RU2416131C1 - Способ управления мощностью турбоустановки атомной станции - Google Patents

Способ управления мощностью турбоустановки атомной станции Download PDF

Info

Publication number
RU2416131C1
RU2416131C1 RU2009132453/06A RU2009132453A RU2416131C1 RU 2416131 C1 RU2416131 C1 RU 2416131C1 RU 2009132453/06 A RU2009132453/06 A RU 2009132453/06A RU 2009132453 A RU2009132453 A RU 2009132453A RU 2416131 C1 RU2416131 C1 RU 2416131C1
Authority
RU
Russia
Prior art keywords
steam
hydrogen
turbine plant
power
pressure
Prior art date
Application number
RU2009132453/06A
Other languages
English (en)
Inventor
Олег Валерьевич Лебедев (RU)
Олег Валерьевич Лебедев
Валерий Каземирович Корнев (RU)
Валерий Каземирович Корнев
Original Assignee
Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" (ОАО "Концерн Росэнергоатом")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" (ОАО "Концерн Росэнергоатом") filed Critical Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" (ОАО "Концерн Росэнергоатом")
Priority to RU2009132453/06A priority Critical patent/RU2416131C1/ru
Application granted granted Critical
Publication of RU2416131C1 publication Critical patent/RU2416131C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

Изобретение относится к области атомной энергетики и может быть использовано для повышения эффективности работы турбин атомных станций. Способ управления мощностью турбоустановки атомной станции включает подачу пара парогенератора после подогрева на турбоустановку, причем насыщенный пар перегревают до состояния перегретого пара, при температуре 320÷405°С в секционной камере сгорания водорода при давлении ниже атмосферного. Водород могут сжигать в атмосфере окислителя кислорода при давлении 0,08÷0,09 МПа. Достигаются упрощение способа управления мощностью турбоустановки, снижение расхода топлива и затрат. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области атомной энергетики, касается, в частности, эффективности работы атомных станций и может быть использовано для повышения эффективности работы турбин атомных станций.
Эффективность работы энергоблоков АЭС с реакторами РБМК-1000 и ВВЭР-1000 существенно отличается от аналогичных по мощности энергоблоков современных тепловых электростанций. В первую очередь это объясняется разницей начальных параметров пара в турбинах. Применение более сложных конструкций реакторов, например, с внутренним перегревом пара в технологических каналах или с повышением давления теплоносителя в первом контуре при значительном удорожании проектов дает небольшое увеличение эффективности (увеличение КПД или снижение расхода топлива) и, в первую очередь, вследствие недостаточного прироста начальной температуры. В уровне техники не были выявлены патенты, в которых были бы предложены технические средства повышения эффективности работы блоков атомных станций с использованием водородных технологий.
Ближайшим аналогом заявляемого изобретения является статья «Модернизация АЭС с использованием парогазовых технологий», опубликованная в журнале «Газотурбинные установки» №2 (17), 2002, с.2-8. В данной публикации описан способ управления мощностью турбоустановки атомной станции с реактором ВВЭР-440 путем повышения температуры пара перед турбиной при неизменном начальном давлении путем внешнего перегрева его в пароперегревателях, установленных непосредственно за парогенератором. Внешний перегрев может быть произведен с помощью котла-утилизатора, работающего на органическом топливе.
Недостатком ближайшего аналога является наличие технологических сложностей и значительные капиталовложения, связанные с реконструкцией АЭС, необходимость организации новых подразделений по доставке, хранению и использованию органического топлива.
Задача, решаемая изобретением, заключается в упрощении способа управления мощностью турбоустановки, снижении расхода топлива и затрат.
Сущность заявляемого изобретения состоит в том, что в способе управления мощностью турбоустановки атомной станции путем подачи пара парогенератора после подогрева на турбоустановку предложено насыщенный пар перегревать до состояния перегретого пара при температуре 320÷405°С в секционной камере сгорания водорода при давлении ниже атмосферного. Кроме того, предложено водород сжигать в атмосфере окислителя кислорода при давлении 0,08÷0,09 МПа.
Поставленная цель достигнута путем подогрева поступающего из парогенератора (или барабан-сепаратора) насыщенного пара в секционной камере сжигания водорода при давлении ниже атмосферного, в интервале давления 0,08÷0,09 МПа до состояния перегретого пара, при температуре 320÷405°С. При перегреве насыщенного пара увеличивается степень сухости пара на выходе из цилиндра высокого давления (ЦВД). Результаты термодинамического анализа эффективности паротурбинного цикла АЭС, произведенного для условий перегрева пара, говорят о том, что КПД станции увеличивается на 1,5÷3,5% при затратах энергии на получение водорода в электролизерах от 245 до 734 МВт. При полном окислении водорода температура продуктов сгорания повышается до 3800°К, что вполне достаточно для термической диссоциации молекул перегретого водяного пара (термолиза), даже при низком давлении, т.е. энергозатраты на получение водорода значительно уменьшатся. Разложение водяного пара происходит уже при температуре чуть выше 2500°С (см. Справочник: «Водород. Свойства, получение, хранение, транспортирование, применение», Москва, «Химия», 1989). Помимо повышения КПД и снижения расхода топлива на АЭС использование подогрева пара в водородной камере (перед турбиной) является еще одним важным аспектом для АЭС первых поколений. Применительно к этим станциям удается перенести часть нагрузки активной зоны реактора (парогенераторы) в водородную камеру, обеспечивающую нужный перегрев пара (не требуется использования газовых турбин). Это позволит обеспечить «щадящий» режим работы реактора и продлить срок его эксплуатации. Количество влаги в паре на выходе из цилиндра высокого давления турбины (ЦВД), подлежащее сепарации, уменьшается при указанных температурах перегрева от 12 до 0,2%, что, в последнем случае, позволяет отказаться от использования в технологической схеме блока сепараторов влаги. Отбор пара из парогенератора и ЦВД для промежуточного перегрева пара перед цилиндром низкого давления (ЦНД) не производится и сам промежуточный пароперегреватель первой и второй ступеней не используется, т.к. промежуточный перегрев пара по предлагаемому способу происходит в камере сжигания водорода. При этом производительность парогенератора уменьшается. Отбор пара из ЦВД для подогрева питательной воды перед подачей ее в парогенератор не используется, т.к. подогрев воды происходит в секционном подогревателе высокого давления, размещенном в камере горения водорода. При этом температура питательной воды повышается до 230°С, расход пара через ЦВД возрастает.
Процесс, протекающий в паровой турбине при использовании водородного перегрева пара перед турбоустановкой, представлен на фиг.1, где O1-a1 - процесс расширения пара в ЦВД турбоустановки без водородного перегрева; O12 - процесс водородного перегрева пара в пароперегревателе; О22 - процесс расширения пара в ЦВД после водородного перегрева пара, поступающего из парогенератора; а2 - В -процесс промежуточного парового перегрева пара перед ЦНД; В - К - процесс расширения пара в ЦНД турбоустановки. На фиг.2 приведена схема установки, где 1 - парогенератор, 2 - водородный пароперегреватель, 3 - камера горения водорода, 4 - паровая турбина, 5 - регулятор вакуума в камере горения, 6 - конденсатор водяного пара, 7 - водяной насос, I - теплоноситель первого контура, II - питательная вода из подогревателей высокого давления, III - насыщенный пар из парогенератора, IV - перегретый пар из водородного пароперегревателя, V - влажный пар на выходе из паровой турбоустановки, VI - основной водород - продукт термолиза воды, VII - добавочный водород - продукт радиолиза воды в активной зоне реактора, VIII - чистый кислород - продукт термолиза воды, IX - водяной пар на выходе из водородной камеры горения, Х - вода, возвращаемая в термолиз, XI - рециркуляция избыточного водорода в систему безопасности.
Способ управления мощностью турбоустановки осуществляется следующим образом. Питательную воду второго контура II подогревают в парогенераторе I теплоносителем первого контура I до температуры насыщения и испаряют. Насыщенный пар III с давлением 6,8 МПа направляют для перегрева в водородный пароперегреватель 2, расположенный в камере горения водорода 3. Сюда же подают для сжигания основной водород VI - продукт термолиза и дополнительный водород VII - продукт радиолиза воды в активной зоне. Водород сгорает в атмосфере чистого кислорода VIII, также полученного в процессе термолиза воды. Давление в камере горения при этом ниже атмосферного. Насыщенный перегретый пар IV из пароперегревателя 3 подают в паровую турбоустановку 4, где он расширяется в ЦВД (процесс O22, фиг.1) и ЦНД (процесс В-К, фиг.1) до состояния влажного пара V (точка К, фиг.1). Водяной пар IX, образовавшийся в результате полного сгорания водорода в атмосфере кислорода охлаждается (например, водой или воздухом при атмосферных параметрах) в конденсаторе 6 и затем в виде воды Х направляется повторно на реакцию термолиза циркуляционным насосом 7. Для устойчивого процесса горения водорода применен регулятор вакуума 8 в камере горения с последующей рециркуляцией водорода через систему безопасности.

Claims (2)

1. Способ управления мощностью турбоустановки атомной станции путем подачи насыщенного пара парогенератора после подогрева на турбоустановку, отличающийся тем, что насыщенный пар перегревают до состояния перегретого пара при температуре 320÷405°С в секционной камере сгорания водорода при давлении ниже атмосферного.
2. Способ по п.1, отличающийся тем, что водород сжигают в атмосфере окислителя кислорода при давлении 0,08÷0,09 МПа.
RU2009132453/06A 2009-08-27 2009-08-27 Способ управления мощностью турбоустановки атомной станции RU2416131C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009132453/06A RU2416131C1 (ru) 2009-08-27 2009-08-27 Способ управления мощностью турбоустановки атомной станции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009132453/06A RU2416131C1 (ru) 2009-08-27 2009-08-27 Способ управления мощностью турбоустановки атомной станции

Publications (1)

Publication Number Publication Date
RU2416131C1 true RU2416131C1 (ru) 2011-04-10

Family

ID=44052235

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009132453/06A RU2416131C1 (ru) 2009-08-27 2009-08-27 Способ управления мощностью турбоустановки атомной станции

Country Status (1)

Country Link
RU (1) RU2416131C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758644C1 (ru) * 2021-04-29 2021-11-01 Артём Николаевич Байрамов Система сжигания водорода в кислороде в закрученном потоке повышенной безопасности с использованием ультравысокотемпературных керамических материалов для перегрева рабочего тела в паротурбинном цикле атомной электрической станции

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758644C1 (ru) * 2021-04-29 2021-11-01 Артём Николаевич Байрамов Система сжигания водорода в кислороде в закрученном потоке повышенной безопасности с использованием ультравысокотемпературных керамических материалов для перегрева рабочего тела в паротурбинном цикле атомной электрической станции

Similar Documents

Publication Publication Date Title
RU2009333C1 (ru) Комбинированная парогазовая энергетическая установка и способ ее эксплуатации
RU2427048C2 (ru) Система сжигания водорода для пароводородного перегрева свежего пара в цикле атомной электрической станции
RU2010139511A (ru) Способ выработки энергии посредством осуществления термодинамических циклов с водяным паром высокого давления и умеренной температуры
NL8701573A (nl) Werkwijze en inrichting voor het opwekken van elektrische en/of mechanische energie uit tenminste een laagwaardige brandstof.
RU2335642C1 (ru) Электрогенерирующее устройство с высокотемпературной паровой турбиной
RU2661231C1 (ru) Способ водородного перегрева пара на аэс
CN114207257A (zh) 驱动乙烯厂蒸汽产生回路中的机器的方法和集成乙烯和发电厂系统
RU2335641C2 (ru) Способ повышения кпд и мощности двухконтурной атомной станции
RU2416131C1 (ru) Способ управления мощностью турбоустановки атомной станции
EP3844371B1 (en) System for generating energy in a working fluid from hydrogen and oxygen and method of operating this system
RU2459293C1 (ru) Турбинная установка атомной электростанции (варианты)
RU2250872C1 (ru) Комбинированный способ производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок
WO2014204347A1 (ru) Гибридная атомная электростанция
RU2529508C1 (ru) Способ повышения маневренности аэс
RU2736603C1 (ru) Система безопасного использования водорода при повышении мощности двухконтурной аэс выше номинальной
RU168003U1 (ru) Бинарная парогазовая установка
RU2709783C1 (ru) Способ водородного подогрева питательной воды на АЭС
RU2707182C1 (ru) Способ повышения мощности двухконтурной АЭС за счет комбинирования с водородным циклом
RU167924U1 (ru) Бинарная парогазовая установка
RU2711260C1 (ru) Парогазовая установка
Aminov et al. Evaluating the thermodynamic efficiency of hydrogen cycles at wet-steam nuclear power stations
RU2550362C1 (ru) Устройство повышения кпд и мощности траснпортабельной атомной электростанции
RU2786709C1 (ru) Способ повышения маневренности атомной электростанции
RU2006128067A (ru) Способ эксплуатации атомной паротурбинной энергетической установки и установка для его осуществления
RU2813644C1 (ru) Способ подготовки метано-водородного топлива с повышенным содержанием водорода для котельных агрегатов ТЭС и газотурбодетандерной энергетической установки

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160828