RU2418351C1 - Торцевой волновой электродвигатель - Google Patents

Торцевой волновой электродвигатель Download PDF

Info

Publication number
RU2418351C1
RU2418351C1 RU2010116941/07A RU2010116941A RU2418351C1 RU 2418351 C1 RU2418351 C1 RU 2418351C1 RU 2010116941/07 A RU2010116941/07 A RU 2010116941/07A RU 2010116941 A RU2010116941 A RU 2010116941A RU 2418351 C1 RU2418351 C1 RU 2418351C1
Authority
RU
Russia
Prior art keywords
flexible
wheel
electric motor
flexible wheel
housing
Prior art date
Application number
RU2010116941/07A
Other languages
English (en)
Inventor
Сергей Юрьевич Алехин (RU)
Сергей Юрьевич Алехин
Анатолий Борисович Савиных (RU)
Анатолий Борисович Савиных
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Марийский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Марийский государственный технический университет filed Critical Государственное образовательное учреждение высшего профессионального образования Марийский государственный технический университет
Priority to RU2010116941/07A priority Critical patent/RU2418351C1/ru
Application granted granted Critical
Publication of RU2418351C1 publication Critical patent/RU2418351C1/ru

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Retarders (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано в робототехнических установках с программным управлением, включающих электропривод с шаговым двигателем, в частности линейным или двухкоординатным, и требующих точного позиционирования исполнительного механизма. Технический результат, достигаемый при использовании настоящего изобретения, заключается в повышении быстродействия электродвигателя. Предлагаемый торцевой волновой электродвигатель содержит корпус, в котором размещен статор, ротор, выполненный в виде гибкого колеса (диафрагмы в форме диска), выходной вал с жестким зубчатым колесом, при этом зубья на гибком и жестком колесе выполнены торцевыми. Причем согласно изобретению электромагнитные катушки выполнены плоскими в виде спиралевидной намотки и размещены в теле гибкого колеса из немагнитного материала, постоянные магниты статора расположены на двух выступах в боковой стенке корпуса с обеих сторон гибкого колеса, по окружности, симметрично центральной оси так, что напротив каждой пары магнитов расположена часть гибкого колеса, в которой выполнена спиралевидная катушка индуктивности. 2 ил.

Description

Изобретение относится к области электротехники и может быть использовано в робототехнических установках с программным управлением, включающих электропривод с шаговым двигателем, в частности, линейным или двухкоординатным, и требующих точного позиционирования исполнительного механизма.
Известен шаговый электродвигатель с колеблющимся ротором, состоящий из корпуса с многофазным статором с обмоткой, дискового ротора с шестерней, основного выходного вала с шестерней, дополнительного выходного вала, охватывающего основной, и пальца, жестко закрепленного на дополнительном валу и опирающегося на торцевую поверхность ротора (Авторское свидетельство СССР №1598066).
Недостатком представленного шагового электродвигателя является низкая частота переключений фаз электромагнитных катушек, выражающаяся в малом быстродействии, из-за большой массы подвижных частей, участвующих в волновом процессе, таких как дискового ротора с шестерней, основного выходного вала с шестерней, пальца.
Прототипом предлагаемого изобретения является торцевой волновой электродвигатель, содержащий корпус, в котором равномерно по окружности установлены отдельные П-образные шихтованные магнитопроводы статора с обмотками управления, ротор представляет собой отдельные П-образные шихтованные магнитопроводы, установленные в отверстиях гибкого зубчатого колеса, прикрепленного винтами к корпусу; жесткое зубчатое колесо прикреплено винтами к выходному валу и установлено на подшипнике (Авторское свидетельство СССР №1584699).
Недостатком известного торцевого волнового электродвигателя является низкая частота переключений фаз электромагнитных катушек, выражающаяся в малом быстродействии, из-за большой массы подвижных якорей, соединенных с шихтованными магнитопроводами.
Технический результат заключается в повышении быстродействия благодаря увеличению максимальной частоты переключения фаз элкктромагнитных катушек, увеличению частоты приемистости двигателя.
Дополнительным эффектом является возможность наложения высокочастотных колебаний с целью снижения механических потерь в зубчатом зацеплении и с целью устранения зоны нечувствительности, что приведет к повышению точности установки угла выходного вала шагового двигателя.
Технический результат достигается тем, что торцевой волновой электродвигатель, содержит корпус, в котором размещены статор, ротор, выполненный в виде гибкой диафрагмы в форме диска, выходной вал с жестким зубчатым колесом, при этом зубья на гибком и жестком колесе выполнены торцевыми, гибкая диафрагма представляет собой гибкое колесо с торцевым зубчатым венцом, при этом новизна заключается в том, что электромагнитные катушки выполнены плоскими в виде спиралевидной намотки и размещены в теле гибкого колеса из немагнитного материала, постоянные магниты статора расположены на двух выступах в боковой стенке корпуса с обеих сторон гибкого колеса, по окружности, симметрично центральной оси так, что напротив каждой пары магнитов расположена часть гибкого колеса, в которой выполнена спиралевидная катушка индуктивности.
На фиг.1 изображен продольный разрез торцевого волнового электродвигателя. На фиг.2 изображен местный разрез гибкого колеса торцевого волнового электродвигателя.
Торцевой волновой электродвигатель содержит корпус 1, в котором закреплено гибкое колесо 2, зубчатый венец 3 которого входит в зацепление с зубчатым венцом 4 жесткого колеса 5, закрепленного на подшипниках 6 в корпусе 1 и жестко связанного с выходным валом 7. Две группы по восемь постоянных магнитов 8 расположены на двух выступах боковой стенке корпуса 1 с обеих сторон гибкого колеса 2, по окружности, симметрично центральной оси так, что напротив каждого из них располагается часть гибкого колеса 2, в которой выполнена спиральная катушка индуктивности 9, соединенная с помощью проводов 10 с коммутационной коробкой 11.
Подшипники 6 обеспечивают коаксиальное расположение жесткого колеса 5, гибкого колеса 2 и возможность вращения выходного вала 7 относительно корпуса 1 двигателя.
Электродвигатель работает следующим образом. При подключении спиральных катушек индуктивности 9, гибкое колесо 2 деформируется, и его возбужденные полюса притягиваются к жесткому колесу 5, обеспечивая зацепление зубчатых венцов 3 и 4.
При поочередном подключении фаз двигателя к источнику питания происходит поворот волны деформации гибкого колеса 2 и его прокатывание по жесткому колесу 5. Так как при этом гибкое колесо 2 остановлено от собственного вращения винтами, то жесткое колесо 5, установленное на подшипниках 6 и жестко соединенное с выходным валом 7, приходит во вращение.
В процессе работы магнитный поток каждой фазы замыкается по магниту 8, закрепленному на выступе боковой стенки корпуса 1, воздушному зазору, спиральной катушке 9 гибкого колеса 2, воздушному зазору, магниту 8, закрепленному с противоположной стороны от гибкого колеса 2 на выступе боковой стенки корпуса 1.
Вследствие разницы числа зубьев зубчатого венца 4 жесткого колеса 5 и зубчатого венца 3 гибкого колеса 2 волновой передачи, выходной вал 7 будет иметь малую частоту вращения.
Зубчатый венец 3 гибкого колеса 2 размещен вне рабочего зазора двигателя, что существенно уменьшает сам зазор, снижает вихревые токи и поэтому ведет к повышению КПД.
Выполнение гибкого колеса 2 волновой передачи двигателя в виде диска упрощает конструкцию волновой передачи и устройства в целом.
Выполнение электромагнитных катушек 9 в виде спиралей, помещенных внутрь гибкого колеса 2, позволяет уменьшить вес вращающихся частей двигателя, повысив его быстродействие.
Малый вес движущихся частей двигателя позволяет при наложении высокочастотных колебаний повысить точность установки угла выходного вала шагового двигателя, благодаря снижению механических потерь в зубчатом зацеплении и уменьшению зоны нечувствительности.
Волновая передача собрана с преднатягом в зацеплении так, что обеспечивает эффект самоторможения в отключенном состоянии.

Claims (1)

  1. Торцевой волновой электродвигатель, содержащий корпус, в котором размещен статор, ротор, выполненный в виде гибкого колеса, выходной вал с жестким зубчатым колесом, при этом зубья на гибком и жестком колесе выполнены торцевыми, отличающийся тем, что, с целью повышения быстродействия электродвигателя, электромагнитные катушки выполнены плоскими в виде спиралевидной намотки и размещены в теле гибкого колеса из немагнитного материала, постоянные магниты статора расположены на двух выступах в боковой стенке корпуса с обеих сторон гибкого колеса по окружности, симметрично центральной оси так, что напротив каждой пары магнитов расположена часть гибкого колеса, в которой выполнена спиралевидная катушка индуктивности.
RU2010116941/07A 2010-04-28 2010-04-28 Торцевой волновой электродвигатель RU2418351C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010116941/07A RU2418351C1 (ru) 2010-04-28 2010-04-28 Торцевой волновой электродвигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010116941/07A RU2418351C1 (ru) 2010-04-28 2010-04-28 Торцевой волновой электродвигатель

Publications (1)

Publication Number Publication Date
RU2418351C1 true RU2418351C1 (ru) 2011-05-10

Family

ID=44732812

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010116941/07A RU2418351C1 (ru) 2010-04-28 2010-04-28 Торцевой волновой электродвигатель

Country Status (1)

Country Link
RU (1) RU2418351C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720887C1 (ru) * 2019-06-04 2020-05-13 ФГАУ "Военный инновационный технополис "ЭРА" Торцевой электродвигатель с качающимся ротором
RU208384U1 (ru) * 2020-04-21 2021-12-16 Федеральное государственное автономное учреждение "Военный инновационный технополис "ЭРА" Мотор-редуктор

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720887C1 (ru) * 2019-06-04 2020-05-13 ФГАУ "Военный инновационный технополис "ЭРА" Торцевой электродвигатель с качающимся ротором
RU208384U1 (ru) * 2020-04-21 2021-12-16 Федеральное государственное автономное учреждение "Военный инновационный технополис "ЭРА" Мотор-редуктор

Similar Documents

Publication Publication Date Title
KR20080045223A (ko) Dc 유도 전동발전기
JP2015511115A5 (ru)
KR20100057785A (ko) 코일이 독립적이고, 부품이 모듈형이며 자기베어링이 달린 전자기 기계
US8288910B1 (en) Multi-winding homopolar electric machine
TWI569558B (zh) 電氣機器
Uppalapati et al. A flux focusing ferrite magnetic gear
JP2018509883A (ja) 永久磁石および共振コイルの動きおよび誘導に基づいた電流発生器
JP6104890B2 (ja) 電流発生タービン
RU2418351C1 (ru) Торцевой волновой электродвигатель
RU2302692C1 (ru) Электромеханический преобразователь
JP2015510751A (ja) 電動機
RU105540U1 (ru) Модульная электрическая машина
WO2010126392A1 (ru) Магнитоэлектрический генератор
WO2012121685A2 (ru) Тихоходный многополюсный синхронный генератор
TWI652883B (zh) Magnetic power generator
JP2017212872A (ja) 発電システム用の回転子組立体
RU124457U1 (ru) Синхронная электрическая машина с осевым магнитным потоком
RU175679U1 (ru) Электрогенерирующее устройство
RU2340068C1 (ru) Электрическая машина с дисковым ротором
JP2008017578A (ja) 回転発電機
JP2014057502A (ja) コギング力の抑えた発電装置
US8487486B1 (en) Folded electromagnetic coil
RU2541427C1 (ru) Торцевая электрическая машина (варианты)
JP2017022994A (ja) 電動機
WO2014038971A1 (ru) Электромеханический преобразователь

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120429