RU2421698C2 - Измерительный преобразователь давления с акустическим датчиком давления - Google Patents
Измерительный преобразователь давления с акустическим датчиком давления Download PDFInfo
- Publication number
- RU2421698C2 RU2421698C2 RU2008116824/28A RU2008116824A RU2421698C2 RU 2421698 C2 RU2421698 C2 RU 2421698C2 RU 2008116824/28 A RU2008116824/28 A RU 2008116824/28A RU 2008116824 A RU2008116824 A RU 2008116824A RU 2421698 C2 RU2421698 C2 RU 2421698C2
- Authority
- RU
- Russia
- Prior art keywords
- pressure
- fluid
- sensor
- acoustic
- pressure sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
- G01F1/38—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
- G01F1/383—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule with electrical or electro-mechanical indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L11/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
- G01L11/04—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by acoustic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L27/00—Testing or calibrating of apparatus for measuring fluid pressure
- G01L27/007—Malfunction diagnosis, i.e. diagnosing a sensor defect
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0072—Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Настоящее изобретение относится к измерительным преобразователям, используемым для определения технологических параметров в производственных процессах, в частности, к измерительным преобразователям давления, которые сконфигурированы для измерения давления в таких процессах. Техническим результатом изобретения является получение результата дополнительного измерения линейного давления, предназначенного для использования при диагностическом контроле первичного датчика, непосредственного датчика измерения линейного давления или для использования при определении других технологических параметров. Измерительный преобразователь содержит датчик давления, содержащий в себе удерживающую давление структуру, причем датчик давления сконфигурирован для связи с давлением текучей среды и обеспечения выходного сигнала давления, зависящего от давления процесса, акустический детектор, связанный с удерживающей давление структурой, сконфигурированный для приема акустического сигнала, и измерительную схемотехнику, соединенную с удерживающей давление структурой, и акустическим детектором. Способ измерения технологического параметра производственного процесса заключается в том, что связывают датчик давления с текучей средой процесса через импульсный трубопровод, измеряют давление текучей среды процесса, используя датчик давления, связанный с текучей средой процесса и обеспечивающий выходной сигнал, зависящий от давления процесса, принимают акустический сигнал, который распространяется через удерживающую давление структуру, и получают выходной сигнал, зависящий от давления текучей среды процесса, �
Description
Уровень техники
Настоящее изобретение относится к измерительным преобразователям, используемым для определения технологических параметров в производственных процессах. В частности, настоящее изобретение относится к измерительным преобразователям давления, которые сконфигурированы для измерения давления в таких процессах.
Измерительные преобразователи используют в системах контроля и управления процессами для измерения различных технологических параметров производственных процессов. Измерительным преобразователем одного вида измеряется давление технологической текучей среды в процессе. Давление может быть использовано непосредственно или использовано для определения других технологических параметров, таких как скорость потока. Одна методика, используемая для измерения потока, основана на дифференциальном давлении, создаваемом в технологической текучей среде. Известно соотношение между дифференциальным давлением и скоростью потока. Однако соотношение зависит не только от дифференциального давления. Для более точного определения скорости потока могут быть измерены дополнительные технологические параметры, включая абсолютное или линейное давление, а также температуру. Одна методика, используемая для измерения линейного давления, заключается в применении отдельного датчика линейного давления. Другая методика описана в заявке №11/140681, обычным образом переуступленной настоящему заявителю.
В дополнение к альтернативному способу для измерения линейного давления, рассмотренному выше, имеются другие ситуации, в которых желательно измерять линейное давление. Они включают в себя получение результата дополнительного измерения линейного давления, предназначенного для использования при диагностическом контроле первичного датчика, непосредственного датчика измерения линейного давления или для использования при определении других технологических параметров.
Сущность изобретения
Измерительный преобразователь сконфигурирован для измерения технологического параметра производственного процесса и включает в себя датчик давления, сконфигурированный для связи с давлением текучей среды и обеспечения выходного сигнала, зависящего от давления процесса. Акустический детектор сконфигурирован для приема акустического сигнала от текучей среды. Измерительные схемы соединены с датчиком давления и акустическим детектором, при этом имеют выходной сигнал, зависящий от давления текучей среды.
В другой конфигурации предложен измерительный преобразователь, включающий в себя датчик линейного давления, который измеряет линейное давление на основании акустического сигнала или определяет температуру процесса текучей среды с использованием акустического сигнала в известных условиях давления.
Краткое описание чертежей
На чертежах:
Фиг.1 - график зависимости глубины от скорости акустического сигнала;
Фиг.2 - упрощенный вид измерительных схем, соединенных с удерживающей давление структурой, согласно изобретению;
Фиг.3 - вид, иллюстрирующий периферийное оборудование измерительного преобразователя давления;
Фиг.4 - упрощенная структурная схема, иллюстрирующая компоненты измерительного преобразователя давления по фиг.3;
Фиг.5 - упрощенный разрез измерительного преобразователя по фиг.3, иллюстрирующий датчик давления.
Подробное описание
Как рассматривалось в разделе, относящемся к уровню техники, датчики давления используют при различных производственных процессах и в установках контроля с измерительными преобразователями давления. Для измерения давления используют несколько различных методик. Например, давление, прикладываемое к отклоняющейся мембране, может быть измерено на основании изменения электрической емкости, измеряемой между мембраной и электродом. В других методиках измерения используют, например, результат измерения механического напряжения или других характеристик компонента, которые изменяются в ответ на приложенное давление.
Настоящим изобретением обеспечивается датчик давления, в котором приложенное давление измеряют на основании изменения акустического сигнала, который проходит через текучую среду, находящуюся под давлением. Акустическое входное устройство или источник находится в связи с текучей средой для излучения акустического сигнала. Акустический детектор или приемник принимает сигнал. Измерительные схемы могут быть сконфигурированы для получения на основании принятого сигнала выходного сигнала, зависящего от давления текучей среды.
Согласно настоящему изобретению может использоваться известное соотношение между скоростью акустического сигнала, проходящего через текучую среду, температурой и давлением текучей среды. Например, известно, что скорость звука в морской воде зависит от температуры, солености и давления воды.
На фиг.1 представлен график зависимости глубины в такой среде от скорости. На графике из фиг.1 скорость акустического сигнала сначала уменьшается в зависимости от глубины. Это обусловлено снижением температуры воды. Однако по мере того как на больших глубинах температура воды становится постоянной, скорость начинает возрастать с увеличением глубины (давления). В воде скорость звука находится в пределах от около 1400 до около 1570 м/с (от 4593 до 5151 фут/с). Это составляет около 1,5 км/с (немного меньше 1 мили в секунду) или в 4 раза быстрее, чем звук распространяется в воздухе.
Кроме того, в дисперсионной среде, такой как вода, скорость звука является функцией частоты. Это означает, что распространяющиеся акустические возмущения будут непрерывно изменяться, поскольку каждая частотная составляющая распространяется со своей фазовой скоростью, тогда как энергия возмущения распространяется с групповой скоростью. С другой стороны, воздух представляет собой недисперсионную среду, и скорость звука не зависит от частоты. Поэтому в воздухе скорость переноса энергии и скорость распространения звука являются одинаковыми.
На фиг.2 представлен упрощенный вид датчика 10 давления согласно одному варианту осуществления. Датчик 10 давления содержит удерживающую давление структуру 12, которая содержит текучую среду под давлением технологической текучей среды. Это может быть сама технологическая текучая среда или изолированная текучая среда, которая подвергается воздействию того же самого давления со стороны технологической текучей среды. Акустическое входное устройство или источник 14 связан с удерживающей давление структурой 12 и сконфигурирован для излучения акустического сигнала 16 через текучую среду в удерживающей давление структуре 12. Акустический детектор или приемник 18 принимает акустический сигнал 16 и в ответ формирует выходной сигнал. Акустическое входное устройство 14 и акустический детектор 18 соединены с измерительными схемами 20. Измерительные схемы 20 определяют давление текучей среды в удерживающей давление структуре на основании известного соотношения между давлением текучей среды и изменениями акустического сигнала 16. Также показан необязательный датчик 22 температуры, который обеспечивает сигнал температуры для измерительных схем 20. Этот сигнал температуры может быть использован измерительными схемами 20 для компенсации зависящего от давления выходного сигнала 24 на основании температуры текучей среды и удерживающей давление структуры 12.
В связанном примере конфигурации соотношение между температурой, давлением и акустической сигнатурой, рассмотренное выше, используется в устройстве, показанном на фиг.2, для определения температуры текучей среды в удерживающей давление структуре 12. В такой конфигурации выходной сигнал акустического детектора 18 является зависящим от температуры текучей среды в структуре 12. Если давление текучей среды в структуре 12 является относительно постоянным, измерительные схемы 20 могут формировать выходной сигнал 24, зависящий от температуры текучей среды. В другом примере конфигурации датчик 22 может представлять собой датчик давления, а не датчик температуры. В такой конфигурации измерительные схемы 20 компенсируют выходной сигнал температуры на основании давления, определенного с использованием датчика 22 давления.
Устройство и методика, рассмотренные выше со ссылками на фиг.1 и 2, могут быть полезными для ряда применений в системах контроля и регулирования производственных процессов. Например, для измерительных преобразователей, которые измеряют как дифференциальное давление, так и линейное давление, обычно необходимы два отдельных датчика давления. Один датчик давления конфигурируют для измерения дифференциального давления, тогда как второй датчик давления используют для измерения линейного давления. Хотя этим обеспечивается точное измерение, но для этого требуются большие затраты и дополнительные компоненты. Кроме того, также может ухудшиться характеристика вследствие того, что может быть рассогласование между изолированной наполнительной текучей средой, используемой для изоляции датчиков давления, от технологической текучей среды. Это рассогласование может возникать между двумя сторонами датчика дифференциального давления, которые связаны с технологической текучей средой. В конфигурации на фиг.2 линейное давление может быть измерено с использованием такого же датчика, какой используется для измерения дифференциального давления. В частности, в такой конфигурации удерживающая давление структура 12 содержит устройство с датчиком дифференциального давления. Акустическое входное устройство 14 и детектор 18 связаны с текучей средой в системе, которая находится под давлением технологической текучей среды. Например, эта текучая среда может быть изолированной текучей средой, которая находится между разделительными мембранами измерительного преобразователя давления и центральной мембраной датчика давления. Входное устройство 14 и детектор 18 связаны с трубой, которая заключает в себе изолированную текучую среду, или они могут быть установлены непосредственно на самом датчике давления.
В другом примере конфигурации удерживающая давление структура 12 является частью устройства с датчиками линейного или манометрического давления. В такой конфигурации акустический сигнал 16 может быть использован для осуществления операции диагностического контроля датчика линейного давления. Например, может быть осуществлено сравнение показаний датчика линейного давления с ожидаемыми показаниями от акустического сигнала 16. Если акустический сигнал 16 не является таким, как ожидаемый сигнал, может быть выдано предупреждение, указывающее на то, что устройство работает не так, как предполагалось, и может быть неисправным. Можно сделать так, чтобы такое указание обеспечивалось до возникновения фактического отказа, то есть обеспечивалась возможность проведения предупредительного ремонта. В связанной конфигурации акустический сигнал используется совместно с измеренным линейным давлением для получения оценки температуры текучей среды.
На фиг.3 показано в общих чертах периферийное оборудование системы 32 измерения параметров процесса, включающее в себя измерительный преобразователь 36 давления процесса, сконфигурированный для реализации настоящего изобретения. На фиг.3 показан технологический трубопровод 30, содержащий текучую среду под давлением, связанную с системой 32 измерения параметров процесса, предназначенной для измерения давления процесса. Система 32 измерения параметров процесса включает в себя импульсный трубопровод 34, соединенный с трубопроводом 30. Импульсный трубопровод 34 соединен с измерительным преобразователем 36 давления процесса. Чувствительный элемент 33, такой как измерительная диафрагма, трубка Вентури, расходомерное сопло и т.д., соприкасается с технологической текучей средой в технологическом трубопроводе 30 в месте, находящемся между трубами импульсного трубопровода 34. Чувствительный элемент 33 вызывает изменение давления в текучей среде, когда она проходит через чувствительный элемент 33.
Измерительный преобразователь 36 представляет собой устройство для измерения параметров процесса, которое воспринимает давления процесса в импульсном трубопроводе 34. Измерительный преобразователь 36 определяет дифференциальное давление процесса и преобразует его в стандартизованный сигнал передачи, который является функцией давления процесса.
Контур 38 процесса обеспечивает сигнал питания для измерительного преобразователя 36 с поста 40 управления и двунаправленную связь, и он может быть выполнен в соответствии с рядом протоколов обмена данными процесса. В показанном примере контур 38 процесса представляет собой двухпроводный контур. При нормальной работе двухпроводный контур используется для передачи любой электрической энергии ко всем средствам связи и к измерительному преобразователю 36, а от него сигнала 4-20 мА. Компьютер 42 или другая система обработки информации используется для связи с измерительным преобразователем 36 через модем 44 или другой сетевой интерфейс. Удаленный источник 46 напряжения обычно снабжает электрической энергией измерительный преобразователь 36.
На фиг.4 представлена упрощенная структурная схема иллюстративного измерительного преобразователя 36 давления. В этом примере измерительный преобразователь 36 давления включает в себя сенсорный модуль 52 и плату 72 электроники, соединенные друг с другом через шину 66 данных. Электроника 60 сенсорного модуля соединена с датчиком 56 давления, который воспринимает приложенное дифференциальное давление 54. Линия 58 данных соединяет датчик 56 с аналого-цифровым преобразователем 62. Также показан необязательный датчик 63 температуры, равно как и запоминающее устройство (ЗУ) 64 сенсорного модуля. Плата 72 электроники включает в себя микрокомпьютерную систему 74, запоминающее устройство (ЗУ) 76 модуля электроники, схемы 78 цифроаналогового преобразования сигналов и блок 80 цифровой связи. Схемы 78 цифроаналогового преобразования могут обеспечивать выходной сигнал любого вида, имеющий отношение к датчику давления, включая, например, скорость потока технологической текучей среды, которая определяется на основании дифференциального давления. Выходные сигналы других видов включают в себя указания на давления процесса, диагностические выходные сигналы, температурные данные или другие.
Согласно способам, изложенным в патенте США №6295875 (Frick et al.), измерительный преобразователь 36 давления определяет дифференциальное давление. Однако настоящее изобретение не ограничено такой конфигурацией.
На фиг.4 также показан акустический источник 14, связанный с источником 14, и акустический датчик 18, связанный с датчиком 56 давления. Акустический сигнал 16 от источника проходит через находящуюся под давлением текучую среду в датчике 56 и принимается датчиком 18. Выходной сигнал датчика 18 подается на аналого-цифровой преобразователь 62. В микрокомпьютерной системе 74 принимается оцифрованный сигнал от датчика 18 и определяется линейное давление с использованием способов, рассмотренных выше.
На фиг.5 представлен упрощенный разрез сенсорного модуля 52 согласно одному осуществлению с показом датчика 56 давления. Датчик 56 давления связан с технологической текучей средой через разделительные мембраны 90, которые изолируют технологическую текучую среду от полостей 92. Полости 92 соединены с сенсорным модулем 56 давления по импульсному трубопроводу 94. По существу несжимаемая наполнительная текучая среда заполняет полости 92 и импульсный трубопровод 94. Когда давление от технологической текучей среды прикладывается к мембранам 90, оно передается на датчик 56 давления.
Датчик 56 давления образован из двух половин 114 и 116 датчика давления, и он заполнен предпочтительно хрупким, по существу несжимаемым материалом 105. Мембрана 106 подвешена внутри полости 132, 134, образованной внутри датчика 56. Внешняя стенка полости 132, 134 содержит электроды 146, 144, 148 и 150. В общем, они могут быть названы первичными электродами 144 и 148 и вторичными или дополнительными электродами 146 и 150. Эти электроды образуют конденсаторы относительно подвижной мембраны 106. И вновь конденсаторы могут быть названы первичными и вторичными конденсаторами.
Как показано на фиг.5, различные электроды в датчике 56 соединены с аналого-цифровым преобразователем 62 посредством электрических соединений 103, 104, 108 и 110. Кроме того, отклоняемая мембрана 106 соединена с аналого-цифровым преобразователем 62 посредством соединения 109. Как рассмотрено в патенте США №6295875, дифференциальное давление, прикладываемое к датчику 56, может быть измерено с использованием электродов 144-150.
На фиг.5 также показаны акустический источник 14 и акустический датчик 18, рассмотренные выше. Электрическое соединение 170 предусмотрено от акустического датчика 18 к аналого-цифровому преобразователю 62 сигналов. Акустический источник 14 может работать независимо или может работать под управлением схем в измерительном преобразователе. Например, акустический источник 14 может управляться схемами в сенсорном модуле 52 или на плате 72 электроники из фиг.4.
Как показано на фиг.5, вследствие позиционирования источника 14 и датчика 18 акустический сигнал 16 (не показанный на фиг.5) будет проходить через датчик 56 и проходить через наполнительную текучую среду, содержащуюся в полости датчика. Эта наполнительная текучая среда находится под давлением вследствие связи с технологической текучей средой по импульсному трубопроводу 94 и через разделительную мембрану 90.
Хотя на фиг.4 и 5 показан датчик дифференциального давления с использованием отклоняемой мембраны, настоящее изобретение может быть реализовано с датчиком давления любого вида. Как рассматривалось выше, настоящее изобретение также может быть реализовано с автономным датчиком давления. Кроме того, акустический сигнал может находиться в связи с любой точкой в системе, в которой имеется текучая среда под давлением. Например, акустический сигнал может быть связан с капиллярными трубками 94 или полостями 92, показанными на фиг.5. В дополнение к определению линейного давления, рассмотренного выше, акустический сигнал также может быть использован для измерения шума быстродействующего процесса, что может быть использовано, например, при диагностическом контроле. Акустический сигнал может быть на одной частоте, на изменяющейся частоте или на нескольких частотах для улучшения характеристик измерения. В другом примере конфигурации акустический сигнал 16 образуется непосредственно из шума в рамках самого процесса. В такой конфигурации элемент 14, показанный выше, может содержать второй акустический датчик. В такой конфигурации время пробега шумового сигнала между датчиками 14 и 18 может быть использовано для получения линейного давления. В еще одном примере два датчика используются для измерения дисперсии шума процесса между двумя точками. Затем эта информация может быть использована для получения линейного давления. В еще одной примерной конфигурации предусмотрен дополнительный акустический датчик 200, показанный на фиг.5. Акустический датчик 200 вводят в какое-либо место между источником 14 и приемником 18, например внутрь полости 92. Этот дополнительный датчик 200 может быть использован для обнаружения задержки шума процесса в модуле. Например, существующим датчиком давления можно обнаруживать низкочастотный шум процесса. Дополнительный датчик 200 может быть использован для обнаружения задержки шума процесса в модуле и может быть выполнение сравнение с акустическим сигналом, обнаруживаемым электродом 144 или 148 датчика.
Хотя настоящее изобретение было описано применительно к предпочтительным осуществлениям, специалисты в данной области техники должны признавать, что изменения по форме и в деталях могут быть сделаны без отступления от сущности и объема изобретения.
Claims (19)
1. Измерительный преобразователь, сконфигурированный для измерения технологического параметра производственного процесса, содержащий: датчик давления, содержащий в себе удерживающую давление структуру, причем датчик давления, сконфигурирован для связи с давлением текучей среды и обеспечения выходного сигнала давления, зависящего от давления процесса, причем датчик давления соединен с трубопроводом процесса через импульсный трубопровод, посредством чего структура датчика давления разнесена от трубопровода процесса, который переносит текучую среду процесса, причем импульсный трубопровод переносит изолированную текучую среду, которая связана с текучей средой процесса через разделительную мембрану;
акустический детектор, связанный с удерживающей давление структурой, сконфигурированный для приема акустического сигнала, распространяющегося через удерживающую давление структуру, и обеспечения акустического выходного сигнала; и измерительную схемотехнику, соединенную с удерживающей давление структурой и акустическим детектором, имеющую выходной сигнал, зависящий от давления текучей среды как функцию выходного сигнала давления и акустического выходного сигнала.
акустический детектор, связанный с удерживающей давление структурой, сконфигурированный для приема акустического сигнала, распространяющегося через удерживающую давление структуру, и обеспечения акустического выходного сигнала; и измерительную схемотехнику, соединенную с удерживающей давление структурой и акустическим детектором, имеющую выходной сигнал, зависящий от давления текучей среды как функцию выходного сигнала давления и акустического выходного сигнала.
2. Преобразователь по п.1, в котором датчик давления представляет собой датчик дифференциального давления.
3. Преобразователь по п.2, в котором выходной сигнал, зависящий от давления текучей среды, представляет собой скорость потока.
4. Преобразователь по п.1, в котором датчик давления представляет собой датчик линейного давления.
5. Преобразователь по п.4, в котором измерительная схемотехника сконфигурирована для диагностирования работы датчика линейного давления на основании акустического сигнала.
6. Преобразователь по п.1, в котором измерительная схемотехника вычисляет температуру на основании акустического сигнала.
7. Преобразователь по п.1, включающий в себя датчик температуры, и в котором выходной сигнал, зависящий от давления текучей среды, является также функцией температуры, определяемой датчиком температуры.
8. Преобразователь по п.1, в котором датчик давления включает в себя отклоняемую мембрану.
9. Преобразователь по п.1, включающий в себя акустический источник, связанный с текучей средой, сконфигурированный для излучения акустического сигнала в текучую среду.
10. Преобразователь по п.1, включающий в себя датчик шума процесса, сконфигурированный для обнаружения шума процесса в датчике давления.
11. Преобразователь по п.1, в котором выходной сигнал, зависящий от давления текучей среды, представляет собой линейное давление.
12. Способ измерения технологического параметра производственного процесса, заключающийся в том, что:
связывают датчик давления с текучей средой процесса через импульсный трубопровод, переносящий изолированную текучую среду, которая связана с текучей средой процесса через разделительную мембрану, причем датчик давления содержит удерживающую давление структуру;
измеряют давление текучей среды процесса, используя датчик давления, связанный с текучей средой процесса и обеспечивающий выходной сигнал, зависящий от давления процесса;
принимают акустический сигнал, который распространяется через удерживающую давление структуру; и
получают выходной сигнал, зависящий от давления текучей среды процесса, на основании акустического сигнала и давления процесса.
связывают датчик давления с текучей средой процесса через импульсный трубопровод, переносящий изолированную текучую среду, которая связана с текучей средой процесса через разделительную мембрану, причем датчик давления содержит удерживающую давление структуру;
измеряют давление текучей среды процесса, используя датчик давления, связанный с текучей средой процесса и обеспечивающий выходной сигнал, зависящий от давления процесса;
принимают акустический сигнал, который распространяется через удерживающую давление структуру; и
получают выходной сигнал, зависящий от давления текучей среды процесса, на основании акустического сигнала и давления процесса.
13. Способ по п. 12, в котором измерение давления представляет собой измерение датчиком дифференциального давления.
14. Способ по п.13, в котором выходной сигнал, зависящий от давления текучей среды, представляет собой скорость потока.
15. Способ по п.12, в котором измерение давления представляет собой измерение линейного давления.
16. Способ по п.15, включающий в себя диагностирование работы датчика линейного давления на основании акустического сигнала.
17. Способ по п.12, включающий в себя вычисление температуры на основании акустического сигнала.
18. Способ по п.12, включающий в себя определение температуры, и при этом выходной сигнал, зависящий от давления текучей среды, является также функцией, определяемой температурой.
19. Способ по п.12, в котором выходной сигнал, зависящий от давления текучей среды процесса, основанный на акустическом сигнале, содержит линейное давление текучей среды процесса.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/238,654 | 2005-09-29 | ||
US11/238,654 US7379792B2 (en) | 2005-09-29 | 2005-09-29 | Pressure transmitter with acoustic pressure sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2008116824A RU2008116824A (ru) | 2009-11-10 |
RU2421698C2 true RU2421698C2 (ru) | 2011-06-20 |
Family
ID=37636085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008116824/28A RU2421698C2 (ru) | 2005-09-29 | 2006-09-19 | Измерительный преобразователь давления с акустическим датчиком давления |
Country Status (7)
Country | Link |
---|---|
US (1) | US7379792B2 (ru) |
EP (1) | EP1929264B1 (ru) |
JP (1) | JP5743378B2 (ru) |
CN (1) | CN101273257B (ru) |
CA (1) | CA2621313C (ru) |
RU (1) | RU2421698C2 (ru) |
WO (1) | WO2007040980A1 (ru) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008043467A1 (de) * | 2008-11-04 | 2010-05-06 | Endress + Hauser Gmbh + Co. Kg | Vorrichtung zur Bestimmung und/oder Überwachung eines Drucks |
US8234927B2 (en) * | 2010-06-08 | 2012-08-07 | Rosemount Inc. | Differential pressure sensor with line pressure measurement |
US9470084B2 (en) * | 2010-08-12 | 2016-10-18 | Rosemount Inc. | Method and apparatus for measuring fluid process variable in a well |
US8448519B2 (en) | 2010-10-05 | 2013-05-28 | Rosemount Inc. | Industrial process transmitter with high static pressure isolation diaphragm coupling |
CN102095466B (zh) * | 2010-11-26 | 2012-10-17 | 中国航空工业集团公司北京长城计量测试技术研究所 | 基于活塞发声原理的容积测量方法 |
US9423315B2 (en) | 2013-10-15 | 2016-08-23 | Rosemount Aerospace Inc. | Duplex pressure transducers |
CN104775884B (zh) * | 2014-01-09 | 2019-11-08 | 罗伯特·博世有限公司 | 用于运行内燃机的方法和装置 |
KR102258580B1 (ko) * | 2020-04-16 | 2021-06-01 | 한국원자력연구원 | 압력 트랜스미터 |
Family Cites Families (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2533339A (en) * | 1946-06-22 | 1950-12-12 | Jabez Burns & Sons Inc | Flammable vapor protection |
US3012432A (en) * | 1957-09-23 | 1961-12-12 | Richard H Moore | Leak tester |
GB1023042A (en) * | 1962-05-07 | 1966-03-16 | Wayne Kerr Lab Ltd | Improvements in or relating to pressure responsive apparatus |
US3232712A (en) * | 1962-08-16 | 1966-02-01 | Continental Lab Inc | Gas detector and analyzer |
US3374112A (en) * | 1964-03-05 | 1968-03-19 | Yeda Res & Dev | Method and apparatus for controlled deposition of a thin conductive layer |
US3249833A (en) * | 1964-11-16 | 1966-05-03 | Robert E Vosteen | Capacitor transducer |
US3557621A (en) * | 1969-07-07 | 1971-01-26 | C G S Scient Corp Inc | Variable capacitance detecting devices |
GB1354025A (en) * | 1970-05-25 | 1974-06-05 | Medicor Muevek | Capacitive pressure transducer |
US3924219A (en) * | 1971-12-22 | 1975-12-02 | Minnesota Mining & Mfg | Gas detection device |
US3808480A (en) * | 1973-04-16 | 1974-04-30 | Bunker Ramo | Capacitive pressure transducer |
US4008619A (en) | 1975-11-17 | 1977-02-22 | Mks Instruments, Inc. | Vacuum monitoring |
US4177496A (en) * | 1976-03-12 | 1979-12-04 | Kavlico Corporation | Capacitive pressure transducer |
US4158217A (en) * | 1976-12-02 | 1979-06-12 | Kaylico Corporation | Capacitive pressure transducer with improved electrode |
US4120206A (en) * | 1977-01-17 | 1978-10-17 | Rosemount Inc. | Differential pressure sensor capsule with low acceleration sensitivity |
US4168518A (en) * | 1977-05-10 | 1979-09-18 | Lee Shih Y | Capacitor transducer |
US4227419A (en) * | 1979-09-04 | 1980-10-14 | Kavlico Corporation | Capacitive pressure transducer |
US4244226A (en) * | 1979-10-04 | 1981-01-13 | Honeywell Inc. | Distance measuring apparatus and a differential pressure transmitter utilizing the same |
US4322775A (en) * | 1979-10-29 | 1982-03-30 | Delatorre Leroy C | Capacitive pressure sensor |
US4434451A (en) * | 1979-10-29 | 1984-02-28 | Delatorre Leroy C | Pressure sensors |
US4287553A (en) * | 1980-06-06 | 1981-09-01 | The Bendix Corporation | Capacitive pressure transducer |
US4336567A (en) * | 1980-06-30 | 1982-06-22 | The Bendix Corporation | Differential pressure transducer |
US4370890A (en) * | 1980-10-06 | 1983-02-01 | Rosemount Inc. | Capacitive pressure transducer with isolated sensing diaphragm |
US4358814A (en) * | 1980-10-27 | 1982-11-09 | Setra Systems, Inc. | Capacitive pressure sensor |
US4422335A (en) * | 1981-03-25 | 1983-12-27 | The Bendix Corporation | Pressure transducer |
US4458537A (en) * | 1981-05-11 | 1984-07-10 | Combustion Engineering, Inc. | High accuracy differential pressure capacitive transducer |
US4389895A (en) * | 1981-07-27 | 1983-06-28 | Rosemount Inc. | Capacitance pressure sensor |
US4466290A (en) * | 1981-11-27 | 1984-08-21 | Rosemount Inc. | Apparatus for conveying fluid pressures to a differential pressure transducer |
US4455874A (en) * | 1981-12-28 | 1984-06-26 | Paroscientific, Inc. | Digital pressure transducer |
US4422125A (en) * | 1982-05-21 | 1983-12-20 | The Bendix Corporation | Pressure transducer with an invariable reference capacitor |
DE3238430A1 (de) | 1982-10-16 | 1984-04-19 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Differenzdrucksensor |
US4558184A (en) | 1983-02-24 | 1985-12-10 | At&T Bell Laboratories | Integrated capacitive transducer |
US4490773A (en) * | 1983-12-19 | 1984-12-25 | United Technologies Corporation | Capacitive pressure transducer |
US4542436A (en) * | 1984-04-10 | 1985-09-17 | Johnson Service Company | Linearized capacitive pressure transducer |
US4562742A (en) * | 1984-08-07 | 1986-01-07 | Bell Microcomponents, Inc. | Capacitive pressure transducer |
US4578735A (en) | 1984-10-12 | 1986-03-25 | Knecht Thomas A | Pressure sensing cell using brittle diaphragm |
US4586108A (en) | 1984-10-12 | 1986-04-29 | Rosemount Inc. | Circuit for capacitive sensor made of brittle material |
US4670733A (en) * | 1985-07-01 | 1987-06-02 | Bell Microsensors, Inc. | Differential pressure transducer |
JPS62187820U (ru) * | 1986-05-22 | 1987-11-30 | ||
US4860232A (en) * | 1987-04-22 | 1989-08-22 | Massachusetts Institute Of Technology | Digital technique for precise measurement of variable capacitance |
FR2614986B1 (fr) | 1987-05-07 | 1989-08-18 | Otic Fischer & Porter | Structure de cellule capacitive pour la mesure des pressions differentielles |
US4785669A (en) * | 1987-05-18 | 1988-11-22 | Mks Instruments, Inc. | Absolute capacitance manometers |
US4875369A (en) * | 1987-09-08 | 1989-10-24 | Panex Corporation | Pressure sensor system |
US4945768A (en) * | 1988-05-20 | 1990-08-07 | Parker Electronics, Inc. | Pressure sensor |
US4878012A (en) * | 1988-06-10 | 1989-10-31 | Rosemount Inc. | Charge balanced feedback transmitter |
US4977480A (en) * | 1988-09-14 | 1990-12-11 | Fuji Koki Mfg. Co., Ltd. | Variable-capacitance type sensor and variable-capacitance type sensor system using the same |
US5637302A (en) * | 1988-09-20 | 1997-06-10 | Indena Spa | Extracts of Ginkgo biloba and their methods of preparation |
US4926674A (en) * | 1988-11-03 | 1990-05-22 | Innovex Inc. | Self-zeroing pressure signal generator |
US4951174A (en) * | 1988-12-30 | 1990-08-21 | United Technologies Corporation | Capacitive pressure sensor with third encircling plate |
US5040415A (en) | 1990-06-15 | 1991-08-20 | Rockwell International Corporation | Nonintrusive flow sensing system |
US5194819A (en) * | 1990-08-10 | 1993-03-16 | Setra Systems, Inc. | Linearized capacitance sensor system |
US5094109A (en) * | 1990-12-06 | 1992-03-10 | Rosemount Inc. | Pressure transmitter with stress isolation depression |
US5168419A (en) * | 1991-07-16 | 1992-12-01 | Panex Corporation | Capacitor and pressure transducer |
US5230250A (en) * | 1991-09-03 | 1993-07-27 | Delatorre Leroy C | Capacitor and pressure transducer |
JP3182807B2 (ja) * | 1991-09-20 | 2001-07-03 | 株式会社日立製作所 | 多機能流体計測伝送装置及びそれを用いた流体量計測制御システム |
US5233875A (en) * | 1992-05-04 | 1993-08-10 | Kavlico Corporation | Stable capacitive pressure transducer system |
US5329818A (en) * | 1992-05-28 | 1994-07-19 | Rosemount Inc. | Correction of a pressure indication in a pressure transducer due to variations of an environmental condition |
US5492016A (en) * | 1992-06-15 | 1996-02-20 | Industrial Sensors, Inc. | Capacitive melt pressure measurement with center-mounted electrode post |
JPH06102127A (ja) * | 1992-09-22 | 1994-04-15 | Yokogawa Electric Corp | 圧力・差圧伝送器 |
JP3341091B2 (ja) * | 1993-06-29 | 2002-11-05 | 耕司 戸田 | 超音波変位センサ |
JPH0712667A (ja) * | 1993-06-29 | 1995-01-17 | Hitachi Ltd | 物理量センサおよび物理量センサシステム |
WO1995008759A1 (en) * | 1993-09-24 | 1995-03-30 | Rosemount Inc. | Pressure transmitter isolation diaphragm |
DE4333753A1 (de) | 1993-10-04 | 1994-05-11 | Bosch Gmbh Robert | Kapazitiver Differenzdrucksensor |
US5542300A (en) * | 1994-01-24 | 1996-08-06 | Setra Systems, Inc. | Low cost, center-mounted capacitive pressure sensor |
US5642301A (en) * | 1994-01-25 | 1997-06-24 | Rosemount Inc. | Transmitter with improved compensation |
US5415048A (en) * | 1994-06-27 | 1995-05-16 | Texaco Inc. | Acoustic gas-liquid flow meter |
WO1996017235A1 (en) * | 1994-11-30 | 1996-06-06 | Rosemount Inc. | Pressure transmitter with fill fluid loss detection |
US6484585B1 (en) * | 1995-02-28 | 2002-11-26 | Rosemount Inc. | Pressure sensor for a pressure transmitter |
US5637802A (en) | 1995-02-28 | 1997-06-10 | Rosemount Inc. | Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates |
US5705978A (en) * | 1995-09-29 | 1998-01-06 | Rosemount Inc. | Process control transmitter |
DE19648048C2 (de) * | 1995-11-21 | 2001-11-29 | Fuji Electric Co Ltd | Detektorvorrichtung zur Druckmessung basierend auf gemessenen Kapazitätswerten |
US5757608A (en) * | 1996-01-25 | 1998-05-26 | Alliedsignal Inc. | Compensated pressure transducer |
US6654697B1 (en) * | 1996-03-28 | 2003-11-25 | Rosemount Inc. | Flow measurement with diagnostics |
US5668322A (en) * | 1996-06-13 | 1997-09-16 | Rosemount Inc. | Apparatus for coupling a transmitter to process fluid having a sensor extension selectively positionable at a plurality of angles |
DE19633630A1 (de) | 1996-08-21 | 1998-02-26 | Endress Hauser Gmbh Co | Auswerteeinheit eines Differenzdrucksensors |
US20040015069A1 (en) * | 1996-12-27 | 2004-01-22 | Brown David Lloyd | System for locating inflamed plaque in a vessel |
US5911162A (en) * | 1997-06-20 | 1999-06-08 | Mks Instruments, Inc. | Capacitive pressure transducer with improved electrode support |
JPH1151795A (ja) * | 1997-08-08 | 1999-02-26 | Saginomiya Seisakusho Inc | 半導体圧力センサとその製作方法 |
US6675656B1 (en) | 1998-04-09 | 2004-01-13 | Ploechinger Heinz | Pressure or force sensor structure and method for producing the same |
JP3567089B2 (ja) | 1998-10-12 | 2004-09-15 | 株式会社日立製作所 | 静電容量式圧力センサ |
US6301973B1 (en) * | 1999-04-30 | 2001-10-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Non-intrusive pressure/multipurpose sensor and method |
US6295875B1 (en) * | 1999-05-14 | 2001-10-02 | Rosemount Inc. | Process pressure measurement devices with improved error compensation |
DE69936794T2 (de) | 1999-08-20 | 2008-04-30 | Hitachi, Ltd. | Halbleiterdrucksensor und vorrichtung zur erfassung von drucken |
US6701274B1 (en) * | 1999-08-27 | 2004-03-02 | Rosemount Inc. | Prediction of error magnitude in a pressure transmitter |
US6484107B1 (en) * | 1999-09-28 | 2002-11-19 | Rosemount Inc. | Selectable on-off logic modes for a sensor module |
US6520020B1 (en) * | 2000-01-06 | 2003-02-18 | Rosemount Inc. | Method and apparatus for a direct bonded isolated pressure sensor |
US6425290B2 (en) | 2000-02-11 | 2002-07-30 | Rosemount Inc. | Oil-less differential pressure sensor |
US6662662B1 (en) * | 2000-05-04 | 2003-12-16 | Rosemount, Inc. | Pressure transmitter with improved isolator system |
US6516672B2 (en) * | 2001-05-21 | 2003-02-11 | Rosemount Inc. | Sigma-delta analog to digital converter for capacitive pressure sensor and process transmitter |
US6828801B1 (en) | 2001-10-26 | 2004-12-07 | Welch Allyn, Inc. | Capacitive sensor |
CA2474071C (en) * | 2002-01-23 | 2012-09-18 | Cidra Corporation | Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe |
US7359803B2 (en) * | 2002-01-23 | 2008-04-15 | Cidra Corporation | Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe |
US6675655B2 (en) * | 2002-03-21 | 2004-01-13 | Rosemount Inc. | Pressure transmitter with process coupling |
US6647794B1 (en) | 2002-05-06 | 2003-11-18 | Rosemount Inc. | Absolute pressure sensor |
AU2003287644A1 (en) * | 2002-11-12 | 2004-06-03 | Cidra Corporation | An apparatus having an array of clamp on piezoelectric film sensors for measuring parameters of a process flow within a pipe |
DE10310114A1 (de) * | 2003-03-06 | 2004-09-16 | Robert Bosch Gmbh | Vorrichtung und Verfahren zur hydrostatischen Druckbestimmung in einem Hochdruckbehälter mittels Ultraschalllaufzeitmessung |
EP1631797A2 (en) * | 2003-06-05 | 2006-03-08 | CiDra Corporation | Apparatus for measuring velocity and flow rate of a fluid having a non-negligible axial mach number using an array of sensors |
JP4624351B2 (ja) * | 2003-07-18 | 2011-02-02 | ローズマウント インコーポレイテッド | プロセス診断法 |
US7523667B2 (en) * | 2003-12-23 | 2009-04-28 | Rosemount Inc. | Diagnostics of impulse piping in an industrial process |
US6945115B1 (en) | 2004-03-04 | 2005-09-20 | General Mems Corporation | Micromachined capacitive RF pressure sensor |
US7577543B2 (en) * | 2005-03-11 | 2009-08-18 | Honeywell International Inc. | Plugged impulse line detection |
US7401522B2 (en) * | 2005-05-26 | 2008-07-22 | Rosemount Inc. | Pressure sensor using compressible sensor body |
US7334484B2 (en) * | 2005-05-27 | 2008-02-26 | Rosemount Inc. | Line pressure measurement using differential pressure sensor |
-
2005
- 2005-09-29 US US11/238,654 patent/US7379792B2/en active Active
-
2006
- 2006-09-19 CN CN2006800356927A patent/CN101273257B/zh active Active
- 2006-09-19 RU RU2008116824/28A patent/RU2421698C2/ru not_active IP Right Cessation
- 2006-09-19 WO PCT/US2006/036404 patent/WO2007040980A1/en active Application Filing
- 2006-09-19 JP JP2008538883A patent/JP5743378B2/ja not_active Expired - Fee Related
- 2006-09-19 CA CA2621313A patent/CA2621313C/en not_active Expired - Fee Related
- 2006-09-19 EP EP06814912.9A patent/EP1929264B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP1929264B1 (en) | 2018-04-04 |
US7379792B2 (en) | 2008-05-27 |
CN101273257A (zh) | 2008-09-24 |
WO2007040980A1 (en) | 2007-04-12 |
CA2621313C (en) | 2014-11-25 |
JP5743378B2 (ja) | 2015-07-01 |
CA2621313A1 (en) | 2007-04-12 |
CN101273257B (zh) | 2010-05-19 |
RU2008116824A (ru) | 2009-11-10 |
EP1929264A1 (en) | 2008-06-11 |
US20070073417A1 (en) | 2007-03-29 |
JP2009510483A (ja) | 2009-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2421698C2 (ru) | Измерительный преобразователь давления с акустическим датчиком давления | |
CN100504310C (zh) | 工业过程中的冲击管道诊断 | |
CA2873030C (en) | Differential pressure type flowmeter having redundant pressure sensors allowing sensor failure and degradation detection | |
CA2893281C (en) | System and method for ultrasonic metering using an orifice meter fitting | |
CA2516255C (en) | An apparatus and method of measuring gas volume fraction of a fluid flowing within a pipe | |
CN102243124B (zh) | 基于谐振频率的压力传感器 | |
US6988411B2 (en) | Fluid parameter measurement for industrial sensing applications using acoustic pressures | |
CN101495846B (zh) | 冗余机械和电子遥控密封系统 | |
JP5409965B2 (ja) | ライン圧力測定を伴う差圧センサ | |
US9970799B2 (en) | System of ultrasonic consumption meters with pressure sensors | |
WO2004053430A2 (en) | Sensor arrangements and methods of determining a characteristic of a sample fluid using such sensor arrangements | |
CN111947722B (zh) | 体积及质量流量检测方法及装置 | |
CA2506399C (en) | An apparatus and method for providing a flow measurement compensated for entrained gas | |
KR101865801B1 (ko) | 인라인 방식의 상수관로 압력 및 유량 원격 계측장치 | |
RU2780030C1 (ru) | Счетчик расхода газа с температурной компенсацией | |
KR100312068B1 (ko) | 모뎀 칩을 이용한 시설물의 측정데이터 전송 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170920 |