательный датчик 22 температуры, который обеспечивает сигнал температуры для измерительных схем 20. Этот сигнал температуры может быть использован измерительными схемами 20 для компенсации зависящего от давления выходного сигнала 24 на основании температуры текучей среды и удерживающей давление структуры 12.
В связанном примере конфигурации соотношение между температурой, давлением и акустической сигнатурой, рассмотренное выше, используется в устройстве, показанном на фиг.2, для определения температуры текучей среды в удерживающей давление структуре 12. В такой конфигурации выходной сигнал акустического детектора 18 является зависящим от температуры текучей среды в структуре 12. Если давление текучей среды в структуре 12 является относительно постоянным, измерительные схемы 20 могут формировать выходной сигнал 24, зависящий от температуры текучей среды. В другом примере конфигурации датчик 22 может представлять собой датчик давления, а не датчик температуры. В такой конфигурации измерительные схемы 20 компенсируют выходной сигнал температуры на основании давления, определенного с использованием датчика 22 давления.
Устройство и методика, рассмотренные выше со ссылками на фиг.1 и 2, могут быть полезными для ряда применений в системах контроля и регулирования производственных процессов. Например, для измерительных преобразователей, которые измеряют как дифференциальное давление, так и линейное давление, обычно необходимы два отдельных датчика давления. Один датчик давления конфигурируют для измерения дифференциального давления, тогда как второй датчик давления используют для измерения линейного давления. Хотя этим обеспечивается точное измерение, но для этого требуются большие затраты и дополнительные компоненты. Кроме того, также может ухудшиться характеристика вследствие того, что может быть рассогласование между изолированной наполнительной текучей средой, используемой для изоляции датчиков давления, от технологической текучей среды. Это рассогласование может возникать между двумя сторонами датчика дифференциального давления, которые связаны с технологической текучей средой. В конфигурации на фиг.2 линейное давление может быть измерено с использованием такого же датчика, какой используется для измерения дифференциального давления. В частности, в такой конфигурации удерживающая давление структура 12 содержит устройство с датчиком дифференциального давления. Акустическое входное устройство 14 и детектор 18 связаны с текучей средой в системе, которая находится под давлением технологической текучей среды. Например, эта текучая среда может быть изолированной текучей средой, которая находится между разделительными мембранами измерительного преобразователя давления и центральной мембраной датчика давления. Входное устройство 14 и детектор 18 связаны с трубой, которая заключает в себе изолированную текучую среду, или они могут быть установлены непосредственно на самом датчике давления.
В другом примере конфигурации удерживающая давление структура 12 является частью устройства с датчиками линейного или манометрического давления. В такой конфигурации акустический сигнал 16 может быть использован для осуществления операции диагностического контроля датчика линейного давления. Например, может быть осуществлено сравнение показаний датчика линейного давления с ожидаемыми показаниями от акустического сигнала 16. Если акустический сигнал 16 не является таким, как ожидаемый сигнал, может быть выдано предупреждение, указывающее на то, что устройство работает не так, как предполагалось, и может быть неисправным. Можно сделать так, чтобы такое указание обеспечивалось до возникновения фактического отказа, то есть обеспечивалась возможность проведения предупредительного ремонта. В связанной конфигурации акустический сигнал используется совместно с измеренным линейным давлением для получения оценки температуры текучей среды.
На фиг.3 показано в общих чертах периферийное оборудование системы 32 измерения параметров процесса, включающее в себя измерительный преобразователь 36 давления процесса, сконфигурированный для реализации настоящего изобретения. На фиг.3 показан технологический трубопровод 30, содержащий текучую среду под давлением, связанную с системой 32 измерения параметров процесса, предназначенной для измерения давления процесса. Система 32 измерения параметров процесса включает в себя импульсный трубопровод 34, соединенный с трубопроводом 30. Импульсный трубопровод 34 соединен с измерительным преобразователем 36 давления процесса. Чувствительный элемент 33, такой как измерительная диафрагма, трубка Вентури, расходомерное сопло и т.д., соприкасается с технологической текучей средой в технологическом трубопроводе 30 в месте, находящемся между трубами импульсного трубопровода 34. Чувствительный элемент 33 вызывает изменение давления в текучей среде, когда она проходит через чувствительный элемент 33.
Измерительный преобразователь 36 представляет собой устройство для измерения параметров процесса, которое воспринимает давления процесса в импульсном трубопроводе 34. Измерительный преобразователь 36 определяет дифференциальное давление процесса и преобразует его в стандартизованный сигнал передачи, который является функцией давления процесса.
Контур 38 процесса обеспечивает сигнал питания для измерительного преобразователя 36 с поста 40 управления и двунаправленную связь, и он может быть выполнен в соответствии с рядом протоколов обмена данными процесса. В показанном примере контур 38 процесса представляет собой двухпроводный контур. При нормальной работе двухпроводный контур используется для передачи любой электрической энергии ко всем средствам связи и к измерительному преобразователю 36, а от него сигнала 4-20 мА. Компьютер 42 или другая система обработки информации используется для связи с измерительным преобразователем 36 через модем 44 или другой сетевой интерфейс. Удаленный источник 46 напряжения обычно снабжает электрической энергией измерительный преобразователь 36.
На фиг.4 представлена упрощенная структурная схема иллюстративного измерительного преобразователя 36 давления. В этом примере измерительный преобразователь 36 давления включает в себя сенсорный модуль 52 и плату 72 электроники, соединенные друг с другом через шину 66 данных. Электроника 60 сенсорного модуля соединена с датчиком 56 давления, который воспринимает приложенное дифференциальное давление 54. Линия 58 данных соединяет датчик 56 с аналого-цифровым преобразователем 62. Также показан необязательный датчик 63 температуры, равно как и запоминающее устройство (ЗУ) 64 сенсорного модуля. Плата 72 электроники включает в себя микрокомпьютерную систему 74, запоминающее устройство (ЗУ) 76 модуля электроники, схемы 78 цифроаналогового преобразования сигналов и блок 80 цифровой связи. Схемы 78 цифроаналогового преобразования могут обеспечивать выходной сигнал любого вида, имеющий отношение к датчику давления, включая, например, скорость потока технологической текучей среды, которая определяется на основании дифференциального давления. Выходные сигналы других видов включают в себя указания на давления процесса, диагностические выходные сигналы, температурные данные или другие.
Согласно способам, изложенным в патенте США №6295875 (Frick et al.), измерительный преобразователь 36 давления определяет дифференциальное давление. Однако настоящее изобретение не ограничено такой конфигурацией.
На фиг.4 также показан акустический источник 14, связанный с источником 14, и акустический датчик 18, связанный с датчиком 56 давления. Акустический сигнал 16 от источника проходит через находящуюся под давлением текучую среду в датчике 56 и принимается датчиком 18. Выходной сигнал датчика 18 подается на аналого-цифровой преобразователь 62. В микрокомпьютерной системе 74 принимается оцифрованный сигнал от датчика 18 и определяется линейное давление с использованием способов, рассмотренных выше.
На фиг.5 представлен упрощенный разрез сенсорного модуля 52 согласно одному осуществлению с показом датчика 56 давления. Датчик 56 давления связан с технологической текучей средой через разделительные мембраны 90, которые изолируют технологическую текучую среду от полостей 92. Полости 92 соединены с сенсорным модулем 56 давления по импульсному трубопроводу 94. По существу несжимаемая наполнительная текучая среда заполняет полости 92 и импульсный трубопровод 94. Когда давление от технологической текучей среды прикладывается к мембранам 90, оно передается на датчик 56 давления.
Датчик 56 давления образован из двух половин 114 и 116 датчика давления, и он заполнен предпочтительно хрупким, по существу несжимаемым материалом 105. Мембрана 106 подвешена внутри полости 132, 134, образованной внутри датчика 56. Внешняя стенка полости 132, 134 содержит электроды 146, 144, 148 и 150. В общем, они могут быть названы первичными электродами 144 и 148 и вторичными или дополнительными электродами 146 и 150. Эти электроды образуют конденсаторы относительно подвижной мембраны 106. И вновь конденсаторы могут быть названы первичными и вторичными конденсаторами.
Как показано на фиг.5, различные электроды в датчике 56 соединены с аналого-цифровым преобразователем 62 посредством электрических соединений 103, 104, 108 и 110. Кроме того, отклоняемая мембрана 106 соединена с аналого-цифровым преобразователем 62 посредством соединения 109. Как рассмотрено в патенте США №6295875, дифференциальное давление, прикладываемое к датчику 56, может быть измерено с использованием электродов 144-150.
На фиг.5 также показаны акустический источник 14 и акустический датчик 18, рассмотренные выше. Электрическое соединение 170 предусмотрено от акустического датчика 18 к аналого-цифровому преобразователю 62 сигналов. Акустический источник 14 может работать независимо или может работать под управлением схем в измерительном преобразователе. Например, акустический источник 14 может управляться схемами в сенсорном модуле 52 или на плате 72 электроники из фиг.4.
Как показано на фиг.5, вследствие позиционирования источника 14 и датчика 18 акустический сигнал 16 (не показанный на фиг.5) будет проходить через датчик 56 и проходить через наполнительную текучую среду, содержащуюся в полости датчика. Эта наполнительная текучая среда находится под давлением вследствие связи с технологической текучей средой по импульсному трубопроводу 94 и через разделительную мембрану 90.
Хотя на фиг.4 и 5 показан датчик дифференциального давления с использованием отклоняемой мембраны, настоящее изобретение может быть реализовано с датчиком давления любого вида. Как рассматривалось выше, настоящее изобретение также может быть реализовано с автономным датчиком давления. Кроме того, акустический сигнал может находиться в связи с любой точкой в системе, в которой имеется текучая среда под давлением. Например, акустический сигнал может быть связан с капиллярными трубками 94 или полостями 92, показанными на фиг.5. В дополнение к определению линейного давления, рассмотренного выше, акустический сигнал также может быть использован для измерения шума быстродействующего процесса, что может быть использовано, например, при диагностическом контроле. Акустический сигнал может быть на одной частоте, на изменяющейся частоте или на нескольких частотах для улучшения характеристик измерения. В другом примере конфигурации акустический сигнал 16 образуется непосредственно из шума в рамках самого процесса. В такой конфигурации элемент 14, показанный выше, может содержать второй акустический датчик. В такой конфигурации время пробега шумового сигнала между датчиками 14 и 18 может быть использовано для получения линейного давления. В еще одном примере два датчика используются для измерения дисперсии шума процесса между двумя точками. Затем эта информация может быть использована для получения линейного давления. В еще одной примерной конфигурации предусмотрен дополнительный акустический датчик 200, показанный на фиг.5. Акустический датчик 200 вводят в какое-либо место между источником 14 и приемником 18, например внутрь полости 92. Этот дополнительный датчик 200 может быть использован для обнаружения задержки шума процесса в модуле. Например, существующим датчиком давления можно обнаруживать низкочастотный шум процесса. Дополнительный датчик 200 может быть использован для обнаружения задержки шума процесса в модуле и может быть выполнение сравнение с акустическим сигналом, обнаруживаемым электродом 144 или 148 датчика.
Хотя настоящее изобретение было описано применительно к предпочтительным осуществлениям, специалисты в данной области техники должны признавать, что изменения по форме и в деталях могут быть сделаны без отступления от сущности и объема изобретения.

Claims (19)

1. Измерительный преобразователь, сконфигурированный для измерения технологического параметра производственного процесса, содержащий: датчик давления, содержащий в себе удерживающую давление структуру, причем датчик давления, сконфигурирован для связи с давлением текучей среды и обеспечения выходного сигнала давления, зависящего от давления процесса, причем датчик давления соединен с трубопроводом процесса через импульсный трубопровод, посредством чего структура датчика давления разнесена от трубопровода процесса, который переносит текучую среду процесса, причем импульсный трубопровод переносит изолированную текучую среду, которая связана с текучей средой процесса через разделительную мембрану;
акустический детектор, связанный с удерживающей давление структурой, сконфигурированный для приема акустического сигнала, распространяющегося через удерживающую давление структуру, и обеспечения акустического выходного сигнала; и измерительную схемотехнику, соединенную с удерживающей давление структурой и акустическим детектором, имеющую выходной сигнал, зависящий от давления текучей среды как функцию выходного сигнала давления и акустического выходного сигнала.
2. Преобразователь по п.1, в котором датчик давления представляет собой датчик дифференциального давления.
3. Преобразователь по п.2, в котором выходной сигнал, зависящий от давления текучей среды, представляет собой скорость потока.
4. Преобразователь по п.1, в котором датчик давления представляет собой датчик линейного давления.
5. Преобразователь по п.4, в котором измерительная схемотехника сконфигурирована для диагностирования работы датчика линейного давления на основании акустического сигнала.
6. Преобразователь по п.1, в котором измерительная схемотехника вычисляет температуру на основании акустического сигнала.
7. Преобразователь по п.1, включающий в себя датчик температуры, и в котором выходной сигнал, зависящий от давления текучей среды, является также функцией температуры, определяемой датчиком температуры.
8. Преобразователь по п.1, в котором датчик давления включает в себя отклоняемую мембрану.
9. Преобразователь по п.1, включающий в себя акустический источник, связанный с текучей средой, сконфигурированный для излучения акустического сигнала в текучую среду.
10. Преобразователь по п.1, включающий в себя датчик шума процесса, сконфигурированный для обнаружения шума процесса в датчике давления.
11. Преобразователь по п.1, в котором выходной сигнал, зависящий от давления текучей среды, представляет собой линейное давление.
12. Способ измерения технологического параметра производственного процесса, заключающийся в том, что:
связывают датчик давления с текучей средой процесса через импульсный трубопровод, переносящий изолированную текучую среду, которая связана с текучей средой процесса через разделительную мембрану, причем датчик давления содержит удерживающую давление структуру;
измеряют давление текучей среды процесса, используя датчик давления, связанный с текучей средой процесса и обеспечивающий выходной сигнал, зависящий от давления процесса;
принимают акустический сигнал, который распространяется через удерживающую давление структуру; и
получают выходной сигнал, зависящий от давления текучей среды процесса, на основании акустического сигнала и давления процесса.
13. Способ по п. 12, в котором измерение давления представляет собой измерение датчиком дифференциального давления.
14. Способ по п.13, в котором выходной сигнал, зависящий от давления текучей среды, представляет собой скорость потока.
15. Способ по п.12, в котором измерение давления представляет собой измерение линейного давления.
16. Способ по п.15, включающий в себя диагностирование работы датчика линейного давления на основании акустического сигнала.
17. Способ по п.12, включающий в себя вычисление температуры на основании акустического сигнала.
18. Способ по п.12, включающий в себя определение температуры, и при этом выходной сигнал, зависящий от давления текучей среды, является также функцией, определяемой температурой.
19. Способ по п.12, в котором выходной сигнал, зависящий от давления текучей среды процесса, основанный на акустическом сигнале, содержит линейное давление текучей среды процесса.
RU2008116824/28A 2005-09-29 2006-09-19 Измерительный преобразователь давления с акустическим датчиком давления RU2421698C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/238,654 2005-09-29
US11/238,654 US7379792B2 (en) 2005-09-29 2005-09-29 Pressure transmitter with acoustic pressure sensor

Publications (2)

Publication Number Publication Date
RU2008116824A RU2008116824A (ru) 2009-11-10
RU2421698C2 true RU2421698C2 (ru) 2011-06-20

Family

ID=37636085

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008116824/28A RU2421698C2 (ru) 2005-09-29 2006-09-19 Измерительный преобразователь давления с акустическим датчиком давления

Country Status (7)

Country Link
US (1) US7379792B2 (ru)
EP (1) EP1929264B1 (ru)
JP (1) JP5743378B2 (ru)
CN (1) CN101273257B (ru)
CA (1) CA2621313C (ru)
RU (1) RU2421698C2 (ru)
WO (1) WO2007040980A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008043467A1 (de) 2008-11-04 2010-05-06 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung eines Drucks
US8234927B2 (en) * 2010-06-08 2012-08-07 Rosemount Inc. Differential pressure sensor with line pressure measurement
US9470084B2 (en) * 2010-08-12 2016-10-18 Rosemount Inc. Method and apparatus for measuring fluid process variable in a well
US8448519B2 (en) 2010-10-05 2013-05-28 Rosemount Inc. Industrial process transmitter with high static pressure isolation diaphragm coupling
CN102095466B (zh) * 2010-11-26 2012-10-17 中国航空工业集团公司北京长城计量测试技术研究所 基于活塞发声原理的容积测量方法
US9423315B2 (en) * 2013-10-15 2016-08-23 Rosemount Aerospace Inc. Duplex pressure transducers
CN104775884B (zh) * 2014-01-09 2019-11-08 罗伯特·博世有限公司 用于运行内燃机的方法和装置
KR102258580B1 (ko) * 2020-04-16 2021-06-01 한국원자력연구원 압력 트랜스미터

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533339A (en) 1946-06-22 1950-12-12 Jabez Burns & Sons Inc Flammable vapor protection
US3012432A (en) 1957-09-23 1961-12-12 Richard H Moore Leak tester
GB1023042A (en) 1962-05-07 1966-03-16 Wayne Kerr Lab Ltd Improvements in or relating to pressure responsive apparatus
US3232712A (en) 1962-08-16 1966-02-01 Continental Lab Inc Gas detector and analyzer
US3374112A (en) 1964-03-05 1968-03-19 Yeda Res & Dev Method and apparatus for controlled deposition of a thin conductive layer
US3249833A (en) 1964-11-16 1966-05-03 Robert E Vosteen Capacitor transducer
US3557621A (en) 1969-07-07 1971-01-26 C G S Scient Corp Inc Variable capacitance detecting devices
GB1354025A (en) 1970-05-25 1974-06-05 Medicor Muevek Capacitive pressure transducer
US3924219A (en) 1971-12-22 1975-12-02 Minnesota Mining & Mfg Gas detection device
US3808480A (en) 1973-04-16 1974-04-30 Bunker Ramo Capacitive pressure transducer
US4008619A (en) 1975-11-17 1977-02-22 Mks Instruments, Inc. Vacuum monitoring
US4177496A (en) 1976-03-12 1979-12-04 Kavlico Corporation Capacitive pressure transducer
US4158217A (en) 1976-12-02 1979-06-12 Kaylico Corporation Capacitive pressure transducer with improved electrode
US4120206A (en) 1977-01-17 1978-10-17 Rosemount Inc. Differential pressure sensor capsule with low acceleration sensitivity
US4168518A (en) 1977-05-10 1979-09-18 Lee Shih Y Capacitor transducer
US4227419A (en) 1979-09-04 1980-10-14 Kavlico Corporation Capacitive pressure transducer
US4244226A (en) * 1979-10-04 1981-01-13 Honeywell Inc. Distance measuring apparatus and a differential pressure transmitter utilizing the same
US4322775A (en) 1979-10-29 1982-03-30 Delatorre Leroy C Capacitive pressure sensor
US4434451A (en) 1979-10-29 1984-02-28 Delatorre Leroy C Pressure sensors
US4287553A (en) 1980-06-06 1981-09-01 The Bendix Corporation Capacitive pressure transducer
US4336567A (en) 1980-06-30 1982-06-22 The Bendix Corporation Differential pressure transducer
US4370890A (en) 1980-10-06 1983-02-01 Rosemount Inc. Capacitive pressure transducer with isolated sensing diaphragm
US4358814A (en) 1980-10-27 1982-11-09 Setra Systems, Inc. Capacitive pressure sensor
US4422335A (en) 1981-03-25 1983-12-27 The Bendix Corporation Pressure transducer
US4458537A (en) 1981-05-11 1984-07-10 Combustion Engineering, Inc. High accuracy differential pressure capacitive transducer
US4389895A (en) 1981-07-27 1983-06-28 Rosemount Inc. Capacitance pressure sensor
US4466290A (en) * 1981-11-27 1984-08-21 Rosemount Inc. Apparatus for conveying fluid pressures to a differential pressure transducer
US4455874A (en) 1981-12-28 1984-06-26 Paroscientific, Inc. Digital pressure transducer
US4422125A (en) 1982-05-21 1983-12-20 The Bendix Corporation Pressure transducer with an invariable reference capacitor
DE3238430A1 (de) 1982-10-16 1984-04-19 Philips Patentverwaltung Gmbh, 2000 Hamburg Differenzdrucksensor
US4558184A (en) 1983-02-24 1985-12-10 At&T Bell Laboratories Integrated capacitive transducer
US4490773A (en) 1983-12-19 1984-12-25 United Technologies Corporation Capacitive pressure transducer
US4542436A (en) 1984-04-10 1985-09-17 Johnson Service Company Linearized capacitive pressure transducer
US4562742A (en) 1984-08-07 1986-01-07 Bell Microcomponents, Inc. Capacitive pressure transducer
US4578735A (en) 1984-10-12 1986-03-25 Knecht Thomas A Pressure sensing cell using brittle diaphragm
US4586108A (en) 1984-10-12 1986-04-29 Rosemount Inc. Circuit for capacitive sensor made of brittle material
US4670733A (en) 1985-07-01 1987-06-02 Bell Microsensors, Inc. Differential pressure transducer
JPS62187820U (ru) * 1986-05-22 1987-11-30
US4860232A (en) 1987-04-22 1989-08-22 Massachusetts Institute Of Technology Digital technique for precise measurement of variable capacitance
FR2614986B1 (fr) 1987-05-07 1989-08-18 Otic Fischer & Porter Structure de cellule capacitive pour la mesure des pressions differentielles
US4785669A (en) 1987-05-18 1988-11-22 Mks Instruments, Inc. Absolute capacitance manometers
US4875369A (en) 1987-09-08 1989-10-24 Panex Corporation Pressure sensor system
US4945768A (en) * 1988-05-20 1990-08-07 Parker Electronics, Inc. Pressure sensor
US4878012A (en) 1988-06-10 1989-10-31 Rosemount Inc. Charge balanced feedback transmitter
US4977480A (en) 1988-09-14 1990-12-11 Fuji Koki Mfg. Co., Ltd. Variable-capacitance type sensor and variable-capacitance type sensor system using the same
US5637302A (en) * 1988-09-20 1997-06-10 Indena Spa Extracts of Ginkgo biloba and their methods of preparation
US4926674A (en) 1988-11-03 1990-05-22 Innovex Inc. Self-zeroing pressure signal generator
US4951174A (en) 1988-12-30 1990-08-21 United Technologies Corporation Capacitive pressure sensor with third encircling plate
US5040415A (en) 1990-06-15 1991-08-20 Rockwell International Corporation Nonintrusive flow sensing system
US5194819A (en) 1990-08-10 1993-03-16 Setra Systems, Inc. Linearized capacitance sensor system
US5094109A (en) 1990-12-06 1992-03-10 Rosemount Inc. Pressure transmitter with stress isolation depression
US5168419A (en) 1991-07-16 1992-12-01 Panex Corporation Capacitor and pressure transducer
US5230250A (en) 1991-09-03 1993-07-27 Delatorre Leroy C Capacitor and pressure transducer
JP3182807B2 (ja) * 1991-09-20 2001-07-03 株式会社日立製作所 多機能流体計測伝送装置及びそれを用いた流体量計測制御システム
US5233875A (en) 1992-05-04 1993-08-10 Kavlico Corporation Stable capacitive pressure transducer system
US5329818A (en) 1992-05-28 1994-07-19 Rosemount Inc. Correction of a pressure indication in a pressure transducer due to variations of an environmental condition
US5492016A (en) 1992-06-15 1996-02-20 Industrial Sensors, Inc. Capacitive melt pressure measurement with center-mounted electrode post
JPH06102127A (ja) * 1992-09-22 1994-04-15 Yokogawa Electric Corp 圧力・差圧伝送器
JPH0712667A (ja) * 1993-06-29 1995-01-17 Hitachi Ltd 物理量センサおよび物理量センサシステム
JP3341091B2 (ja) * 1993-06-29 2002-11-05 耕司 戸田 超音波変位センサ
WO1995008759A1 (en) 1993-09-24 1995-03-30 Rosemount Inc. Pressure transmitter isolation diaphragm
DE4333753A1 (de) 1993-10-04 1994-05-11 Bosch Gmbh Robert Kapazitiver Differenzdrucksensor
US5542300A (en) 1994-01-24 1996-08-06 Setra Systems, Inc. Low cost, center-mounted capacitive pressure sensor
US5642301A (en) 1994-01-25 1997-06-24 Rosemount Inc. Transmitter with improved compensation
US5415048A (en) 1994-06-27 1995-05-16 Texaco Inc. Acoustic gas-liquid flow meter
WO1996017235A1 (en) * 1994-11-30 1996-06-06 Rosemount Inc. Pressure transmitter with fill fluid loss detection
US5637802A (en) 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
US6484585B1 (en) * 1995-02-28 2002-11-26 Rosemount Inc. Pressure sensor for a pressure transmitter
US5705978A (en) 1995-09-29 1998-01-06 Rosemount Inc. Process control transmitter
DE19648048C2 (de) 1995-11-21 2001-11-29 Fuji Electric Co Ltd Detektorvorrichtung zur Druckmessung basierend auf gemessenen Kapazitätswerten
US5757608A (en) 1996-01-25 1998-05-26 Alliedsignal Inc. Compensated pressure transducer
US6654697B1 (en) * 1996-03-28 2003-11-25 Rosemount Inc. Flow measurement with diagnostics
US5668322A (en) 1996-06-13 1997-09-16 Rosemount Inc. Apparatus for coupling a transmitter to process fluid having a sensor extension selectively positionable at a plurality of angles
DE19633630A1 (de) 1996-08-21 1998-02-26 Endress Hauser Gmbh Co Auswerteeinheit eines Differenzdrucksensors
US20040015069A1 (en) * 1996-12-27 2004-01-22 Brown David Lloyd System for locating inflamed plaque in a vessel
US5911162A (en) 1997-06-20 1999-06-08 Mks Instruments, Inc. Capacitive pressure transducer with improved electrode support
JPH1151795A (ja) * 1997-08-08 1999-02-26 Saginomiya Seisakusho Inc 半導体圧力センサとその製作方法
EP1071934B1 (de) 1998-04-09 2002-02-13 Plöchinger, Heinz Kapazitive druck- oder kraftsensorstruktur und verfahren zur herstellung derselben
JP3567089B2 (ja) 1998-10-12 2004-09-15 株式会社日立製作所 静電容量式圧力センサ
US6301973B1 (en) 1999-04-30 2001-10-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-intrusive pressure/multipurpose sensor and method
US6295875B1 (en) * 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
US6892582B1 (en) 1999-08-20 2005-05-17 Hitachi, Ltd. Semiconductor pressure sensor and pressure sensing device
US6701274B1 (en) * 1999-08-27 2004-03-02 Rosemount Inc. Prediction of error magnitude in a pressure transmitter
US6484107B1 (en) * 1999-09-28 2002-11-19 Rosemount Inc. Selectable on-off logic modes for a sensor module
US6520020B1 (en) * 2000-01-06 2003-02-18 Rosemount Inc. Method and apparatus for a direct bonded isolated pressure sensor
JP2003522942A (ja) 2000-02-11 2003-07-29 ローズマウント インコーポレイテッド オイルレス差圧センサ
US6662662B1 (en) 2000-05-04 2003-12-16 Rosemount, Inc. Pressure transmitter with improved isolator system
US6516672B2 (en) * 2001-05-21 2003-02-11 Rosemount Inc. Sigma-delta analog to digital converter for capacitive pressure sensor and process transmitter
US6828801B1 (en) 2001-10-26 2004-12-07 Welch Allyn, Inc. Capacitive sensor
CN100582681C (zh) * 2002-01-23 2010-01-20 西德拉企业服务公司 测量具有悬浮在管中流动的流体中的固体颗粒的混合物的参数的设备和方法
US7359803B2 (en) * 2002-01-23 2008-04-15 Cidra Corporation Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe
US6675655B2 (en) 2002-03-21 2004-01-13 Rosemount Inc. Pressure transmitter with process coupling
US6647794B1 (en) 2002-05-06 2003-11-18 Rosemount Inc. Absolute pressure sensor
US7400985B2 (en) * 2002-11-12 2008-07-15 Cidra Corporation Apparatus having an array of clamp on piezoelectric film sensors for measuring parameters of a process flow within a pipe
DE10310114A1 (de) * 2003-03-06 2004-09-16 Robert Bosch Gmbh Vorrichtung und Verfahren zur hydrostatischen Druckbestimmung in einem Hochdruckbehälter mittels Ultraschalllaufzeitmessung
WO2004109239A2 (en) * 2003-06-05 2004-12-16 Cidra Corporation Apparatus for measuring velocity and flow rate of a fluid having a non-negligible axial mach number using an array of sensors
EP1646864B1 (en) * 2003-07-18 2018-11-07 Rosemount Inc. Process diagnostics
US7523667B2 (en) * 2003-12-23 2009-04-28 Rosemount Inc. Diagnostics of impulse piping in an industrial process
US6945115B1 (en) 2004-03-04 2005-09-20 General Mems Corporation Micromachined capacitive RF pressure sensor
US7577543B2 (en) * 2005-03-11 2009-08-18 Honeywell International Inc. Plugged impulse line detection
US7401522B2 (en) * 2005-05-26 2008-07-22 Rosemount Inc. Pressure sensor using compressible sensor body
US7334484B2 (en) * 2005-05-27 2008-02-26 Rosemount Inc. Line pressure measurement using differential pressure sensor

Also Published As

Publication number Publication date
EP1929264B1 (en) 2018-04-04
JP5743378B2 (ja) 2015-07-01
CA2621313C (en) 2014-11-25
RU2008116824A (ru) 2009-11-10
CA2621313A1 (en) 2007-04-12
CN101273257A (zh) 2008-09-24
US7379792B2 (en) 2008-05-27
JP2009510483A (ja) 2009-03-12
US20070073417A1 (en) 2007-03-29
CN101273257B (zh) 2010-05-19
WO2007040980A1 (en) 2007-04-12
EP1929264A1 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
RU2421698C2 (ru) Измерительный преобразователь давления с акустическим датчиком давления
CN100504310C (zh) 工业过程中的冲击管道诊断
CA2873030C (en) Differential pressure type flowmeter having redundant pressure sensors allowing sensor failure and degradation detection
CA2893281C (en) System and method for ultrasonic metering using an orifice meter fitting
CA2516255C (en) An apparatus and method of measuring gas volume fraction of a fluid flowing within a pipe
RU2407997C2 (ru) Обнаружение повреждения датчика давления
CA2530596C (en) System and method for operating a flow process
US6988411B2 (en) Fluid parameter measurement for industrial sensing applications using acoustic pressures
CN102243124B (zh) 基于谐振频率的压力传感器
CN101495846B (zh) 冗余机械和电子遥控密封系统
US9970799B2 (en) System of ultrasonic consumption meters with pressure sensors
WO2004053430A2 (en) Sensor arrangements and methods of determining a characteristic of a sample fluid using such sensor arrangements
CN111947722B (zh) 体积及质量流量检测方法及装置
CA2506399C (en) An apparatus and method for providing a flow measurement compensated for entrained gas
KR101865801B1 (ko) 인라인 방식의 상수관로 압력 및 유량 원격 계측장치
RU2780030C1 (ru) Счетчик расхода газа с температурной компенсацией
KR100312068B1 (ko) 모뎀 칩을 이용한 시설물의 측정데이터 전송 시스템
WO2019034897A2 (en) FLOWMETER OF CORIOLIS

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170920