RU2412417C1 - Лабораторная установка по теплопередаче - Google Patents

Лабораторная установка по теплопередаче Download PDF

Info

Publication number
RU2412417C1
RU2412417C1 RU2009136289/06A RU2009136289A RU2412417C1 RU 2412417 C1 RU2412417 C1 RU 2412417C1 RU 2009136289/06 A RU2009136289/06 A RU 2009136289/06A RU 2009136289 A RU2009136289 A RU 2009136289A RU 2412417 C1 RU2412417 C1 RU 2412417C1
Authority
RU
Russia
Prior art keywords
housing
inlet
hot air
electric heater
pipe
Prior art date
Application number
RU2009136289/06A
Other languages
English (en)
Inventor
Тамара Афанасьевна Енютина (RU)
Тамара Афанасьевна Енютина
Светлана Георгиевна Марченкова (RU)
Светлана Георгиевна Марченкова
Original Assignee
Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" filed Critical Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет"
Priority to RU2009136289/06A priority Critical patent/RU2412417C1/ru
Application granted granted Critical
Publication of RU2412417C1 publication Critical patent/RU2412417C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Лабораторная установка по теплопередаче предназначена для проведения учебных занятий по дисциплинам «Техническая термодинамика» и «Теплотехника». Технический результат заключается в повышении эффективности нагревания потока воздуха, что повышает точность измерения теплового потока. Лабораторная установка по теплопередаче содержит корпус, наружная часть которого снабжена кольцевой емкостью, заполненной водой со льдом, с патрубком для слива воды. Во внутренней части корпуса, соответственно снизу и сверху, расположены связанные между собой входная и выходная трубы движения потока горячего воздуха, а внутреннее межтрубное пространство корпуса связано с атмосферой, во входной трубе установлен электронагреватель, присоединенный к ваттметру и ЛАТРу, находящимся снаружи, над электронагревателем установлен смеситель потока, при этом входная и выходная трубы потока горячего воздуха и межтрубное пространство корпуса оснащены патрубками для ввода термопар. Входная и выходная трубы потока горячего воздуха выполнены с уширенными камерами, соединенными между собой четырьмя трубками, при этом корпус дополнительно снабжен крышкой и плотно установленными в нем сверху и снизу трубными досками, в которых установлены соединительные трубки, а уширенные камеры образованы внутренними стенками корпуса, трубными досками, крышкой (16) и днищем корпуса. 2 ил.

Description

Лабораторная установка по теплопередаче предназначена для проведения учебных занятий по дисциплинам «Тепломассообмен» и «Теплотехника».
Известна лабораторная установка по теплопередаче, содержащая корпус, выполненный прямоугольным из оргстекла в виде двух камер, входной и выходной, при этом на внешней поверхности выходной камеры смонтирован сосуд Дьюара, содержащий воду с тающим льдом, внешняя стенка входной камеры выполнена из алюминиевой фольги, перед которой установлена панель с лампами накаливания, входная и выходная камеры отделены поверхностью нагрева, изготовленной из алюминиевой фольги и закрепленной на рамке, входная камера в верхней части и выходная камера в нижней части закрыты крышками, в которых установлены стеклянные патрубки, имеющие сужение в нижней части (Патент №2271509, С2, дата приоритета 13.15.2004, дата публикации 10.03.2006, авторы Енютина Т.А. и др., RU).
Недостатком известной лабораторной установки является малая поверхность нагрева теплообменника, что приводит к низкой точности измерения теплового потока.
Известна лабораторная установка по теплопередаче, принятая за прототип, содержащая вертикальный цилиндрический корпус, выполненный из латуни, который содержит внутреннюю и наружную трубы, помещенные одна в одну, внутренняя труба открыта с обеих сторон и содержит установленные в нижней части электронагреватель, присоединенный к находящимся снаружи ваттметру и ЛАТРу, в верхней и нижней частях установлены нижний и верхний смесители воздуха, а также нижний и верхний патрубки для ввода термопар, наружная труба открыта в верхней части для входа воздуха, в нижней части имеет коническую форму с выходным патрубком для ввода термопары, снаружи наружной трубы смонтирован сосуд со льдом и патрубком для слива воды (Патент №2359193, С2, дата приоритета 02.11.2006, дата публикации 20.06.09, авторы Енютина Т.А. и др., RU, прототип).
Недостатком прототипа является малая поверхность нагрева теплообменника, что приводит к низкой точности измерения теплового потока.
Задачей изобретения является повышение точности измерения теплового потока за счет интенсивности процесса теплопередачи в противоточном теплообменнике.
Для решения поставленной задачи лабораторная установка по теплопередаче, содержащая корпус, наружная часть которого снабжена кольцевой емкостью, заполненной водой со льдом, с патрубком для слива воды, во внутренней части корпуса, соответственно снизу и сверху, расположены связанные между собой входная и выходная трубы движения потока горячего воздуха, а внутреннее межтрубное пространство корпуса связано с атмосферой, во входной трубе установлен электронагреватель, присоединенный к ваттметру и ЛАТРу, находящимся снаружи, над электронагревателем установлен смеситель потока, при этом входная и выходная трубы потока горячего воздуха и межтрубное пространство корпуса оснащены патрубками для ввода термопар, согласно изобретению, входная и выходная трубы потока горячего воздуха выполнены с уширенными камерами, соединенными между собой четырьмя трубками, при этом корпус дополнительно снабжен крышкой и плотно установленными в нем сверху и снизу трубными досками, в которых установлены упомянутые соединительные трубки, а уширенные камеры образованы внутренними стенками корпуса, трубными досками, крышкой и днищем корпуса, при этом внутреннее межтрубное пространство корпуса связано с атмосферой в верхней части посредством патрубка.
Увеличение поверхности нагрева аппарата за счет применения четырех труб, вместо одной, позволяет увеличить температуру нагреваемого воздуха, выходящего из установки, что повышает точность измерения теплового потока за счет интенсивности процесса теплопередачи в противоточном теплообменнике.
На фиг.1 представлен общий вид лабораторной установки по теплопередаче; на фиг.2 - схема изменения температуры по поверхности нагрева установки с противотоком.
Лабораторная установка по теплопередаче содержит корпус 1, выполненный из латуни. Наружная часть корпуса снабжена кольцевой емкостью 2, заполняемой водой с тающим льдом, и патрубком 3 для слива воды, установленным в нижней части емкости. Во внутренней части корпуса 1, соответственно снизу и сверху, расположены связанные между собой входная 4 и выходная 5 трубы движения потока горячего воздуха. Во входной трубе 4 установлен электронагреватель воздуха 6, присоединенный к ваттметру 7 и ЛАТРу 8, находящимся снаружи. Над электронагревателем 6 установлен смеситель потока 9. Входная 4 и выходная 5 трубы потока горячего воздуха и межтрубное пространство корпуса оснащены патрубками для ввода термопар 10, 11, 12. Термопара, устанавливаемая в патрубке 10, предназначена для определения температуры t/1 горячего потока воздуха на входе после смесителя потока 9. Термопара в патрубке 11 измеряет температуру t//1 горячего потока на выходе. Термопара в патрубке 12 определяет температуру t//2 потока в межтрубном пространстве на выходе. Входная 4 и выходная 5 трубы потока горячего воздуха выполнены с уширенными камерами 13, 14, соединенными между собой четырьмя трубками 15, равномерно расположенными в межтрубном пространстве корпуса. При этом корпус 1 снабжен крышкой 16 и плотно установленными в нем сверху и снизу трубными досками 17, в которых установлены путем тугой посадки соединительные трубки 15, а уширенные камеры 13, 14 образованы внутренними стенками корпуса 1, трубными досками 17, крышкой 16 и днищем 18 корпуса. Внутреннее межтрубное пространство корпуса связано с атмосферой в его верхней части посредством входного патрубка 19.
Лабораторная установка по теплопередаче работает следующим образом. Кольцевую емкость 2 наружной части корпуса 1 заполняют водой со льдом. Включают в сеть электронагреватель 6 и устанавливают требуемую мощность с помощью ЛАТРа 8 и ваттметра 7. Нагретый воздух за счет свободной конвекции движется вверх, перемешивается смесителем потока 9, после чего его температура t/1 измеряется термопарой в патрубке 10. Нагретый воздух движется по трубкам 15 и выходит в атмосферу через выходной патрубок 11, в котором термопарой определяется его температура t//1. Через входной патрубок 19 воздух помещения с температурой t//2 поступает в межтрубное пространство лабораторной установки, где охлаждается, движется вниз, омывая трубки 15. Выход холодного потока с температурой t//2 происходит через выходной патрубок 12, в котором установлена термопара. Скорости воздуха определяют с помощью электронного анемометра, который помещают вблизи входного патрубка 19 и выходного 12 холодного и горячего потоков. По величине скорости вычисляют массовые расходы потоков. Поверхность нагрева аппарата F, м2, равна суммарной внутренней поверхности трубок 15.
Полученные результаты позволяют составить уравнение теплового баланса и вычислить коэффициент теплопередачи.
Приведенная на фиг.2 схема отражает распределение температуры по поверхности нагрева для противоточного теплообменника, где t/1 и t//1 - температуры горячего потока на входе и выходе, t/2 и t//2 - температуры холодного потока на входе и выходе.
Лабораторная установка изготовлена на кафедре «Теплогазоснабжение и вентиляция» института градостроительства, управления и региональной экономики Сибирского федерального университета и имеет следующие преимущества: проста по конструкции, наглядна, дешева, позволяет быстро выходить на режим, изменяя температуру нагретого воздуха t/1, не требует применения вентилятора.

Claims (1)

  1. Лабораторная установка по теплопередаче, содержащая корпус, наружная часть которого снабжена кольцевой емкостью, заполненной водой со льдом, с патрубком для слива воды, во внутренней части корпуса соответственно снизу и сверху расположены связанные между собой входная и выходная трубы движения потока горячего воздуха, а внутреннее межтрубное пространство корпуса связано с атмосферой, во входной трубе установлен электронагреватель, присоединенный к ваттметру и ЛАТРу, находящимся снаружи, над электронагревателем установлен смеситель потока, при этом входная и выходная трубы потока горячего воздуха и межтрубное пространство корпуса оснащены патрубками для ввода термопар, отличающаяся тем, что входная и выходная трубы потока горячего воздуха выполнены с уширенными камерами, соединенными между собой четырьмя трубками, при этом корпус дополнительно снабжен крышкой и плотно установленными в нем сверху и снизу трубными досками, в которых установлены упомянутые соединительные трубки, а уширенные камеры образованы внутренними стенками корпуса, трубными досками, крышкой и днищем корпуса, при этом внутреннее межтрубное пространство корпуса связано с атмосферой в верхней части посредством патрубка.
RU2009136289/06A 2009-09-30 2009-09-30 Лабораторная установка по теплопередаче RU2412417C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009136289/06A RU2412417C1 (ru) 2009-09-30 2009-09-30 Лабораторная установка по теплопередаче

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009136289/06A RU2412417C1 (ru) 2009-09-30 2009-09-30 Лабораторная установка по теплопередаче

Publications (1)

Publication Number Publication Date
RU2412417C1 true RU2412417C1 (ru) 2011-02-20

Family

ID=46310148

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009136289/06A RU2412417C1 (ru) 2009-09-30 2009-09-30 Лабораторная установка по теплопередаче

Country Status (1)

Country Link
RU (1) RU2412417C1 (ru)

Similar Documents

Publication Publication Date Title
CN103196945B (zh) 可实现自然循环与强迫循环耦合的冷凝换热实验装置
Kim et al. Turbulent film condensation of high pressure steam in a vertical tube
Nascimento Jr et al. A study of frost build-up on parallel plate channels
CN101231218A (zh) 对蒸发冷却不同换热模型和模式下的一体化性能测试方法
Kang et al. An experimental study on evaporative heat transfer coefficient and applications for passive cooling of AP600 steel containment
CN108931554A (zh) 一种非理想固-液相变材料的储放能测试系统及方法
Huh et al. An experimental investigation of flow boiling in an asymmetrically heated rectangular microchannel
Chen et al. Characteristics of the mixed convection heat transfer of molten salts in horizontal square tubes
Dong et al. Heat transfer of air turbulent mixed convection in the passive containment air-cooling system of a modular small nuclear reactor
FR2445516A1 (fr) Procede et appareil de mesure par voie thermique du debit massique d'un fluide
RU2412417C1 (ru) Лабораторная установка по теплопередаче
CN104673617A (zh) 水冷、风冷一体化白酒冷却设备
CN105413216B (zh) 液体蒸馏装置
Wu et al. Study on onset of nucleate boiling in bilaterally heated narrow annuli
CN205665188U (zh) 拆装式换热管给热系数测定辅助装置
RU2359193C2 (ru) Лабораторная установка по теплопередаче
RU65277U1 (ru) Лабораторная установка по теплопередаче
CN201184847Y (zh) 一种用于蒸发冷却换热模块性能测试的多功能试验台
CN106782020A (zh) 传热过程强化自组装实验装置及使用方法
CN104280416B (zh) 全方位可视化池式沸腾实验装置
RU2369912C1 (ru) Лабораторная установка по технической термодинамике
CN104006537B (zh) 自动排污式储热水箱
RU2433385C1 (ru) Устройство для испытаний образцов на термоусталость
Susanto et al. Characteristics of air flow and heat transfer in serpentine condenser pipes with attached convection plates in open channel
CN103925697B (zh) 超高纯气体换热器及其实现方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131001