RU2419148C2 - Автоматизированное распознавание пожаров на поверхности земли и атмосферных явлений, таких как облака, облачная пелена, туман и им подобных, посредством спутниковой системы - Google Patents

Автоматизированное распознавание пожаров на поверхности земли и атмосферных явлений, таких как облака, облачная пелена, туман и им подобных, посредством спутниковой системы Download PDF

Info

Publication number
RU2419148C2
RU2419148C2 RU2009106190/08A RU2009106190A RU2419148C2 RU 2419148 C2 RU2419148 C2 RU 2419148C2 RU 2009106190/08 A RU2009106190/08 A RU 2009106190/08A RU 2009106190 A RU2009106190 A RU 2009106190A RU 2419148 C2 RU2419148 C2 RU 2419148C2
Authority
RU
Russia
Prior art keywords
pixel
earth
spectral radiation
calculated
spectral
Prior art date
Application number
RU2009106190/08A
Other languages
English (en)
Other versions
RU2009106190A (ru
Inventor
Массимо ДЗАВАЛЬИ (IT)
Массимо ДЗАВАЛЬИ
Марио КОСТАНТИНИ (IT)
Марио КОСТАНТИНИ
Original Assignee
Телеспацио С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Телеспацио С.П.А. filed Critical Телеспацио С.П.А.
Publication of RU2009106190A publication Critical patent/RU2009106190A/ru
Application granted granted Critical
Publication of RU2419148C2 publication Critical patent/RU2419148C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Image Processing (AREA)
  • Radiation Pyrometers (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к автоматизированному распознаванию пожаров на поверхности Земли посредством спутниковой системы. Технический результат - повышение достоверности распознавания. Достигается посредством получения многоспектрального изображения Земли в различные моменты времени посредством многоспектрального спутникового датчика, причем каждое многоспектральное изображение представляет собой совокупность односпектральных изображений, каждое из которых соответствует определенной длине волны (λ), при этом каждое односпектральное изображение состоит из пикселей, каждый из которых характеризует спектральную интенсивность излучения (Rλ) соответствующего участка Земли; формирования модели, соответствующей измеренным в разные моменты времени спектральным интенсивностям излучения (Rλ) каждого пикселя многоспектральных изображений и физическим параметрам, характеризующим термодинамические явления на поверхности Земли, включая возможный пожар на ее поверхности Земли, в атмосфере Земли, такие как облака, облачная пелена, туман и им подобные; и связанные с относительными положениями Земли и Солнца; вычисления, для по меньшей одного рассматриваемого пикселя в заданный момент времени, по меньшей мере, физического параметра в модели, отображающей вероятный пожар на поверхности Земли, на основании, по меньшей мере, спектральной интенсивности излучения (Rλ,t) в заданный момент времени, ранее измеренной спектральной интенсивности излучения (Rλ,t-Δt) и того же физического параметра, вычисленного ранее на основании той же модели. 4 н. и 33 з.п. ф-ы, 2 табл., 7 ил.

Description

Область техники
Данное изобретение относится к автоматизированному распознаванию пожаров на поверхности Земли и таких атмосферных явлений, как облака, облачная пелена, туман и им подобных, посредством спутниковой системы, в частности посредством использования многоспектральных данных, полученных многоспектральными датчиками геостационарных или полярных спутниковых систем.
Уровень техники
Известно, что многоспектральные изображения являются изображениями, полученными посредством радиометров дистанционного зондирования (ДЗ), каждый из которых получает цифровое изображение (называемое в дистанционном зондировании «сценой») в небольшом диапазоне видимого спектра, в пределах от 0,4 мкм до 0,7 мкм, называемом «красная-зеленая-синяя (КЗС) область», и доходящее до инфракрасных длин волн от 0,7 мкм до 10 мкм и более, подразделяемых на ближний ИК-диапазон (NIR), средний ИК-диапазон (MIR), дальний ИК-диапазон (FIR) или тепловой ИК-диапазон (TIR). Следовательно, многоспектральное изображение представляет собой совокупность нескольких односпектральных (однополосных или монохромных) изображений одной и той же сцены, каждое из которых получено в соответствии с чувствительностью датчиков к различным длинам волн.
Для многоспектральных полярных датчиков, а в последние годы - и для геостационарных датчиков были разработаны различные способы распознавания пожаров, в основу которых положены пороговые критерии и контекстуальные алгоритмы. Для более подробного освещения этих методов можно сослаться на следующие источники: Kaufman, Y.J., Justice, C.O., Flynn, L.P., Kendal, J.D., Prins, E.M., Giglio, L., Ward, D.E., Menzel, W.P., и Setzer, A.W., 1998, Potential global fire monitoring from EOS-MODIS («Потенциальный глобальный мониторинг пожаров с EOS-MODIS»), Journal of Geophysical Research, 103, 32215-32238, и Giglio, L., Descloitres, J., Justice, C.O., и Kaufman, Y.J. (2003), An enhanced contextual fire detection algorithm for MODIS («Улучшенный контекстуальный алгоритм распознавания пожаров для MODISH, Rem. Sen. Environment, 87:273-282.
Многоспектральные датчики на полярных спутниках отличаются относительно высокой пространственной разрешающей способностью, однако вследствие длительного времени обращения полярных спутников не удается достичь необходимой оперативности для эффективного распознавания пожаров, даже при объединении всех существующих многоспектральных полярных датчиков. Напротив, многоспектральные геостационарные датчики обеспечивают сбор данных с большой частотой, например, каждые 15 минут для датчика MSG SEVIRI (Spinning Enhanced Visible and Infra Red Imager («вращающийся улучшенный формирователь изображения видимого и инфракрасного диапазонов»)), но при этом они отличаются низкой пространственной разрешающей способностью (3×3 км2 и выше для каналов ИК-диапазона), что может препятствовать распознаванию небольших пожаров.
Для преодоления ограничений пространственной разрешающей способности недавно был предложен метод для субпиксельного распознавания пожаров на основании данных геостационарных датчиков, основанный на использовании физической модели и раскрытый в следующих работах: E.Cisbani, A.Bartoloni, M.Marchese, G.Elisei, A.Salvati, Early fire detection system based on multi-temporal images of geostationary and polar satellites («Система раннего распознавания пожаров на базе многовременных изображений, полученных от геостационарных и полярных спутников»). IGARSS 2002, Toronto, 2002, и Calle, F., Casanova, J.L, Moclan, C., Romo, A.J., Constatntini, M., Cisbani, E., Zavagli, M., Greco, В., Latest Algorithms and Scientific Developments for Forest Fire Detection and Monitoring Using MSG/SEVIRI and MODIS sensors («Новейшие алгоритмы и научные разработки для распознавания лесных пожаров и мониторинга с использованием датчиков MSG/SEVIRI и MODIS»), 2005, 118-123.
В частности, была предложена аналитическая Модель Переноса Излучения (МПИ (RTM), которая характеризует явления излучения, определяющие регистрируемую датчиком энергию, выраженную посредством интенсивностей излучения Rλ (Вт/м2/стер/мкм), для каждого диапазона λ в окнах атмосферной прозрачности в ближнем ИК-диапазоне (NIR), среднем ИК-диапазоне (MIR) и тепловом ИК-диапазоне (TIR). Как показано на фиг.1(а), интенсивность излучения Rλ, собранная дистанционным спутниковым датчиком, представляет собой сумму интенсивности солнечного излучения RS,λ, отраженного от Земли, интенсивности атмосферного теплового излучения RA,λ (как восходящих, так и нисходящих составляющих) и, наконец, теплового излучения Земли. При заданной температуре фона ТB коэффициенте излучения ελ поверхности Земли и коэффициенте пропускания атмосферы τλ между поверхностью Земли и датчиком МПИ можно выразить уравнением
Figure 00000001
где Bλ - интенсивность излучения абсолютно черного тела по закону Планка при температуре Т и длине волны λ. Также можно использовать другие модели МПИ (RTM).
Согласно C.C.Borel, W.B.Clodius, J.J.Szymanski и J.P.Theiler. Comparing Robust and Physics-Based Sea Surface Temperature Retrievals for High Resolution, Multi-spectral Thermal Sensors Using one or Multiple Looks («Сравнение робастного и физического поиска информации о температуре поверхности моря для многоспектральных тепловых датчиков с высокой разрешающей способностью, с применением одного или нескольких шагов поиска»), Proc. of the SPIE′99, Conf. 3717-09, основной вклад в коэффициент пропускания τλ в окнах прозрачности атмосферы в ближнем ИК-диапазоне (NIR) и тепловом ИК-диапазоне (TIR) вносит содержание водяного пара в атмосфере, при этом связь между коэффициентом пропускания и водяным паром может быть, соответственно, параметризована следующим выражением:
Figure 00000002
где W - общее количество водяного пара вдоль пути конец/начало до/от исследуемого элемента изображения при зенитном угле ϑ Параметры Аλ, Вλ и Cλ зависят (по меньшей мере) от длины λ волны и могут быть оценены посредством нескольких имитационных моделей MODTRAN (MODerate resolution atmospheric TRANsmission (передача в атмосфере со средней разрешающей способностью) - компьютерной программы, предназначенной для моделирования распространения электромагнитного излучения в атмосфере от 100 до 50000 см-1 при спектральной разрешающей способности в 1 см-1) и регрессионными методами. Возможно рассмотрение других моделей/методов для оценки коэффициента пропускания τλ.
Содержание W водяного пара можно оценивать по руководящему документу для спутника Eumesat Software Users Manual of the SAFNWC/MSG: Scientific part for the PGE06, («Руководство пользователя по программному обеспечению SAFNWC/MSG: научная часть для PGE06») SAF/NWC/INM/SCI/SUM/06, issue 1.0, January 2002, однако могут быть рассмотрены другие методы.
Солнечная составляющая RS,λ может быть рассчитана, как описано в вышеупомянутой работе Potential global fire monitoring from EOS-MODIS («Потенциальный глобальный мониторинг пожаров с EOS-MODIS»)
Figure 00000003
Figure 00000004
где ES,λ - интенсивность солнечного излучения в верхних слоях атмосферы, τλ.(zSE) - коэффициент пропускания вдоль пути между Солнцем и поверхностью Земли, τλ.(zED) - коэффициент пропускания вдоль пути между поверхностью Земли и спутниковым датчиком и ελ - коэффициент излучения поверхности Земли. Для расчета RS,λ могут быть использованы другие модели/методы.
Составляющая RA,λ атмосферной интенсивности излучения описывает сложное явление, характеризующееся наличием дыма, аэрозоля и локальными температурами атмосферы, которые трудно поддаются моделированию. Возможной моделью является следующая:
Figure 00000005
где в соответствии с фиг.1 τλ.(zTOA) - коэффициент пропускания вдоль вертикального пути между поверхностью Земли и верхними слоями атмосферы, τλ.(zED) - коэффициент пропускания вдоль пути между поверхностью Земли и спутниковым датчиком и ελ - коэффициент излучения Земли, как было указано ранее.
Формула Дозье (Dozier), приведенная в работе J.Dozier, A Method for satellite identification of surface temperature fields of subpixel resolution («Способ спутниковой идентификации температурных полей поверхности в субпиксельном разрешении»), Remote Sensing of Environment, 11 (1981) 221-229, применительно к уравнению (1) (или к другим моделям МПИ (RTM)), позволяет выполнить субпиксельное описание радиационного процесса с учетом распространения пожара (доля f пикселя в пикселе интенсивности излучения, полученном спутниковым датчиком) и температуры ТF пожара:
Figure 00000006
где εF;λ и εB;λ - соответственно коэффициенты излучения пожара и фона при длине волны λ.
В соответствии с вышеупомянутой работой Early fire detection system based on multi-temporal images of geostationary and polar satellites («Система раннего распознавания пожаров на базе многовременных изображений, полученных от геостационарных и полярных спутников»), если рассматривать две последовательных процедуры сбора данных, то формула (5) Дозье может быть записана следующим образом:
Figure 00000007
где t и t-Δt обозначают два рядом расположенных момента времени сбора данных, причем Δf=ft-ft-Δt, и где сделаны следующие допущения:
- температура фона является постоянной между двумя идущими подряд процедурами сбора данных (в пределах 15 минут для данных MSG SEVIRI);
- коэффициент излучения пожара такой же, как коэффициент излучения негорящей поверхности и
- солнечная и атмосферная составляющие (RS,λ, RA,λ) считаются постоянными между двумя идущими подряд процедурами сбора данных (в пределах 15 минут для данных MSG SEVIRI).
Представленная модель МПИ (RTM) (1) и уравнения (2), (3), (4), (5), (6) являются достоверными только в случае отсутствия облаков в исследуемом объекте наблюдения. Следовательно, необходима надежная процедура маскирования облаков для распознавания полученных данных, которые совместимы с допущениями физической модели. Для маскирования облаков было разработано множество способов с использованием полярных или геостационарных датчиков. По существу, все эти способы были основаны на применении пороговых критериев для установления аналитической связи между различными диапазонами одной процедуры сбора данных. Способы для отыскания подобных связей между спектральными диапазонами могут быть основаны на физических моделях или на способах обучения, основанных на нейронных сетях, байесовских сетях, вспомогательных машинах для обработки векторных данных, каждый из которых требует этапа предварительной обработки для системного обучения. В литературе также известно о контекстуальных способах, которые используют пространственную информацию.
Цель и сущность изобретения
Заявитель отмечает, что анализ, проведенный в вышеупомянутой работе Early fire detection system based on multi-temporal images of geostationary and polar satellites («Система раннего распознавания пожаров на базе многовременных изображений, полученных со спутников на геостационарных и полярных орбитах») и представленный уравнением (6), где используются две идущих подряд процедуры сбора данных, страдает от грубых приближений и больших ограничений, которые приводят к результатам, неудовлетворительным для достоверного применения. В частности, тогда как атмосферный вклад в модели МПИ (RTM) можно считать медленно изменяющимся во времени, оценка атмосферного вклада RA,λ, заданная уравнением (4) в сочетании с уравнением (2) в модели МПИ (RTM), страдает большой неопределенностью вследствие наличия шума и неточности модели, а нелинейная форма модели, заданная уравнением (5), усиливает эту неопределенность, что делает оценку параметров пожара недостоверной.
Кроме того, заявитель также отмечает, что при каждой новой процедуре сбора данных решается уравнение (6) и проводится оценка Δf, ТF и ТB без использования ранее вычисленных результатов, т.е. значений Δf, ТF и ТB, вычисленных для предыдущих процедур сбора данных.
Задачей данного изобретения является обеспечение усовершенствованного автоматизированного способа распознавания пожаров на основании геостационарных спутниковых многоспектральных данных, в котором отсутствуют недостатки известных способов.
Эта задача решена в данном изобретении, которое относится к способу автоматизированного распознавания пожаров на поверхности Земли и таких атмосферных явлений, как облака, облачная пелена, туман и им подобные, посредством спутниковой системы, как это раскрыто в прилагаемой формуле изобретения.
Данное изобретение основано на выводах заявителя о том, что многие физические величины в уравнении (1), такие как атмосферный вклад RA,λ, солнечный вклад RS,λ коэффициенты пропускания τλ и коэффициенты излучения ελ в высокой степени коррелируются во времени. По этой причине сведения, полученные в результате множества процедур сбора данных об одной и той же сцене, и их обработка позволяют получать интересующую информацию, например, о наличии пожаров, облаков и выполнять оценки физических параметров с высокой точностью и устойчивостью по сравнению с рассмотрением только одной или двух процедур сбора данных.
В частности, в данном изобретении вышеуказанная цель достигается за счет использования в дополнение к спектральной и пространственной информации также временной информации, заключающейся в очень частых процедурах сбора данных, выполняемых геостационарными датчиками, для того чтобы надежно и точно распознавать даже небольшие пожары (значительно меньшие, чем позволяет пространственное разрешение датчиков), облака и температуру Земли. В частности, в основу данного изобретения положено комбинированное использование физической модели процесса переноса излучения и чисто математического адаптивного расчетного алгоритма для преобразования (решения) модели МПИ (RTM), описываемой уравнениями (1) и (5), с использованием большого количества процедур сбора данных, значительно большего, чем два. Что касается способа, в основу которого положено уравнение (6), то этот способ обратного преобразования построен на множестве процедур сбора данных, а также спектральной и пространственной информации, что позволяет оценивать физические параметры с высокой точностью и устойчивостью.
Краткое описание чертежей
Далее для лучшего понимания данного изобретения предпочтительные варианты реализации, приведенные только в качестве примера, которые не должны быть истолкованы как ограничительные, будут описаны со ссылкой на прилагаемые сопроводительные чертежи, на которых
на фиг.1(а) схематически показаны различные составляющие интенсивности излучения, замеряемой спутниковым датчиком;
на фиг.1(b) показана геометрия нисходящего теплового излучения, создаваемого атмосферой;
на фиг.2(а) показана интенсивность излучения области Земли с последовательностью пожарной активности, замеряемая датчиком MSG/SEVIRI в течение дня;
на фиг.2(b) и 2(с) показаны соответственно оценка температуры фона и пожарной активности в области Земли согласно фиг.2(а) в соответствии с первым предпочтительным вариантом реализации изобретения;
на фиг.3(а) и 3(b) показаны графики интенсивностей излучения области Земли, измеренных и теоретически найденных в соответствии со вторым предпочтительным вариантом реализации данного изобретения;
на фиг.4 показана таблица с представленными вероятностями распознавания пожаров в соответствии с полной площадью горения, согласно заявленному изобретению и
на фиг.5 показана таблица, представляющая долю ошибочного распознавания, соответствующего оценке распространения пожаров, в соответствии с заявленным изобретением.
Подробное раскрытие вариантов реализации заявленного изобретения
Последующее описание обеспечивает для специалистов в данной области техники возможность реализации и применения заявленного изобретения. Специалистам будут очевидны различные модификации данных вариантов реализации, не превышающие объем правовой охраны заявленного изобретения. Таким образом, данное изобретение не ограничивается приведенными вариантами реализации, в самых широких пределах соответствует принципам и признакам, раскрытым в настоящем документе и определенным в прилагаемой формуле изобретения.
Чтобы повысить достоверность оценки параметров пожара, в данном изобретении удобно использовать разностную или, более точно, конечно-разностную форму модели МПИ (RTM) Дозье, где рассматриваются разности интенсивностей излучения между двумя близкими по времени процедурами сбора данных:
Figure 00000008
В уравнении (7) атмосферной составляющей RA,λ пренебрегают, поскольку она считается неизменной в пределах небольшого числа процедур сбора данных (порядка десятков минут). Кроме того, поскольку рассматриваются различные диапазоны, то спектрально некоррелированная часть возмущений в уравнении (7) отфильтровывается. Это уравнение может рассматриваться для каналов SEVIRI в окнах прозрачности атмосферы для формирования имеющей решение системы уравнений.
Чтобы устранить грубые аппроксимации, влияющие на уравнение (6), и положенные в его основу допущения, вводится несколько параметров. Фактически, температуры фона TB,t, и TB,t-Δt, в различные моменты времени считают различными, солнечные составляющие RS,λ,t, и RS,λ,t-Δt  игнорируют, а коэффициенты излучения пожара и фона εF,λ и εB,λ считают различными.
Уравнение (7) имеет больше неизвестных величин, чем уравнение (6), и может быть решено методом динамической системы. Фактически, разностное (или конечно-разностное) уравнение (7) модели МПИ (RTM) Дозье может рассматриваться как динамическая система с переменными состояния ft и TB,t:
Figure 00000009
где t и t-Δt обозначают два близко расположенных момента времени сбора данных, ΔRλ,t=Rλ,t-Rλ,t-Δt, ΔRS,λ,t=RS,λ,t-RS,λ,t-Δt и Λ - это группа длин волн, соответствующих каналам, доступным в окнах прозрачности атмосферы.
Динамическое уравнение (8) описывает динамическое поведение во времени модели МПИ (RTM) Дозье, где величины (ft и TB,t) в момент времени t можно оценить, зная величины параметров, вычисленные для предшествующего момента времени t-Δt. В частности, например, солнечную составляющую можно вычислить посредством уравнения (3), а коэффициенты излучения - как раскрыто в вышеупомянутой работе Early fire detection system based on multi-temporal images of geostationary and polar satellites («Система раннего распознавания пожаров на базе многовременных изображений, полученных со спутников на геостационарных и полярных орбитах»), однако можно рассмотреть и другие способы/модели. Например, коэффициент пропускания можно оценить посредством параметризации, подобно тому, как это сделано в уравнении (2). Анализ чувствительности уравнения (8) и испытание на фактических данных показали, что для увеличения точности оценки доли пикселя температуру ТF пожара можно считать фиксированной (например, приблизительно 700К). Однако для выполнения дальнейшего обобщения динамического уравнения (8) температуру ТF пожара можно считать неизвестной величиной.
Метод динамической системы, выраженный уравнением (8), представляет собой физическую модель процесса переноса излучения.
Введение дополнительных неизвестных величин, как показано в уравнении (7), и применение метода динамической системы, представленного в уравнении (8), позволяет вычислить долю пикселя и температуру фона с высокой точностью и устойчивостью по сравнению с методом, в основе которого лежит уравнение (6).
При каждой процедуре сбора данных для решения уравнения (8) и оценки переменных состояния ft и TB,t требуется по меньшей мере два диапазона.
Если доступны дополнительные каналы, их использование делает данное решение более точным. Канал среднего ИК-диапазона (MIR) (длина волны 3,9 мкм) является особенно чувствительным к наличию пожаров, и он используется в каждом алгоритме для распознавания пожара дистанционными датчиками. К сожалению, в датчике SEVIRI канал среднего ИК-диапазона (MIR) имеет низкий уровень насыщения, который не позволяет использовать его для мониторинга крупных пожаров. Уравнение (8) может быть решено, даже если канал среднего ИК-диапазона (MIR) не может использоваться из-за его насыщенности. Кроме того, решение уравнения (8) является особенно устойчивым при пробелах в данных, возникающих, когда некоторые процедуры сбора данных отсутствуют или их невозможно осуществить вследствие облачного покрова. Фактически, параметры пожара можно оценить посредством использования достаточно близких процедур сбора данных вместо двух следующих непосредственно друг за другом процедур сбора данных.
Точность оценки доли ft пикселя может быть значительно повышена, если колебания, связанные с дневным периодом, подавить посредством фильтра верхних частот. Эта фильтрация выполняется посредством удаления из последней доли пикселя, вычисленной посредством уравнения (8), средней из N предшествующих, идущих подряд, имеющихся долей пикселя (например, 5 долей пикселя будет достаточно):
Figure 00000010
Фильтрованная доля пикселя
Figure 00000011
успешно используется для распознавания пожаров. Фактическая точность вычисления фильтрованной доли пикселя, полученной с использованием четырех диапазонов датчика SEVIRI/MSG (1 канал среднего ИК-диапазона (MIR) и 3 канала теплового ИК-диапазона (TIR)) в окнах прозрачности атмосферы составляет около 10-5.
На фиг.2(а) показаны интенсивности излучения SEVIRI (яркостная температура среднего ИК-диапазона и теплового ИК-диапазона 3,9; 8,7; 10,8; 12 мкм), измеренные приблизительно в течение дня в пикселе с последовательным наличием пожара, тогда как на фиг.2(b) и 2(с) соответственно показаны соответствующие оценка температуры фона и оценка доли пикселя.
Пожар распознается, когда фильтрованная доля пикселя
Figure 00000012
, превышает заданное пороговое значение. Хороший компромисс между вероятностями распознавания и ложной тревоги получен при пороговом значении, соответствующем размеру площади действующего пожара, составляющей около 2000 м2, при использовании данных MSG/SEVIRI.
Как было отмечено ранее, точность оценки параметров пожара, распознавания и характеристик ложной тревоги значительно снижается, когда присутствуют облака, границы облачности, легкая облачность, облачная пелена, туман (или тому подобное) и условия с низким коэффициентом пропускания атмосферы. Надежная процедура маскирования облаков является необходимой для идентификации результатов, которые совместимы с допущениями физической модели.
Для распознавания этих неблагоприятных атмосферных условий предложен адаптивный расчетный алгоритм, который использует временную информацию и корреляции, содержащиеся в большом количестве процедур сбора данных для того, чтобы выявить облака и пожары.
Идея заключается в том, что интенсивности излучения изменяются весьма медленно в течение дня и имеют собственную периодичность приблизительно в течение одного дня, тогда как наличие облаков и/или пожаров добавляет высокочастотные колебания, которые также включают пробелы в данных. Квазипериодичность наблюдаемых интенсивностей излучения в течение дня при чистом небе и отсутствии пожаров можно смоделировать с использованием нескольких гармонических функций, при этом данную модель нужно адаптировать для отслеживания сезонных и других медленных изменений.
В частности, адаптивный расчетный алгоритм позволяет реализовать адаптивную расчетную модель, в которой при использовании данных SEVIRI/MSG рассматривается 24-часовая последовательность спектральной интенсивности излучения, сформированная на основании результатов 96 процедур сбора данных, осуществлявшихся каждые 15 минут. Данная модель основана на оценке и фильтрации спектральной характеристики 24-часовой последовательности спектральной интенсивности излучения. Оценка данных спектров выполняется посредством дискретного преобразования Фурье, затем фильтр нижних частот выбирает интересующие гармоники, и наконец, выполняется обратное преобразование фильтрованного по нижним частотам сигнала. Адаптивная расчетная модель представляет собой фильтрованный по нижним частотам сигнал с обратным преобразованием, который может обеспечить расчетные значения интенсивности излучения.
Далее приведено пошаговое описание адаптивного расчетного алгоритма.
Первый шаг заключается в формировании для каждого пикселя вектора hλ(hλ(n), n=0,…,95), содержащего последовательность из 96 спектральных последовательных по времени интенсивностей излучения Rλ, для 24-часового интервала, которые не обязательно измерены в течение одних и тех же суток. Если в некоторые моменты процедура сбора данных неосуществима, то относительные спектральные интенсивности излучения можно вычислить посредством интерполяции на основании смежных сборов данных.
Фактически, для каждого пикселя требуется несколько измеренных спутниковым датчиком в разные моменты времени интенсивностей излучения, на которые не влияет воздействие облаков или пожаров.
В частности, удобно сформировать вектор hλ на основании рассмотрения нескольких смежных дней. Процедуру сбора данных, осуществленную при отсутствии облаков, для каждого векторного элемента можно распознать как процедуру с максимальным значением спектральной интенсивности излучения в тепловом ИК-диапазоне (TIR) среди соответствующих этому же векторному элементу в рассматриваемые дни. Аналогичный критерий принят для распознавания процедур сбора данных, осуществленных при отсутствии пожара, в среднем ИК-диапазоне (MIR). Процедуру сбора данных, осуществленную при отсутствии пожара, для каждого уже выбранного векторного элемента с отсутствием облаков можно распознать как процедуру с минимальным значением спектральной интенсивности излучения в среднем ИК-диапазоне (MIR) среди соответствующих этому же векторному элементу в рассматриваемые дни.
Второй шаг адаптивного расчетного алгоритма заключается в вычислении дискретного преобразования Фурье (ДПФ) вектора hλ, с получением вектора Нλ с 96-ю элементами, определяемого как:
Figure 00000013
Третий шаг заключается в вычислении адаптивной расчетной модели, относящейся к микрометровому диапазону λ. Адаптивная расчетная модель представляет собой вектор mλ, состоящий из 96 элементов и определяемый как
Figure 00000014
В частности, mλ представляет собой обратное дискретное преобразование Фурье вектора hλ, отфильтрованного по нижним частотам дискретного преобразования Фурье. Фильтр нижних частот выбирает непрерывный компонент (гармонику 0) и первые А гармоник (гармоники 1, 2, …, А) дискретного преобразования Фурье вектора hλ. Например, при А=2 данная модель является достаточно достоверной, чтобы соответствовать тренду интенсивности излучения при отсутствии облаков в течение 24 часов.
Каждая n-я выборка модели mλ содержит расчетное значение для получения спектральной интенсивности излучения за заданный интервал времени в течение дня. По этой причине необходимо ввести индекс
Figure 00000015
, отмечающий элемент модели mλ для последней процедуры сбора данных. В частности, допустим, что к текущей процедуре сбора данных в момент времени t относится индекс
Figure 00000016
, тогда расчетная интенсивность излучения в момент времени t задается значением
Figure 00000017
.
Figure 00000018
На четвертом шаге адаптивного расчетного алгоритма выполняют распознавание облако/пожар и проверку, есть ли отличие расчетной спектральной интенсивности излучения RPRD,λ соответствующей измеренной спектральной интенсивности излучения Rλ, с использованием некоторых пороговых значений. При распознавании облаков учитываются данные, измеренные при 10,8 мкм или при 12,0 мкм, тогда как при распознавании пожаров учитываются данные, измеренные при 3,9 мкм.
В частности, в подобной процедуре распознавания используются три пороговых значения. Первое пороговое значение thDET,10.8 и второе пороговое значение thDET,12 используются для распознавания облаков, что позволяет сравнить расчетные значения при 10,8 мкм или при 12 мкм и спектральные интенсивности излучения, измеренные в аналогичных диапазонах. Третье пороговое значение thDET,3.9 используется для распознавания пожара аналогичным способом в диапазоне 3,9 мкм.
Более подробно, сравнением расчетного значения RPRD,λ с измеренной спектральной интенсивностью излучения Rλ облако распознается,
- если RPRD,10.8-R10.8>thDET,10.8 или
- если RPRD,12-R12>thDET,12,
и пожар распознается, если также было распознано облако,
- если R3.9-RPRD,3.9>thDET,3.9
Адаптивный расчетный алгоритм позволяет безошибочно распознавать два различных типа облачности: густую и легкую облачность.
На фиг.3(а) и 3(b) показаны графики интенсивностей излучения, измеренных и рассчитанных согласно адаптивному расчетному алгоритму в течение облачных дней. В частности, на фиг.3(а) показано распознавание облачности при отсутствии пожара, тогда как на фиг.3(b) показано распознавание и облачности, и пожаров.
Пятый шаг адаптивного расчетного алгоритма заключается в обновлении вектора hλ для отслеживания сезонных и другие медленных изменений интенсивностей излучения. Если сбор данных является достоверным и при этом не идентифицируется пожар или облако, то он используется для обновления вектора hλ. В этой процедуре также используются три пороговых значения thUPD,10.8, thUPD,12 и thUPD,3.9 идентификации достоверных данных, которые нужно использовать для обновления вектора hλ.
В частности, измеренные интенсивности излучения R10.8, R12 и R3.9 считаются достоверными, если не выявляются аномалии:
- если RPRD,10.8-R10.8>thUPD,10.8, то выявляется аномалия при 10,8 мкм;
- если RPRD,12-R12>thUPD,12, то выявляется аномалия при 12 мкм;
- если R3.9<RPRD,3.9-thUPD,3.9 или R3.9> RPRD,3.9+thUPD,3.9, то выявляется аномалия при 3,9 мкм.
Если текущая интенсивность излучения Rλ является достоверной, то она заменяет в векторе hλ интенсивность излучения, содержащуюся в позиции
Figure 00000019
(индекс, относящийся к текущему массиву данных Rλ), в противном случае расчетная интенсивность излучения RPRD,λ заменяет в векторе hλ значение интенсивности излучения, содержащееся в позиции
Figure 00000020
При каждой новой процедуре сбора данных указатель
Figure 00000021
увеличивается по модулю 96, при этом вышеописанная последовательность действий повторяется, начиная со второго шага адаптивного прогностического алгоритма.
Отметим, что данный алгоритм может быть обобщен, при этом к процедурам сбора данных, выполненных в период времени до последней процедуры сбора данных, также можно применить тестирование на достоверность интенсивностей излучения или на наличие пожаров, чтобы уточнить ранее полученные результаты, также основанные на новых данных, по мере того как они становятся доступными.
Данная адаптивная расчетная модель обладает высокими возможностями отслеживания даже для длительной последовательности процедур сбора данных, на которой отражается влияние облачного покрова или отсутствия данных.
Адаптивный расчетный алгоритм используется в качестве шага предварительной обработки для определения условия возможности применения физической модели. Если в исследуемом пикселе с помощью адаптивного прогностического алгоритма облака не выявлены, то, наряду с адаптивной расчетной моделью, также может использоваться физическая модель для распознавания пожаров и оценки размера пожара (доля ft пикселя), а также температуры ТB фона; в противном случае, когда исследуемый пиксель покрыт облачностью, только адаптивный расчетный алгоритм еще может выявлять мощные пожары. Пример этого второго случая показан на фиг.3(b), где пожар выявлен под легкой облачностью. Исследование диапазона 10,8 мкм показало наличие облаков, которые были правильно распознаны посредством адаптивного расчетного алгоритма. Колебания результатов обусловлены чередованием появления небольших облаков и чистого неба. Посредством адаптивного расчетного алгоритма выявляется крупный пожар, несмотря на наличие облаков и невозможность использовать физическую модель.
Проверка достоверности способа автоматизированного распознавания пожаров, раскрытого в данном документе, выполнялась с использованием истинных наземных данных, относящихся к итальянским регионам Сардиния, Лацио и Калабрия, обеспеченных Департаментом гражданской защиты Италии. Рассматривались два периода - период из 15 последовательных дней в июле 2004 года и период из 15 последовательных дней в августе 2005 года. Эти периоды характеризовались незначительно облачными днями и множественными пожарами, в частности, на площадях, превышающих один гектар, произошло 286 пожаров.
Проверка достоверности выполнялась сравнением результатов, полученных способом автоматизированного распознавания пожаров с фактическими наземными данными. В частности, как официально сообщалось в реальных наземных данных, по классификации пожары были разбиты на 5 групп в соответствии с размером площади горения. В этом отношении важно отметить, что способ автоматизированного распознавания пожаров определяет размер линии фронта пламени, который является размером реально активного пожара и который значительно меньше общей площади горения, тогда как фактические наземные данные сообщали только о размере общей площади горения.
Для каждого класса размера площади горения была проведена оценка вероятности распознавания в виде коэффициента распознавания: Pd=NTP/(NTP+NFN), где NTR - число истинных положительных случаев, а NFN - число ложных отрицательных случаев. Полученные результаты сведены в таблицу, показанную на фиг.4. Как показано на фиг.4, вероятность распознавания пожаров увеличивается с увеличением общей площади горения. Оценка вероятности ложной тревоги выполнялась посредством коэффициента ложной тревоги: Pfa=NFP/(NFP+NTN), где NFP - число ложных положительных случаев, a NTN - число истинных отрицательных случаев.
Вероятность ложной тревоги не зависит от размера пожара, фактически, оценка, полученная в результате выполнения проверки достоверности, составляет Pfa=5,36×10-6, эта величина означает, что только 5 пикселей на миллион ошибочно распознаны как пожары.
Другим важным показателем достоверности способа автоматизированного распознавания пожаров является коэффициент ложного распознавания, определяемый уравнением Рfd=NFP/(NFP+NTP). Эта величина зависит от рассчитанного размера пожара, т.е. от рассчитанной доли (ft) пикселя. На фиг.5 показана таблица, представляющая процент ложного распознавания для различных оцененных размеров пожаров. Как показано на фиг.5, процент ложного распознавания увеличивается с увеличением оцененных размеров пожаров.
Из вышеизложенного можно сделать вывод, что раскрытый здесь способ автоматизированного распознавания пожаров позволяет выполнять достоверное и устойчивое распознавание пожара при наличии или отсутствии облачности. В частности, при отсутствии облачности, закрывающей исследуемый пиксель, данный способ может достоверно выявить пожар и оценить его размер, а также температуру фона, а также, несмотря на наличие легкой облачности, он все еще обладает способностью выявлять пожары. Кроме того, адаптивный расчетный алгоритм позволяет правильно выявить наличие легкой и густой облачности в исследуемом пикселе.
В заключение следует отметить, что очевидно, что возможны различные модификации и изменения данного изобретения, при этом они все подпадают под объем правовой охраны данного изобретения, определенный прилагаемой формулой изобретения.

Claims (37)

1. Способ автоматизированного распознавания пожаров на поверхности Земли посредством спутниковой системы, содержащий:
получение многоспектральных изображений Земли в различные моменты времени посредством многоспектрального спутникового датчика, причем каждое многоспектральное изображение представляет собой совокупность односпектральных изображений, каждое из которых соответствует определенной длине волны (λ), при этом каждое односпектральное изображение состоит из пикселей, каждый из которых отображает спектральную интенсивность излучения (Rλ) соответствующего участка Земли;
создание физической модели, связывающей спектральные интенсивности излучения (Rλ) пикселей в многоспектральных изображениях, полученных в различные моменты времени, с физическими параметрами, отображающими термодинамические явления на поверхности Земли, включая возможный пожар на ее поверхности; в атмосфере Земли - такие как облака, облачная пелена или туман; и связанные с относительными положениями Земли и Солнца;
отличающийся тем, что содержит следующие действия:
вычисляют в физической модели для по меньшей мере одного рассматриваемого пикселя в заданный момент времени (t) температуру (TB,t) фона и долю (ft) пикселя, отображающие распространение вероятного пожара на участке поверхности Земли, соответствующем рассматриваемому пикселю, на основании спектральной интенсивности излучения (Rλ,t) рассматриваемого пикселя в заданный момент времени (t), ранее измеренной спектральной интенсивности излучения (Rλ,t-Δt) рассматриваемого пикселя, доли (ft-Δt) пикселя, вычисленной ранее в этой же физической модели для этого же рассматриваемого пикселя; и
распознают пожар на участке поверхности Земли на основании доли (ft) пикселя, вычисленной в физической модели для соответствующего пикселя.
2. Способ по п.1, в котором создание физической модели содержит:
создание динамической многоспектральной системы уравнений, содержащей по меньшей мере одно односпектральное уравнение, соответствующее определенной длине волны (λ), и связывающей измеренные в различные моменты времени спектральные интенсивности излучения (Rλ) рассматриваемых пикселей односпектральных изображений с физическими параметрами в эти же моменты времени,
и в котором вычисление в физической модели для по меньшей мере одного рассматриваемого пикселя в заданный момент времени (t) температуры (TB,t) фона и доли (ft) пикселя содержит
вычисление доли (ft) пикселя и температуры (TB,t) фона посредством решения динамической многоспектральной системы уравнений в заданный момент времени (t) для рассматриваемого пикселя на основании доли (ft-Δt) пикселя и температуры (TB,t-Δt) фона, вычисленных ранее решением динамической многоспектральной системы уравнений в предыдущий момент времени (t-Δt) для этого же рассматриваемого пикселя.
3. Способ по п.2, в котором односпектральные уравнения в динамической многоспектральной системе уравнений основаны на различиях между уравнениями, связывающими спектральные интенсивности излучения (Rλ), измеренные в различные моменты времени, и физические параметры в эти же моменты времени.
4. Способ по п.2 или 3, в котором физические параметры в данной физической модели дополнительно включают в себя один или более из следующих параметров:
температура (TF) пожара;
интенсивность излучения (RS,λ) Солнца;
коэффициент излучения (εF,λ) пожара;
коэффициент излучения (εB,λ) фона;
коэффициент пропускания (τλ) атмосферы Земли.
5. Способ по п.4, в котором динамическая многоспектральная система уравнений является следующей:
Figure 00000022

где t и t-Δt - это два различных момента времени; λ - рассматриваемая длина волны; ft и ft-Δt - доля пикселя; TB,t и TB,t-Δt - температура фона; TF - температура пожара; ΔRλ,t=Rλ,t-Rλ,t-Δt - разность спектральной интенсивности излучения; ΔRS,λ,t=RS,λ,t-RS,λ,t-Δt - разность интенсивности излучения Солнца; εF,λ - коэффициент излучения пожара; εB,λ - коэффициент излучения фона; τλ,t - коэффициент пропускания атмосферы Земли и Λ - ряд рассматриваемых длин (λ) волн; и в котором
долю (ft) пикселя и температуру (TB,t) фона в момент времени t получают решением динамической многоспектральной системы уравнений;
разность (ΔRλ,t) спектральной интенсивности излучения вычисляют непосредственно на основании полученных многоспектральных изображений;
температуру (TF) пожара, разность (ΔRS,λ,t) интенсивности излучения Солнца, коэффициент излучения (εF,λ) пожара, коэффициент излучения (εB,λ) фона и коэффициент пропускания (τλ,t) атмосферы Земли вычисляют независимо;
долю (ft-Δt) пикселя и температуру (TB,t-Δt) фона в момент времени t-Δt вычисляют решением динамической многоспектральной системы уравнений на предшествующей итерации, при этом на первой итерации распространению (ft-Δt) пожара и температуре (TB,t-Δt) фона независимо присваивают соответствующие значения.
6. Способ по любому из пп.1 - 3, 5, в котором распознавание пожара на участке поверхности Земли на основании доли (ft) пикселя, вычисленной в физической модели для соответствующего пикселя, содержит следующие действия:
фильтруют долю (ft) пикселя, вычисленную в физической модели для пикселя, посредством вычитания из вычисленной доли (ft) пикселя значения, соответствующего отфильтрованной по нижним частотам последовательности ранее вычисленных долей (ft-Δt) пикселя; и
распознают пожар на участке поверхности Земли, если отфильтрованная доля (
Figure 00000023
) пикселя, вычисленная в физической модели для соответствующего пикселя, превышает заданное пороговое значение.
7. Способ по любому из пп.1 - 3, 5, дополнительно содержащий:
вычисление адаптивной расчетной модели, позволяющей рассчитывать спектральные интенсивности излучения (RPRD,λ) для рассматриваемых пикселей в заданный момент времени на основании измеренных ранее спектральных интенсивностей излучения (Rλ) рассматриваемых пикселей и спектральных интенсивностей излучения (RPRD,λ), рассчитанных ранее для этих же рассматриваемых пикселей с помощью указанной адаптивной расчетной модели;
сравнение измеренных спектральных интенсивностей излучения (Rλ) рассматриваемых пикселей в заданный момент времени со спектральными интенсивностями излучения (RPRD,λ), рассчитанными для этих же рассматриваемых пикселей для этого же момента времени с помощью адаптивной расчетной модели; и
распознавание пожара на участках поверхности Земли или атмосферных явлений в областях атмосферы Земли, соответствующих рассматриваемым пикселям, на основании результатов сравнения; и
если в соответствующих рассматриваемому пикселю областях атмосферы Земли атмосферное явление не распознано, вычисление в физической модели температуры (TB,t) фона и доли (ft) пикселя для указанного рассматриваемого пикселя и распознавание пожара на участке поверхности Земли, соответствующем указанному рассматриваемому пикселю, на основании вычисленной доли (ft) пикселя.
8. Способ по п.7, в котором вычисление адаптивной расчетной модели содержит следующие действия:
для каждого рассматриваемого пикселя выполняют временной гармонический анализ спектральных интенсивностей излучения пикселя, относящихся к различным моментам времени, и измеренных или рассчитанных для одной и той же длины волны (λ); и
вычисляют адаптивную расчетную модель на основании вычисленных низкочастотных компонентов спектральных интенсивностей излучения, чтобы отфильтровать высокочастотные изменения спектральных интенсивностей излучения, обусловленные пожарами на поверхности Земли или атмосферными явлениями.
9. Способ по п.8, в котором временной гармонический анализ является анализом Фурье.
10. Способ по п.8 или 9, в котором распознавание пожара на участке поверхности Земли или атмосферного явления в области атмосферы Земли, соответствующих рассматриваемому пикселю, содержит следующие действия:
распознают атмосферное явление, если измеренная спектральная интенсивность излучения (Rλ) пикселя ниже соответствующей расчетной спектральной интенсивности излучения (RPRD,λ) заданного порогового значения (thDET,λ); и
распознают пожар, если измеренная спектральная интенсивность излучения (Rλ) пикселя выше соответствующей расчетной спектральной интенсивности излучения (RPRD,λ) заданного порогового значения (thDET,λ).
11. Способ по п.10, в котором атмосферное явление распознают в соответствующей пикселю области атмосферы Земли с помощью адаптивной расчетной модели, в которой измеренная спектральная интенсивность излучения (R10.8) и пороговое значение (thDET,10.8λ) соответствуют длине волны 10,8 мкм, или посредством адаптивной расчетной модели, в которой измеренная спектральная интенсивность излучения (R12) и пороговое значение (thDET,12) соответствуют длине волны 12 мкм; и в котором пожар выявляют на соответствующем пикселю участке поверхности Земли с помощью адаптивной расчетной модели, в которой измеренная спектральная интенсивность излучения (R3.9) и пороговое значение (thDET,3.9) соответствуют длине волны 3,9 мкм.
12. Способ по любому из пп.8, 9, 11, в котором выполнение для каждого рассматриваемого пикселя временного гармонического анализа содержит следующие действия:
формируют вектор (hλ), содержащий спектральные интенсивности излучения, относящиеся к различным моментам времени, и измеренные или рассчитанные для одной длины волны (λ); и
выполняют временной гармонический анализ вектора (hλ).
13. Способ по п.12, в котором формирование вектора (hλ) содержит следующие действия:
формируют исходный вектор (hλ), содержащий спектральные интенсивности излучения (Rλ) рассматриваемого пикселя, измеренные для одной длины волны (λ) в различные моменты времени, и не подвергавшиеся воздействию пожаров, облаков, облачной пелены или тумана.
14. Способ по п.13, в котором формирование исходного вектора (hλ) содержит следующие действия:
рассматривают несколько смежных дней;
для каждого векторного элемента определяют процедуру сбора данных, выполненную при отсутствии облаков, как процедуру сбора данных с максимальным значением спектральной интенсивности излучения в диапазоне длин волн 10,8 мкм или 12 мкм, среди соответствующих этому же векторному элементу в рассматриваемые дни; и
для каждого уже выбранного векторного элемента с отсутствием облаков определяют процедуру сбора данных, выполненную при отсутствии пожара, как процедуру сбора данных с минимальным значением спектральной интенсивности излучения в диапазоне длины волны 3,9 мкм, среди соответствующих этому же векторному элементу в рассматриваемые дни.
15. Способ по п.12, дополнительно содержащий следующие действия:
подразделяют измеренные спектральные интенсивности излучения (Rλ) на достоверные или недостоверные в соответствии с заданным критерием;
и в котором формирование вектора (hλ) дополнительно содержит:
обновление вектора (hλ) в соответствии с измеренными спектральными интенсивностями излучения (Rλ), если они относятся к достоверным, или в соответствии с расчетными спектральными интенсивностями излучения (RPRD,λ), если измеренные спектральные интенсивности излучения относятся к недостоверным.
16. Способ по п.15, в котором подразделение измеренных спектральных интенсивностей излучения (Rλ) на достоверные или недостоверные в соответствии с заданным критерием содержит следующие действия:
относят измеренные спектральные интенсивности излучения (R12), соответствующие длине волны 12 мкм, к достоверным, если они превышают соответствующие расчетные спектральные интенсивности излучения (RPRD,12) заданного порогового значения (thUPD,12);
относят измеренные спектральные интенсивности излучения (R10.8), соответствующие длине волны 10,8 мкм к достоверным, если они превышают соответствующие расчетные спектральные интенсивности излучения (RPRD,10.8) заданного порогового значения (thUPD,10.8); и
относят измеренные спектральные интенсивности излучения (R3.9), соответствующие длине волны 3,9 мкм к достоверным, если они лежат в пределах, определенных соответствующими расчетными спектральными интенсивностями излучения (RPRD,3.9) ниже и выше заданного порогового значения (thUPD,3.9).
17. Способ по п.15, в котором обновление вектора (hλ) содержит следующие действия:
в векторе (hλ) заменяют спектральные интенсивности излучения в заданные моменты времени соответствующими достоверными измеренными спектральными интенсивностями излучения (Rλ) или соответствующими расчетными спектральными интенсивностями излучения (RPRD,λ).
18. Система обработки, программируемая для реализации способа по любому из пп.1-17.
19. Способ автоматического распознавания пожаров на поверхности Земли и атмосферных явлений в атмосфере Земли посредством спутниковой системы, содержащий
получение многоспектральных изображений Земли в различные моменты времени посредством многоспектрального спутникового датчика, причем каждое многоспектральное изображение представляет собой совокупность односпектральных изображений, каждое из которых соответствует определенной длине волны (λ), при этом каждое односпектральное изображение состоит из пикселей, каждый из которых отображает спектральную интенсивность излучения (Rλ) соответствующего участка Земли; отличающийся тем, что включает в себя
вычисление адаптивной расчетной модели, позволяющей рассчитывать спектральные интенсивности излучения (RPRD,λ) для рассматриваемых пикселей в заданный момент времени на основании измеренных ранее спектральных интенсивностей излучения (Rλ) рассматриваемых пикселей и спектральных интенсивностей излучения (RPRD,λ), рассчитанных ранее для этих же рассматриваемых пикселей с помощью указанной адаптивной расчетной модели;
сравнение измеренных спектральных интенсивностей излучения (Rλ) рассматриваемых пикселей в заданный момент времени со спектральными интенсивностями излучения (RPRD,λ), рассчитанными для этих же рассматриваемых пикселей для этого же момента времени с помощью адаптивной расчетной модели; и
распознавание пожара на участках поверхности Земли или атмосферных явлений в областях атмосферы Земли, соответствующих рассматриваемым пикселям, на основании результатов сравнения.
20. Способ по п.19, в котором вычисление адаптивной расчетной модели содержит следующие действия:
для каждого рассматриваемого пикселя выполняют временной гармонический анализ спектральных интенсивностей излучения пикселя, относящихся к различным моментам времени, и измеренных или рассчитанных для одной и той же длины волны (λ); и
вычисляют адаптивную расчетную модель на основании вычисленных низкочастотных компонентов спектральных интенсивностей излучения, чтобы отфильтровать высокочастотные изменения спектральных интенсивностей излучения, обусловленные пожарами на поверхности Земли или атмосферными явлениями.
21. Способ по п.20, в котором временной гармонический анализ является анализом Фурье.
22. Способ по п.20 или 21, в котором распознавание пожара на участке поверхности Земли или атмосферного явления в области атмосферы Земли, соответствующих рассматриваемому пикселю, содержит следующие действия: распознают атмосферное явление, если измеренная спектральная интенсивность излучения (Rλ) пикселя ниже соответствующей расчетной спектральной интенсивности излучения (RPRD,λ) заданного порогового значения (thDET,λ); и
распознают пожар, если измеренная спектральная интенсивность излучения (Rλ) пикселя выше соответствующей расчетной спектральной интенсивности излучения (RPRD,λ) заданного порогового значения (thDET,λ).
23. Способ по п.22, в котором атмосферное явление распознают в соответствующей пикселю области атмосферы Земли с помощью адаптивной расчетной модели, в которой измеренная спектральная интенсивность излучения (R10.8) и пороговое значение (thDET,10.8,λ) соответствуют длине волны 10,8 мкм, или посредством адаптивной расчетной модели, в которой измеренная спектральная интенсивность излучения (R12) и пороговое значение (thDET,12) соответствуют длине волны 12 мкм; и в котором пожар выявляют на соответствующем пикселю участке поверхности Земли с помощью адаптивной расчетной модели, в которой измеренная спектральная интенсивность излучения (R3.9) и пороговое значение (thDET,3.9) соответствуют длине волны 3,9 мкм.
24. Способ по любому из пп.20, 21, 23, в котором выполнение для каждого рассматриваемого пикселя временного гармонического анализа содержит следующие действия:
формируют вектор (hλ), содержащий спектральные интенсивности излучения, относящиеся к различным моментам времени, и измеренные или рассчитанные для одной длины волны (λ); и
выполняют временной гармонический анализ вектора (hλ).
25. Способ по п.24, в котором формирование вектора (hλ) содержит следующие действия:
формируют исходный вектор (hλ), содержащий спектральные интенсивности излучения (Rλ) рассматриваемого пикселя, измеренные для одной длины волны (λ) в различные моменты времени, и не подвергавшиеся воздействию пожаров, облаков, облачной пелены, тумана или им подобных.
26. Способ по п.25, в котором формирование исходного вектора (hλ) содержит следующие действия:
рассматривают несколько смежных дней;
для каждого векторного элемента определяют процедуру сбора данных, выполненную при отсутствии облаков, как процедуру сбора данных с максимальным значением спектральной интенсивности излучения в диапазоне длин волн 10,8 мкм или 12 мкм, среди соответствующих этому же векторному элементу в рассматриваемые дни; и
для каждого уже выбранного векторного элемента с отсутствием облаков определяют процедуру сбора данных, выполненную при отсутствии пожара, как процедуру сбора данных с минимальным значением спектральной интенсивности излучения в диапазоне длины волны 3,9 мкм, среди соответствующих этому же векторному элементу в рассматриваемые дни.
27. Способ по п.24, дополнительно содержащий следующие действия:
подразделяют измеренные спектральные интенсивности излучения (Rλ) на достоверные или недостоверные в соответствии с заданным критерием;
и в котором формирование вектора (hλ) дополнительно содержит:
обновление вектора (hλ) в соответствии с измеренными спектральными интенсивностями излучения (Rλ), если они относятся к достоверным, или в соответствии с расчетными спектральными интенсивностями излучения (RPRD,λ), если измеренные спектральные интенсивности излучения относятся к недостоверным.
28. Способ по п.27, в котором подразделение измеренных спектральных интенсивностей излучения (Rλ) на достоверные или недостоверные в соответствии с заданным критерием содержит следующие действия:
относят измеренные спектральные интенсивности излучения (R12), соответствующие длине волны 12 мкм, к достоверным, если они превышают соответствующие расчетные спектральные интенсивности излучения (RPRD,12) заданного порогового значения (thUPD,12);
относят измеренные спектральные интенсивности излучения (R10.8), соответствующие длине волны 10,8 мкм к достоверным, если они превышают соответствующие расчетные спектральные интенсивности излучения (RPRD,10.8) заданного порогового значения (thUPD,10.8); и
относят измеренные спектральные интенсивности излучения (R3.9), соответствующие длине волны 3,9 мкм к достоверным, если они лежат в пределах, определенных соответствующими расчетными спектральными интенсивностями излучения (RPRD,3.9) ниже и выше заданного порогового значения (thUPD,3.9).
29. Способ по п.27 или 28, в котором обновление вектора (hλ) содержит следующие действия:
в векторе (hλ) заменяют спектральные интенсивности излучения в заданные периоды времени соответствующими достоверными измеренными спектральными интенсивностями излучения (Rλ) или соответствующими расчетными спектральными интенсивностями излучения (RPRD,λ).
30. Способ по любому из пп.19-21, 23, 25-28, дополнительно содержащий следующие действия:
создание физической модели, связывающей спектральные интенсивности излучения (Rλ) пикселей в многоспектральных изображениях, полученных в различные моменты времени, с физическими параметрами, отображающими термодинамические явления на поверхности Земли, включая возможный пожар на ее поверхности; в атмосфере Земли - такие как облака, облачная пелена или туман; и связанные с относительными положениями Земли и Солнца; и
если в заданный момент времени (t) в соответствующих рассматриваемому пикселю областях атмосферы Земли атмосферное явление не распознано, вычисление в физической модели для рассматриваемого пикселя температуры (TB,t) фона и доли (ft), отображающих распространение вероятного пожара на участке поверхности Земли, соответствующем рассматриваемому пикселю, на основании спектральной интенсивности излучения (Rλ,t) рассматриваемого пикселя в заданный момент времени (t), ранее измеренной спектральной интенсивности излучения (Rλ,t-Δt) рассматриваемого пикселя, доли (ft-Δt) пикселя, вычисленной ранее в этой же физической модели для этого же рассматриваемого пикселя.
31. Способ по п.30, в котором создание физической модели содержит:
создание динамической многоспектральной системы уравнений, содержащей по меньшей мере одно односпектральное уравнение, соответствующее определенной длине волны (λ), и связывающей измеренные в различные моменты времени спектральные интенсивности излучения (Rλ) рассматриваемых пикселей односпектральных изображений с физическими параметрами в эти же моменты времени,
и в котором вычисление в физической модели для по меньшей мере одного рассматриваемого пикселя в заданный момент времени (t) температуры (TB,t) фона и доли (ft) пикселя, содержит
вычисление доли (ft) пикселя и температуры (TB,t) фона посредством решения динамической многоспектральной системы уравнений в заданный момент времени (t) для рассматриваемого пикселя на основании доли (ft-Δt) пикселя и температуры (TB,t-Δt) фона, вычисленных ранее решением динамической многоспектральной системы уравнений в предыдущий момент времени (t-Δt) для этого же рассматриваемого пикселя.
32. Способ по п.31, в котором односпектральные уравнения в динамической многоспектральной системе уравнений основаны на различиях между уравнениями, связывающими спектральные интенсивности излучения (Rλ), измеренные в различные моменты времени, с физическими параметрами в эти же моменты времени.
33. Способ по п.31 или 32, в котором физические параметры в данной физической модели дополнительно включают в себя один или более из следующих параметров:
температура (TF) пожара;
интенсивность излучения (RS,λ) Солнца;
коэффициент излучения (εF,λ) пожара;
коэффициент излучения (εB,λ) фона; и
коэффициент пропускания (τλ) атмосферы Земли.
34. Способ по п.33, в котором динамическая многоспектральная система уравнений является следующей:
Figure 00000024

где t и t-Δt - это два различных момента времени; λ - рассматриваемая длина волны; ft и ft-Δt - доля пикселя; TB,t и TB,t-Δt - температура фона; TF - температура пожара; ΔRλ,t=Rλ,t-Rλ,t-Δt - разность спектральной интенсивности излучения; ΔRS,λ,t=RS,λ,t-RS,λ,t-Δt - разность интенсивности излучения Солнца; εF,λ - коэффициент излучения пожара; εB,λ - коэффициент излучения фона; τλ,t - коэффициент пропускания атмосферы Земли и Λ - ряд рассматриваемых длин (λ) волн; и в котором
долю (ft) пикселя и температуру (TB,t) фона в момент времени t получают решением динамической многоспектральной системы уравнений;
разность (ΔRλ,t) спектральной интенсивности излучения вычисляют непосредственно на основании полученных многоспектральных изображений;
температуру (TF) пожара, разность (ΔRS,λ,t) интенсивности излучения Солнца, коэффициент излучения (εF,λ) пожара, коэффициент излучения (εB,λ) фона и коэффициент пропускания (τλ,t) атмосферы Земли вычисляют независимо;
долю (ft-Δt) пикселя и температуру (TB,t-Δt) фона в момент времени t-Δt вычисляют решением динамической многоспектральной системы уравнений на предшествующей итерации, при этом на первой итерации распространению (ft-Δt) пожара и температуре (TB,t-Δt) фона независимо присваивают соответствующие значения.
35. Способ по п.30, дополнительно содержащий распознавание пожара на поверхности Земли, если доля пикселя (ft), вычисленная для соответствующего пикселя, удовлетворяет заданному критерию.
36. Способ по п.35, в котором распознавание пожара на поверхности Земли, если доля пикселя (ft), вычисленная для соответствующего пикселя, удовлетворяет заданному критерию, включает в себя следующие действия:
фильтруют долю пикселя (ft), вычисленную для пикселя посредством вычитания из вычисленной доли пикселя (ft) значения, соответствующего отфильтрованной по нижним частотам последовательности ранее вычисленных долей пикселя (ft-Δt); и
распознают пожар на участке поверхности Земли, если отфильтрованная доля пикселя (f), вычисленная для соответствующего пикселя, превышает заданное пороговое значение.
37. Система обработки, программируемая для реализации способа по любому из пп.19-36.
RU2009106190/08A 2006-07-28 2007-07-27 Автоматизированное распознавание пожаров на поверхности земли и атмосферных явлений, таких как облака, облачная пелена, туман и им подобных, посредством спутниковой системы RU2419148C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06118137 2006-07-28
EP06118137.6 2006-07-28

Publications (2)

Publication Number Publication Date
RU2009106190A RU2009106190A (ru) 2010-09-10
RU2419148C2 true RU2419148C2 (ru) 2011-05-20

Family

ID=38616331

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009106190/08A RU2419148C2 (ru) 2006-07-28 2007-07-27 Автоматизированное распознавание пожаров на поверхности земли и атмосферных явлений, таких как облака, облачная пелена, туман и им подобных, посредством спутниковой системы

Country Status (8)

Country Link
US (2) US8369563B2 (ru)
EP (2) EP2175395B1 (ru)
CN (2) CN101536015B (ru)
AT (2) ATE549691T1 (ru)
DE (1) DE602007013764D1 (ru)
ES (2) ES2385163T3 (ru)
RU (1) RU2419148C2 (ru)
WO (1) WO2008012370A1 (ru)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193093B (zh) * 2010-03-15 2013-04-10 北京师范大学 环境小卫星hj森林或草原火灾小火点探测系统及其方法
US8369567B1 (en) * 2010-05-11 2013-02-05 The United States Of America As Represented By The Secretary Of The Navy Method for detecting and mapping fires using features extracted from overhead imagery
CN102013008B (zh) * 2010-09-16 2012-10-31 北京智安邦科技有限公司 一种基于支持向量机的烟雾检测方法及装置
CN102074093B (zh) * 2010-12-29 2012-05-23 神华集团有限责任公司 一种基于卫星遥感的煤矿火灾监测方法
CN102176067B (zh) * 2010-12-29 2012-12-12 神华集团有限责任公司 获取地下煤火变化信息的方法
US8841617B2 (en) * 2011-07-05 2014-09-23 Honeywell International Inc. Flame detectors and methods of detecting flames
CN102956023B (zh) * 2012-08-30 2016-02-03 南京信息工程大学 一种基于贝叶斯分类的传统气象数据与感知数据融合的方法
US9659237B2 (en) * 2012-10-05 2017-05-23 Micro Usa, Inc. Imaging through aerosol obscurants
US9396528B2 (en) * 2013-03-15 2016-07-19 Digitalglobe, Inc. Atmospheric compensation in satellite imagery
CN103293522B (zh) * 2013-05-08 2014-12-10 中国科学院光电研究院 一种中红外双通道遥感数据地表温度反演方法及装置
CN103455804B (zh) * 2013-09-16 2015-03-18 国家电网公司 一种基于动态阈值的输电线路山火卫星火点辨识方法
US9478038B2 (en) * 2014-03-31 2016-10-25 Regents Of The University Of Minnesota Unsupervised spatio-temporal data mining framework for burned area mapping
CN103942806B (zh) * 2014-05-08 2016-08-17 西安电子科技大学 基于高光谱数据的多信息融合火灾着火点的检测方法
US9664568B2 (en) 2014-06-16 2017-05-30 Honeywell International Inc. Extended temperature mapping process of a furnace enclosure with multi-spectral image-capturing device
US9696210B2 (en) * 2014-06-16 2017-07-04 Honeywell International Inc. Extended temperature range mapping process of a furnace enclosure using various device settings
KR101484671B1 (ko) 2014-08-22 2015-02-04 대한민국 정지궤도 인공위성관측과 칼라합성법을 이용한 대류운탐지시스템 및 이를 이용한 대류운탐지방법, 대류운탐지방법을 기록한 컴퓨터로 읽을 수 있는 기록 매체
CN104236616B (zh) * 2014-10-11 2015-08-19 国家电网公司 一种输电线路山火卫星监测系统监测试验方法
CN105096511B (zh) * 2015-08-04 2017-08-08 中国林业科学研究院资源信息研究所 一种自动生成烟区检测结果的方法
RU2645179C2 (ru) * 2016-04-13 2018-02-16 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф.Можайского" Министерства обороны Российской Федерации Вероятностная спутниковая система для мониторинга лесных пожаров
CN113607284B (zh) * 2017-01-23 2022-06-24 北京师范大学 一种利用bfast算法判别潜在火点的方法
CN107655574B (zh) * 2017-08-23 2020-01-31 中国科学院光电研究院 时序热红外遥感地表温度/发射率同时反演的方法及系统
WO2019160161A1 (ja) 2018-02-19 2019-08-22 株式会社Ihi 熱源検出装置
DE102018207265A1 (de) * 2018-05-09 2019-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Korrelation thermischer satellitenbilddaten zur generierung räumlich hochaufgelöster wärmekarten
FR3085207B1 (fr) * 2018-08-27 2020-07-24 Centre Nat Etd Spatiales Procede et dispositif de mesure de parametres atmospheriques pour estimer la qualite de l’air et les variables climatiques
CN109840617B (zh) * 2018-12-27 2021-06-25 东软集团股份有限公司 火灾指标预测方法、装置、可读存储介质和电子设备
CN109685835B (zh) * 2018-12-28 2021-08-27 广东电网有限责任公司 一种海量卫星影像数据输电线路火点提取的方法和装置
FR3094792B1 (fr) * 2019-04-08 2021-10-15 Office National Detudes Rech Aerospatiales Detecteur de gaz
CN110501290B (zh) * 2019-08-16 2021-09-24 安徽优思天成智能科技有限公司 船舶废气光谱图像分割与污染预测方法
CN111046120B (zh) * 2019-11-28 2022-08-19 安徽农业大学 一种极端气温语义反距离权重插值方法
CN111091279B (zh) * 2019-12-06 2021-04-30 自然资源部国土卫星遥感应用中心 一种面向行业应用的星地一体化指标设计方法
CN111310621B (zh) * 2020-02-04 2023-11-07 应急管理部大数据中心 遥感卫星火点识别方法、装置、设备及存储介质
US11250262B2 (en) * 2020-03-12 2022-02-15 RapidDeploy, Inc. Wildfire surveillance UAV and fire surveillance system
CN112036258B (zh) * 2020-08-07 2022-05-13 广东海洋大学 基于投影零化递归神经网络的遥感图像目标检测算法
CN112419645B (zh) * 2020-11-18 2022-05-13 四创科技有限公司 一种基于卫星遥感的森林火情监测方法
CN112665728B (zh) * 2020-12-15 2022-04-15 中国科学院空天信息创新研究院 一种基于双时相影像的亮温差校正火点检测的方法
KR102563698B1 (ko) * 2021-01-25 2023-08-03 이화여자대학교 산학협력단 정지궤도위성의 구름 산출물을 보정하는 방법 및 데이터처리장치
CN113392694B (zh) * 2021-03-31 2022-07-01 中南大学 一种基于h8/ahi的晨昏陆地雾快速提取方法、装置、介质及设备
CN113299034B (zh) * 2021-03-31 2023-01-31 辽宁华盾安全技术有限责任公司 一种适应多场景的火焰识别预警方法
CN113361323B (zh) * 2021-04-23 2023-04-25 云南电网有限责任公司输电分公司 一种基于卫星技术的高原地区电网附近火点监测方法及装置
CN113221057B (zh) * 2021-05-14 2022-08-26 山东省生态环境监测中心 基于多时相卫星影像的秸秆焚烧火点监测方法
CN114627087B (zh) * 2022-03-21 2024-04-12 国网江苏省电力有限公司无锡供电分公司 一种多时相卫星遥感图像的地物变化自动检测方法及系统
CN115471743A (zh) * 2022-08-17 2022-12-13 国家卫星气象中心(国家空间天气监测预警中心) 一种卫星图像中明火区域的确定方法、装置及设备
CN115331118A (zh) * 2022-10-13 2022-11-11 青岛浩海网络科技股份有限公司 一种基于gk-2a遥感影像的亮温差火点提取方法
CN117994580A (zh) * 2024-02-01 2024-05-07 北京航空航天大学 成像仿真模型数据驱动的星载光学遥感图像云层检测方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496593B1 (en) * 1998-05-07 2002-12-17 University Research Foundation, Inc. Optical muzzle blast detection and counterfire targeting system and method
US6271877B1 (en) * 1999-06-25 2001-08-07 Astrovision, Inc. Direct broadcast imaging satellite system apparatus and method for providing real-time, continuous monitoring of earth from geostationary earth orbit
EP1290893A2 (en) * 2000-03-29 2003-03-12 Astrovision International, Inc. Direct broadcast imaging satellite system apparatus and method
US6184792B1 (en) * 2000-04-19 2001-02-06 George Privalov Early fire detection method and apparatus
US7103234B2 (en) * 2001-03-30 2006-09-05 Nec Laboratories America, Inc. Method for blind cross-spectral image registration
US20030065409A1 (en) * 2001-09-28 2003-04-03 Raeth Peter G. Adaptively detecting an event of interest
US7336803B2 (en) * 2002-10-17 2008-02-26 Siemens Corporate Research, Inc. Method for scene modeling and change detection
US20050104771A1 (en) * 2003-09-17 2005-05-19 Spectrotech, Inc. Airborne imaging spectrometry system and method
US8185348B2 (en) * 2003-10-31 2012-05-22 Hewlett-Packard Development Company, L.P. Techniques for monitoring a data stream
US8064640B2 (en) * 2004-03-25 2011-11-22 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for generating a precision fires image using a handheld device for image based coordinate determination
US7860344B1 (en) * 2005-05-06 2010-12-28 Stochastech Corporation Tracking apparatus and methods using image processing noise reduction
CN100410682C (zh) * 2005-10-20 2008-08-13 中国农业科学院农业资源与农业区划研究所 基于modis数据自动探测草原火灾迹地的方法
JP4093273B2 (ja) * 2006-03-13 2008-06-04 オムロン株式会社 特徴点検出装置、特徴点検出方法および特徴点検出プログラム
US8447116B2 (en) * 2011-07-22 2013-05-21 Honeywell International Inc. Identifying true feature matches for vision based navigation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CISBANI E et al. "Early fire detection system based on multi-temporal images of geostationary and polar satellites" GEOSCIENCE AND REMOTE SENSINGSYMPOSIUM, 2002, IGARSS 02 2002 IEEE INTERNATIONAL IUNE 24-28, 2002, PISCATAWY, NJ, USA, IEEE, vol.3, 24.06.2002, pages 1506-1508. *

Also Published As

Publication number Publication date
CN102542248A (zh) 2012-07-04
EP2175395B1 (en) 2012-03-14
ES2385163T3 (es) 2012-07-19
EP2175395A3 (en) 2010-12-22
DE602007013764D1 (de) 2011-05-19
RU2009106190A (ru) 2010-09-10
ATE549691T1 (de) 2012-03-15
ATE504886T1 (de) 2011-04-15
US8369563B2 (en) 2013-02-05
CN101536015B (zh) 2011-12-07
ES2364509T3 (es) 2011-09-05
US8594369B2 (en) 2013-11-26
EP2175395A2 (en) 2010-04-14
US20130129147A1 (en) 2013-05-23
US20090262978A1 (en) 2009-10-22
WO2008012370A1 (en) 2008-01-31
EP2047404B1 (en) 2011-04-06
EP2047404A1 (en) 2009-04-15
CN101536015A (zh) 2009-09-16
CN102542248B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
RU2419148C2 (ru) Автоматизированное распознавание пожаров на поверхности земли и атмосферных явлений, таких как облака, облачная пелена, туман и им подобных, посредством спутниковой системы
Page et al. A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems
Zhang et al. Learning U-Net without forgetting for near real-time wildfire monitoring by the fusion of SAR and optical time series
Banskota et al. Forest monitoring using Landsat time series data: A review
Senf et al. A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series
Loboda et al. Mapping burned area in Alaska using MODIS data: a data limitations-driven modification to the regional burned area algorithm
US8487979B2 (en) Signal spectra detection system
Geiß et al. Normalization of TanDEM-X DSM data in urban environments with morphological filters
Reimer et al. Advancing reference emission levels in subnational and national REDD+ initiatives: a CLASlite approach
Tane et al. A framework for detecting conifer mortality across an ecoregion using high spatial resolution spaceborne imaging spectroscopy
Zhang et al. Leaf area index retrieval with ICESat-2 photon counting LiDAR
Bayat et al. Retrieval of land surface properties from an annual time series of Landsat TOA radiances during a drought episode using coupled radiative transfer models
Tavora et al. Recipes for the derivation of water quality parameters using the high-spatial-resolution data from sensors on board sentinel-2A, sentinel-2B, Landsat-5, Landsat-7, Landsat-8, and Landsat-9 satellites
Huettermann et al. Using Landsat time series and bi-temporal GEDI to compare spectral and structural vegetation responses after fire
Maciel et al. Towards global long-term water transparency products from the Landsat archive
Santi et al. Application of Neural Networks for the retrieval of forest woody volume from SAR multifrequency data at L and C bands
Liao et al. Continuous woody vegetation biomass estimation based on temporal modeling of Landsat data
Kleynhans Detecting land-cover change using Modis time-series data
Muller et al. Prediction of land-change using machine learning for the deforestation in Paraguay
Sobrino et al. Land surface temperature retrieval from Sentinel 2 and 3 Missions
Mariano et al. Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling
Mangafić et al. Grassland Recognition with the Usage of Thermal Weights
Costantini et al. A technique for automatic fire detection from geostationary optical sensors and its validation on MSG SEVIRI data
Zhao et al. Development of a new indicator for identifying vegetation destruction events using remote sensing data
Corsini et al. Overview of the Main Activities of Hyperhealth Project-Results of Hyperspectral Prisma Data Exploitation