RU2417745C1 - Магнитно-резонансный сканер для ортопедического магнитного томографа - Google Patents

Магнитно-резонансный сканер для ортопедического магнитного томографа Download PDF

Info

Publication number
RU2417745C1
RU2417745C1 RU2010102988/14A RU2010102988A RU2417745C1 RU 2417745 C1 RU2417745 C1 RU 2417745C1 RU 2010102988/14 A RU2010102988/14 A RU 2010102988/14A RU 2010102988 A RU2010102988 A RU 2010102988A RU 2417745 C1 RU2417745 C1 RU 2417745C1
Authority
RU
Russia
Prior art keywords
frequency
input
transmitter
output
digital
Prior art date
Application number
RU2010102988/14A
Other languages
English (en)
Inventor
Александр Борисович Мишкинис (RU)
Александр Борисович Мишкинис
Original Assignee
Общество с ограниченной ответственностью "С.П.ГЕЛПИК"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "С.П.ГЕЛПИК" filed Critical Общество с ограниченной ответственностью "С.П.ГЕЛПИК"
Priority to RU2010102988/14A priority Critical patent/RU2417745C1/ru
Application granted granted Critical
Publication of RU2417745C1 publication Critical patent/RU2417745C1/ru

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Изобретение относится к медицинской технике, а именно ортопедическому магнитно-резонансному томографу. Томограф содержит блок источников питания градиентных катушек, высокочастотный передатчик, операционный компьютер, спектрометр, малошумящий усилитель, передающую и приемную радиочастотные катушки. При этом выходы спектрометра соединены со входами источников питания градиентных катушек и входом высокочастотного передатчика, а вход - с выходом малошумящего усилителя, вход которого соединен с выходом приемной радиочастотной катушки. Вход передающей радиочастотной катушки соединен с выходом высокочастотного передатчика. Кроме того, спектрометр выполнен в виде платы сигнального процессора, платы цифроаналогового преобразователя градиентов и радиочастотной платы, размещаемых в системном блоке операционного компьютера. Управляющий вход высокочастотного передатчика соединен с цифровым выходом платы сигнального процессора. Приемная часть радиочастотной платы содержит кварцевый генератор, аналогово-цифровой преобразователь. Передающая часть радиочастотной платы содержит цифровой синтезатор, модулятор и смеситель, второй вход которого соединен с кварцевым генератором, а выход - со входом высокочастотного передатчика. При этом передающая и приемная радиочастотные катушки совмещены в одной приемопередающей катушке, снабженной схемой переключения с передачи на прием и обратно. Использование изобретения повышает работу МРТ и расширяет эксплуатационные возможности томографа. 1 з.п. ф-лы, 2 ил.

Description

Предлагаемое изобретение предназначено для использования в медицине, а именно в ортопедической, травматологической и хирургической практике, и позволяет получать изображения суставов, мягких тканей и костей конечностей на основе ядерно-магнитного резонанса.
Известен магнитно-резонансный томограф (МРТ) открытого типа для обследования конечностей MAGNETOM С фирмы «SIEMENS», содержащий магнитно-резонансный сканер (www.medial.siemens.com) [1].
Основным недостатком известного МРТ [1] является очень большая масса постоянного магнита 16 тонн, что затрудняет установку аппарата в клинике и существенно удорожает изделие.
Известен также магнитно-резонансный сканер к МРТ для обследования конечностей, содержащий передающую и приемную радиочастотные катушки, соединенные соответственно с высокочастотным передатчиком и приемником диагностического сигнала, подключенным к компьютеру. В состав устройства входит ложе для обследуемой ноги в форме сапога из магнито- и электроизоляционного материала, на котором навиты радиочастотные катушки, блок электроники и пульт управления (патент RU №2192165, Кл. А61В 5/055) [2].
Известный МРТ [2] предназначен для исследования голеностопного сустава и пятки ноги пациента; на нем невозможно получать изображения коленного и локтевого суставов, что ограничивает сферу применения устройства [2].
Наиболее близким по конструкции к заявляемому объекту является магнитно-резонансный сканер к томографу Artoscan-C, содержащий блок источников питания градиентных катушек, высокочастотный передатчик, операционный компьютер, спектрометр, малошумящий усилитель, передающую и приемную радиочастотные катушки, причем выходы спектрометра соединены со входами источников питания градиентных катушек и входом высокочастотного передатчика, а вход - с выходом малошумящего усилителя, вход которого соединен с выходом приемной радиочастотной катушки, а вход передающей радиочастотной катушки соединен с выходом передатчика ("Artoscan-C et al. Dedicated MRI Systems " 03.04.2004, www.esaote.com/media/des /Cfs…[3]).
Данное устройство [3] выбрано нами в качестве прототипа.
Магнитно-резонансный сканер, выбранный нами в качестве прототипа, строго рассчитан на определенную напряженность магнитного поля. Небольшое изменение напряженности рабочего магнитного поля, вызванное например внешней помехой, может привести к нарушению работы сканера и МРТ в целом.
Целью настоящего изобретения является расширение эксплуатационных возможностей сканера и повышение надежности работы МРТ.
Данная цель достигается тем, что в магнитно-резонансном сканере для ортопедического магнитного томографа, содержащем блок источников питания градиентных катушек, высокочастотный передатчик, операционный компьютер, спектрометр, малошумящий усилитель, передающую и приемную радиочастотные катушки, причем выходы спектрометра соединены со входами источников питания градиентных катушек и входом высокочастотного передатчика, а вход - с выходом малошумящего усилителя, вход которого соединен с выходом приемной радиочастотной катушки, а вход передающей радиочастотной катушки соединен с выходом передатчика, спектрометр выполнен в виде трех печатных плат - платы сигнального процессора, платы цифроаналогового преобразователя градиентов и радиочастотной платы, размещаемых в системном блоке операционного компьютера, управляющий вход передатчика соединен с цифровым выходом платы сигнального процессора, приемная часть радиочастотной платы содержит кварцевый генератор, соединенный со схемой понижения частоты, аналогово-цифровой преобразователь с частотой оцифровки f>fв/4, где fв - частота высшей гармоники выходного сигнала схемы понижения частоты, а передающая часть радиочастотной платы содержит цифровой синтезатор с возможностью модуляции по фазе и частоте, модулятор и смеситель, второй вход которого соединен с кварцевым генератором, а выход - со входом высокочастотного передатчика, при этом передающая и приемная радиочастотная катушка совмещены в одной приемопередающей катушке, снабженной схемой переключения с передачи на прием и обратно.
В дальнейшем изобретение поясняется чертежами и описанием к ним.
На фиг.1 приведена блок-схема сканера, а на фиг.2 - функциональная схема платы радиочастотного спектрометра, входящего в сканер.
Магнитно-резонансный сканер для ортопедического магнитного томографа содержит блок источников питания 1 градиентных катушек, высокочастотный передатчик 2, операционный компьютер 3, спектрометр 4, малошумящий усилитель (МШУ) 5, перемопередающую радиочастотную катушку 6 (фиг.1). Спектрометр 4 выполнен в виде трех печатных плат - платы сигнального процессора DSP 7, платы цифроаналогового (ЦАП) преобразователя 8 и радиочастотной платы (РЧ) 9, размещенных в системном блоке операционного компьютера 3.
Магнитно-резонансный сканер для ортопедического магнитного томографа работает следующим образом.
Операционный компьютер 3 загружает в плату DSP 7 спектрометра 4 временную диаграмму последовательности сканирования (значения выходных каналов спектрометра в дискретные моменты времени) и стартует программу DSP. Программа в соответствии с заданной временной диаграммой формирует цифровую последовательность градиентных импульсов на плату ЦАП 8 спектрометра 4 и цифровые возбуждающие радиоимпульсы на плату РЧ 9 спектрометра. В плате ЦАП 8 цифровые последовательности преобразуются в аналоговые напряжения, поступающие на входы X, Y, Z блока источников питания градиентных катушек. Усиленные градиентные импульсы могут подаваться на градиентные катушки магнитной системы (в состав сканнера не входит) для формирования градиентных магнитных полей по осям X, Y, Z. Плата РЧ 9 спектрометра 4 из цифровых возбуждающих радиоимпульсов формирует аналоговые радиоимпульсы, поступающие для усиления на вход ВЧ-передатчика 2. На управляющий вход передатчика с цифрового порта DSP 7 поступают прямоугольные импульсы напряжения, вырабатываемые синхронно с возбуждающими радиоимпульсами, которые открывают выход передатчика 2 в моменты воздействия радиоимпульсов. Усиленные передатчиком 2 возбуждающие радиоимпульсы поступают в передающую часть радиочастотной катушки 6, находящейся внутри магнитной системы, для возбуждения высокочастотного электромагнитного поля в исследуемом объекте. Отклик объекта на возбуждающий радиоимпульс принимается приемной частью передающей катушки 6, усиливается малошумящим усилителем (МШУ) 5 и поступает на вход РЧ-платы 9 спектрометра 4. На входе РЧ платы 9 сигнал с приемной катушки 6 фильтруется фильтром нижних частот 10 и усиливается входным усилителем 11 (фиг.2). Усиленный сигнал поступает на аналогово-цифровой преобразователь 12 для прямой оцифровки.
Для того чтобы схема РЧ-платы была универсальной и сканнер мог использоваться для магнитных полей различной напряженности и соответственно частоты, в плату РЧ 9 встроена схема понижения частоты 13, работающая следующим образом. Пусть наибольшая частота спектра принимаемого сигнала Fвх, а наибольшая частота входного сигнала АЦП 12 ограничена в соответствии с теоремой Найквиста частотой Fацп<Fвх. Кварцевый генератор 14 формирует гармонический сигнал частотой ω=Fацп+Fвх, поступающий на схему понижения частоты 13, на второй вход которого подается сигнал с входного усилителя 11. Схема понижения частоты 13 работает по принципу умножителя с последующей низкочастотной фильтрацией выходного сигнала. После перемножения входного сигнала частотой Fвх и сигнала с кварцевого генератора 14 частотой ω=Fвх-Fацп на выходе формируются сигналы разностной (F=Fвх-(Fвх-Fацп)=Fацп) и суммарной частоты (F=(Fвх-Fацп)+Fвх=2Fвх-Fацп). Суммарный сигнал не пропускается низкочастотным фильтром, а разностный сигнал с наибольшей частотой Fацп поступает на вход АЦП 12 для последующей оцифровки. При заданной частоте оцифровки Fd частота кварцевого генератора выбирается таким образом, чтобы выполнялось соотношение Fацп<Fd/4, удовлетворяющее критерию Найквиста с двойным запасом. Оцифрованный выходной сигнал с платы РЧ 9 поступает в плату DSP 7 для дальнейшей цифровой обработки и получения томографических изображений.
Передающая часть платы РЧ 9 также содержит схему преобразования частоты, но выделяет не разностную, а суммарную частоту преобразованного сигнала. Схема содержит цифровой синтезатор 15, вырабатывающий гармонический сигнал частотой Fацп, поступающий на вход модулятора 16, выполненного в виде цифрового умножителя. На второй вход модулятора поступает сигнал огибающей возбуждающего радиоимпульса, поступающий с цифроаналогового преобразователя 17 и усиленный усилителем 18 (фиг.2). На выходе модулятора 16 формируется модулированный радиоимпульс с несущей частотой Fацп. Этот сигнал подается на вход смесителя 19, предназначенного для повышения частоты до уровня Fвх, т.е такой же частоты, которая поступает от приемной катушки и соответствует частоте поля магнита. В смесителе модулированный радиоимпульс частотой Fацп смешивается с сигналом частотой ω=Fвх-Fацп, поступающим от кварцевого генератора, и суммарный сигнал Fацп+Fвх-Fацп=Fвх подается на передатчик и далее в передающую часть радиочастотной катушки. Сигнал цифрового синтезатора 15 может модулироваться по частоте, фазе и амплитуде, значения которых поступают по цифровому каналу от платы DSP 7.
Наличие цифрового спектрометра и схемы преобразования частоты в передающем и приемном тракте позволяют путем изменения частоты кварцевого генератора использовать данный цифровой спектрометр с магнитами любой напряженности поля, что делает его универсальным, расширяет эксплуатационные возможности устройства и повышает надежность работы МРТ.

Claims (2)

1. Ортопедический магнитно-резонансный томограф, содержащий блок источников питания градиентных катушек, высокочастотный передатчик, операционный компьютер, спектрометр, малошумящий усилитель, передающую и приемную радиочастотные катушки, при этом выходы спектрометра соединены со входами источников питания градиентных катушек и входом высокочастотного передатчика, а вход - с выходом малошумящего усилителя, вход которого соединен с выходом приемной радиочастотной катушки, а вход передающей радиочастотной катушки соединен с выходом высокочастотного передатчика, отличающийся тем, что спектрометр выполнен в виде трех печатных плат - платы сигнального процессора, платы цифроаналогового преобразователя градиентов и радиочастотной платы, размещаемых в системном блоке операционного компьютера, управляющий вход высокочастотного передатчика соединен с цифровым выходом платы сигнального процессора, приемная часть радиочастотной платы содержит кварцевый генератор, соединенный со схемой понижения частоты, аналогово-цифровой преобразователь с частотой оцифровки f>fв/4, где fв - частота высшей гармоники выходного сигнала схемы понижения частоты, а передающая часть радиочастотной платы содержит цифровой синтезатор с возможностью модуляции по фазе и частоте, модулятор и смеситель, второй вход которого соединен с кварцевым генератором, а выход - со входом высокочастотного передатчика, при этом передающая и приемная радиочастотные катушки совмещены в одной приемопередающей катушке, снабженной схемой переключения с передачи на прием и обратно.
2. Томограф по п.1, отличающийся тем, что второй цифровой выход платы сигнального процессора соединен с его цифровым входом через резистор и конденсатор, смонтированный в схеме радиочастотной катушки.
RU2010102988/14A 2010-02-01 2010-02-01 Магнитно-резонансный сканер для ортопедического магнитного томографа RU2417745C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010102988/14A RU2417745C1 (ru) 2010-02-01 2010-02-01 Магнитно-резонансный сканер для ортопедического магнитного томографа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010102988/14A RU2417745C1 (ru) 2010-02-01 2010-02-01 Магнитно-резонансный сканер для ортопедического магнитного томографа

Publications (1)

Publication Number Publication Date
RU2417745C1 true RU2417745C1 (ru) 2011-05-10

Family

ID=44732508

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010102988/14A RU2417745C1 (ru) 2010-02-01 2010-02-01 Магнитно-резонансный сканер для ортопедического магнитного томографа

Country Status (1)

Country Link
RU (1) RU2417745C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164498A1 (en) * 2007-05-31 2010-07-01 Koninklijke Philips Electronics N.V. Integrated-circuit low-noise amplifier
RU2620861C2 (ru) * 2012-05-14 2017-05-30 Конинклейке Филипс Н.В. Конструкция схемы питания для подачи радиочастотного сигнала на множество катушечных элементов в магнитно-резонансной системе катушек

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007425A (en) * 1988-08-19 1991-04-16 Picker International, Inc. Patient and coil support structure for magnetic resonance imagers
WO2001032079A2 (en) * 1999-11-01 2001-05-10 Arthrovision, Inc. Evaluating disease progression using magnetic resonance imaging
RU46644U1 (ru) * 2005-03-10 2005-07-27 Санкт-Петербургский государственный университет Низкочастотный минитомограф
EP1913871A1 (en) * 2006-10-19 2008-04-23 Esaote S.p.A. Method and apparatus for determining indications helping the diagnosis of orthopedical diseases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007425A (en) * 1988-08-19 1991-04-16 Picker International, Inc. Patient and coil support structure for magnetic resonance imagers
WO2001032079A2 (en) * 1999-11-01 2001-05-10 Arthrovision, Inc. Evaluating disease progression using magnetic resonance imaging
RU46644U1 (ru) * 2005-03-10 2005-07-27 Санкт-Петербургский государственный университет Низкочастотный минитомограф
EP1913871A1 (en) * 2006-10-19 2008-04-23 Esaote S.p.A. Method and apparatus for determining indications helping the diagnosis of orthopedical diseases

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164498A1 (en) * 2007-05-31 2010-07-01 Koninklijke Philips Electronics N.V. Integrated-circuit low-noise amplifier
US8324900B2 (en) * 2007-05-31 2012-12-04 Koninklijke Philips Electronic N.V. Magnetic resonance integrated-circuit low-noise amplifier
RU2620861C2 (ru) * 2012-05-14 2017-05-30 Конинклейке Филипс Н.В. Конструкция схемы питания для подачи радиочастотного сигнала на множество катушечных элементов в магнитно-резонансной системе катушек

Similar Documents

Publication Publication Date Title
US10705169B2 (en) Device having inert gas nucleus channel and method for magnetic resonance imaging using the same
EP1869485B1 (en) Arrangement using a capacitively coupled signal transmission line
EP3895610B1 (en) Method and device for detecting movement of a subject in a magnetic resonance imaging device
CN102053233B (zh) 局部线圈装置中的mr信号传输
US20050143667A1 (en) Wireless heart rate sensing system and method
JP6373192B2 (ja) Mri機器において使用するためのアクティブ位置マーカー
CN111198346B (zh) 磁共振成像装置
Özen et al. Active decoupling of RF coils using a transmit array system
CN104473644A (zh) 一种用于磁共振成像的线圈控制系统及头颈联合线圈
RU2417745C1 (ru) Магнитно-резонансный сканер для ортопедического магнитного томографа
JP3590059B2 (ja) 電子常磁性共鳴システム
US11841414B2 (en) Respiratory detection transceiver
JP4248588B1 (ja) 小型磁気共鳴イメージング装置
CN113960593A (zh) 一种复信号解调的雷达呼吸特征信号检测方法和系统
Eder et al. A Signal Acquisition Setup for Ultrashort Echo Time Imaging Operating in Parallel on Unmodified Clinical MRI Scanners Achieving an Acquisition Delay of $\text {3}~{\mu}\text {s} $
RU2417746C1 (ru) Приемно-передающее радиочастотное устройство к магнитно-резонансному сканеру для ортопедического магнитного томографа
US20240329170A1 (en) Transmit device for generating a multi-frequency pilot tone and magnetic resonance tomograph with transmit device
US20250035723A1 (en) Double-resonance mrt local coil with integrated pilot tone signal frequency converter
US20240133988A1 (en) Sensing motion in mri using rf intermodulation
Ehses et al. Evaluation of Switch Mode Amplifiers for Low-Field MRI
HK1262415B (en) Device having inert gas nucleus channel and magnetic resonance imaging method
HK1262415A1 (en) Device having inert gas nucleus channel and magnetic resonance imaging method
Lurie et al. A dual‐purpose 20 mT PEDRI and 0.38 T MR imager based on a resistive‐magnet clinical MRI system
Ackerman et al. In vivo 31P solid state MRI of human wrists: short-T2 MRI using the scanner 1H channel
Vaezi Kakhki et al. Simultaneous Multinuclear MRI Via a Single Rf Channel