RU2411548C1 - Измерительный зонд для нефтегазовой скважины и/или обсадной колонны - Google Patents

Измерительный зонд для нефтегазовой скважины и/или обсадной колонны Download PDF

Info

Publication number
RU2411548C1
RU2411548C1 RU2009141895/28A RU2009141895A RU2411548C1 RU 2411548 C1 RU2411548 C1 RU 2411548C1 RU 2009141895/28 A RU2009141895/28 A RU 2009141895/28A RU 2009141895 A RU2009141895 A RU 2009141895A RU 2411548 C1 RU2411548 C1 RU 2411548C1
Authority
RU
Russia
Prior art keywords
tip
measuring probe
contact
probe according
casing
Prior art date
Application number
RU2009141895/28A
Other languages
English (en)
Inventor
Ямид Пико (RU)
Ямид Пико
Масафуми Фукухара (RU)
Масафуми Фукухара
Клемент Костов (RU)
Клемент КОСТОВ
Original Assignee
Шлюмберже Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмберже Текнолоджи Б.В. filed Critical Шлюмберже Текнолоджи Б.В.
Priority to RU2009141895/28A priority Critical patent/RU2411548C1/ru
Priority to US12/947,276 priority patent/US20110132082A1/en
Application granted granted Critical
Publication of RU2411548C1 publication Critical patent/RU2411548C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
    • G01V11/005Devices for positioning logging sondes with respect to the borehole wall

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к области приборов скважинного каротажа, а именно к устройствам для проведения измерений с использованием нового механизма внутрискважинного контактного взаимодействия без проскальзывания. Измерительный зонд для нефтегазовой скважины и/или обсадной колонны содержит основной корпус и измерительное средство, в качестве измерительного средства используют по меньшей мере один роботизированный манипулятор, прикрепленный к основному корпусу и оборудованный на своем свободном конце вращающимся контактным наконечником полигональной формы таким образом, чтобы обеспечить последовательный контакт между поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны без проскальзывания, причем наконечник снабжен по меньшей мере одним датчиком, регистрирующим отклик геологической формации на сигнал, излучение которого непосредственно в геологическую формацию осуществляют через точки контакта. ! Заявленный измерительный зонд позволяет проводить более точные и быстрые измерения в скважине и/или обсадной колонне. ! 18 з.п. ф-лы, 1 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к области приборов скважинного каротажа, а именно к устройствам для проведения измерений с использованием нового механизма внутрискважинного контактного взаимодействия без проскальзывания.
Новая схема внутрискважинного контактного взаимодействия позволяет обеспечивать плотный точечный или линейный контакт при перемещении измерительного прибора с одним датчиком или набором датчиков с внутренней стенкой ствола буровой скважины и/или обсадной колонны. Датчик может быть преобразователем, приемником или сочетать обе эти функции.
Высокоточные роботизированные манипуляторы контактируют со стенками ствола буровой скважины посредством вращающихся наконечников полигональной или округлой формы. Вращающиеся наконечники снижают уровень поверхностных шумов и уменьшают повреждение внутрискважинной поверхности. В точках контакта осуществляется излучение сигнала непосредственно в геологическую формацию через точку (точки) контакта. Отклик формации на сигнал регистрируется датчиками на других (или тех же) высокоточных роботизированных манипуляторах и/или соответствующим образом устроенными датчиками, которые могут располагаться выше или ниже положения, в котором производится излучение сигнала.
Испускаемый сигнал может быть однокомпонентным или комплексным (акустическим, радиоактивным, электромагнитным и т.д.). Акустические средства включают в свой состав ультразвуковые, звуковые, сейсмические, оптоакустические и т.д. Поскольку проблема, связанная со стыковочными узлами, играет ключевую роль в акустических измерениях, прямая стыковка ствола скважины способна обеспечить возможность реализации следующих функций: очень высокий уровень эффективности передачи/приема энергии, возможность векторных измерений, минимизация эффектов, связанных с перемещением скважинного прибора, измерение медленного сдвига без скважинной моды и т.д. При дополнении акустики другими физическими компонентами, например измерениями, которые требуют коррекции с учетом окружающей скважинной среды, электродными контактами, точечным, линейным или малым источником и т.д., с помощью данного механизма достигаются существенные преимущества. Кроме того, при использовании полигональных точечных контактов имеется возможность применения пьезоэлектрического материала в электрических преобразователях давления (или усилия), а также оптических (оптоакустических, оптоэлектронных и т.д.) преобразователей.
Уровень техники
Приборы скважинного каротажа (см. патенты US 2582314 и US 2712627) используются для оценки характеристик продуктивных пластов на всех этапах работ с нефтяными скважинами (таких как разведка, подготовка, опробывание, заканчивание и добыча). Требования к проведению соответствующих измерений усложняются, имеется необходимость в развитии технологии и разработке новых концепций для преодоления проблем, связанных со сложностью характеристик новых продуктивных пластов и связанных с ними геологических формаций. Подобные разработки сосредоточены на проблемах улучшения качества измерений, передаче/приеме сигналов и т.д. С другой стороны, отсутствует должный уровень усилий в направлении совершенствования геометрии измерений, а проводимые разработки в области аппаратных средств не затрагивают первоначальной конструкции скважинных приборов.
Наиболее близким аналогом изобретения (прототипом) является патент RU 2319004, опубл. 10.03.2008. В соответствии с данным патентом измерительный зонд для нефтегазовой скважины и/или обсадной колонны содержит основной корпус и измерительное средство.
Основными недостатками данного измерительного зонда являются погрешности в измерениях, более низкая скорость проводимых измерений за счет отсутствия высокоточных роботизированных манипуляторов и узкая область применения только для определения характеристик флюида, протекающего в нефтегазовой скважине.
Сущность изобретения
Задача, на решение которой направлено заявляемое изобретение, состоит в создании измерительного зонда для нефтегазовой скважины и/или обсадной колонны, обеспечивающего более быстрые и точные измерения в скважине или обсадной колонне за счет наличия высокоточных роботизированных манипуляторов с вращающимися наконечниками различной геометрии, прикрепленных к корпусу скважинного прибора и способных обеспечить такое усилие при контакте источников и датчиков с геологической формацией, которое необходимо для непосредственного измерения отклика формации в процессе перемещения прибора вверх или вниз.
Технический результат, достигаемый при реализации заявляемого технического решения, заключается в создании измерительного зонда для нефтегазовой скважины и/или обсадной колонны, позволяющего проводить более точные и быстрые измерения в скважине и/или обсадной колонне.
Поставленный технический результат достигается за счет того, что измерительный зонд для нефтегазовой скважины и/или обсадной колонны содержит основной корпус и измерительное средство, причем зонд снабжен по меньшей мере одним роботизированным манипулятором, прикрепленным к основному корпусу и оборудованным на своем свободном конце контактным наконечником, выполненным с возможностью вращения и обеспечивающим в процессе перемещения зонда постоянный последовательный контакт между вращающейся поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны, причем контактный наконечник по меньшей мере одного манипулятора снабжен по меньшей мере одним источником излучения, обеспечивающим излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, а измерительное средство представляет собой по меньшей мере один датчик, расположенный на контактном наконечнике по меньшей мере одного манипулятора и регистрирующий отклик геологической формации на излученный источником сигнал.
Кроме того, контактный наконечник имеет полигональную форму, и последовательный контакт между поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны осуществляется по вершинам наконечника, или контактный наконечник имеет округлую форму, и последовательный контакт между поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны осуществляется по окружности наконечника.
Кроме того, при использовании двух и более роботизированных манипуляторов по меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, и по меньшей мере один датчик, регистрирующий отклик геологической формации на излучаемый этим источником сигнал, расположены на одном или на разных роботизированных манипуляторах.
Кроме того, по меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, и по меньшей мере один датчик, регистрирующий отклик геологической формации на излучаемый этим источником сигнал, расположены на роботизированных манипуляторах, прикрепленных к основному корпусу на разной высоте.
Кроме того, по меньшей мере один роботизированный манипулятор выполнен с возможностью вращения в азимутальном направлении.
Кроме того, роботизированный манипулятор выполнен либо с возможностью управления посредством системы управления контактным усилием наконечника с помощью пружинной системы или системы подвески, либо с возможностью управления посредством компьютера, микропрограммного обеспечения и/или операторского управления.
Кроме того, контактный наконечник закреплен на конце роботизированного манипулятора или внутри него и выполнен с возможностью вращения посредством фрикционного механизма или с помощью привода.
Кроме того, контактный наконечник выполнен из металла или композитного материала, или полимерного вещества, или из их комбинаций.
Кроме того, по меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию, одновременно является датчиком, регистрирующим отклик геологической формации на излученный сигнал.
Кроме того, по меньшей мере один источник излучения представляет собой источник акустического излучения или источник электромагнитного излучения, или источник радиоактивного излучения.
Кроме того, контактный наконечник по меньшей мере одного роботизированного манипулятора содержит комбинацию источников излучения разного типа.
Кроме того, при использовании двух и более роботизированных манипуляторов их наконечники снабжены источниками излучения разного типа.
Кроме того, по меньшей мере один датчик выполнен из пьезоэлектрического материала.
При проведении поиска по патентной и научно-технической информации не было обнаружено решений, содержащих всей совокупности предлагаемых признаков, что позволяет сделать вывод о соответствии заявляемого устройства критерию «новизна».
Сведения, подтверждающие возможность осуществления изобретения
Изобретение поясняется чертежом, где представлен общий вид измерительного зонда для нефтегазовой скважины.
Настоящее изобретение относится к измерительному зонду для нефтегазовой скважины и/или обсадной колонны, содержащего основной корпус и измерительное средство, причем зонд снабжен по меньшей мере одним роботизированным манипулятором, прикрепленным к основному корпусу и оборудованным на своем свободном конце контактным наконечником, выполненным с возможностью вращения и обеспечивающим в процессе перемещения зонда постоянный последовательный контакт между вращающейся поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны, причем контактный наконечник по меньшей мере одного манипулятора снабжен по меньшей мере одним источником излучения, обеспечивающим излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, а измерительное средство представляет собой по меньшей мере один датчик, расположенный на контактном наконечнике по меньшей мере одного манипулятора, и регистрирующий отклик геологической формации на излученный источником сигнал. При этом контактный наконечник имеет полигональную форму, и последовательный контакт между поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны осуществляется по вершинам наконечника, или контактный наконечник имеет округлую форму, и последовательный контакт между поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны осуществляется по окружности наконечника. При использовании двух и более роботизированных манипуляторов по меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, и по меньшей мере один датчик, регистрирующий отклик геологической формации на излучаемый этим источником сигнал, расположены на одном или на разных роботизированных манипуляторах. По меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, и по меньшей мере один датчик, регистрирующий отклик геологической формации на излучаемый этим источником сигнал, расположены на роботизированных манипуляторах, прикрепленных к основному корпусу на разной высоте. По меньшей мере один роботизированный манипулятор выполнен с возможностью вращения в азимутальном направлении. Причем роботизированный манипулятор выполнен с возможностью управления посредством системы управления контактным усилием наконечника с помощью пружинной системы или системы подвески или с возможностью управления посредством компьютера, микропрограммного обеспечения и/или операторского управления. Контактный наконечник закреплен на конце роботизированного манипулятора или внутри него и выполнен с возможностью вращения посредством фрикционного механизма или с помощью привода. Кроме того, контактный наконечник выполнен из металла или композитного материала, или полимерного вещества, или из их комбинаций. По меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию, одновременно является датчиком, регистрирующим отклик геологической формации на излученный сигнал. По меньшей мере один источник излучения представляет собой источник акустического или электромагнитного, или радиоактивного излучения. Контактный наконечник по меньшей мере одного роботизированного манипулятора содержит комбинацию источников излучения разного типа. При использовании двух и более роботизированных манипуляторов их наконечники снабжены источниками излучения разного типа. По меньшей мере один датчик выполнен из пьезоэлектрического материала.
Заявляемый измерительный зонд представляет собой новый механизм внутрискважинного контактного взаимодействия без скольжения. Новая схема внутрискважинного контактного взаимодействия позволяет обеспечивать плотный точечный или линейный контакт при перемещении измерительного прибора с одним датчиком или набором датчиков к внутренней стенке ствола нефтегазовой скважины или обсадной колонны. Датчик может быть преобразователем, приемником или сочетать обе эти функции.
Измерительный зонд для нефтегазовой скважины и/или обсадной колонны состоит из корпуса, несущего всю измерительную систему. К корпусу крепятся одиночные или множественные роботизированные манипуляторы. Манипуляторы оборудованы вращающимися контактными наконечниками полигональной или округлой формы и обеспечивают контакт наконечников со стенкой ствола нефтегазовой скважины и/или обсадной колонны. В процессе перемещения измерительного зонда вдоль скважины вращающиеся наконечники поворачиваются с обеспечением последовательного контакта вершин многоугольника со стенкой ствола скважины и/или обсадной колонны без проскальзывания. Последовательный контакт представляет собой постепенный поочередный контакт каждой точки поверхности наконечника со стенкой ствола скважины и/или обсадной колонны за счет постепенного поворота наконечника путем его вращения. Контактное усилие относительно стенки ствола скважины и/или обсадной колонны контролируется роботизированным манипулятором (манипуляторами). Такая схема обеспечивает плотный точечный или линейный контакт. Конструкция вращающихся контактных наконечников включает простые, однокомпонентные или комплексные, множественные датчики. Датчик может быть преобразователем, приемником, сочетать обе эти функции или представлять собой окно (окна) для излучения/приема сигнала. Датчик включает в себя один или множество элементов, к которым относятся акустические, радиоактивные, электромагнитные и другие устройства.
К акустическим средствам относятся ультразвуковые, звуковые, сейсмические, оптоакустические и т.д. Поскольку проблема, связанная со стыковочными узлами, играет ключевую роль в акустических измерениях, прямая стыковка ствола скважины способна обеспечить возможность реализации следующих функций: очень высокий уровень эффективности передачи/приема энергии, возможность векторных измерений, минимизация эффектов, связанных с перемещением скважинного прибора, измерение медленного сдвига без скважинной моды и т.д. При дополнении акустики другими физическими компонентами, например измерениями, которые требуют коррекции с учетом окружающей скважинной среды, электродными контактами, точечным, линейным или малым источником и т.д., с помощью данного механизма достигаются существенные преимущества. Кроме того, возможно применение пьезоэлектрического материала в электрических преобразователях давления (или усилия), а также оптических (оптоакустических, оптоэлектронных и т.д.) преобразователей.
Высокоточные роботизированные манипуляторы контактируют со стенками нефтегазовой скважины или обсадной колонны посредством вращающихся наконечников. В точках контакта осуществляется излучение сигнала непосредственно в геологическую формацию через точку (точки) контакта. Отклик геологической формации на сигнал регистрируется датчиками на других (или тех же) высокоточных роботизированных манипуляторах и/или соответствующим образом устроенными датчиками, которые могут располагаться выше или ниже положения, в котором производится излучение сигнала.
Использование роботизированных манипуляторов обеспечивает необходимое контактное усилие и контроль положения датчиков относительно стенки ствола нефтегазовой скважины и/или обсадной колонны в процессе перемещения измерительного зонда вверх или вниз по скважине. Такое точное управление оптимизирует сопряжение датчиков с точки зрения лучшей регистрации и передачи сигналов.
Роботизированные манипуляторы могут также быть приспособленными для азимутального вращения. Это может быть один или более манипуляторов, вращающихся в азимутальном направлении. Азимутальное вращение для статического положения измерительного зонда в нефтегазовой скважине и/или обсадной колонне может использоваться для более детального сканирования окружающей формации, что может быть напрямую применено для оценки анизотропии, оценки напряжения или других характеристик формации в зависимости от природы используемых сигналов.
Для случая азимутального вращения, в то время как измерительный зонд движется вдоль нефтегазовой скважины и/или обсадной колонны, движение роботизированных манипуляторов может становиться спиральным, что увеличивает диапазон покрытия, и также может сократить число роботизированных манипуляторов, необходимых для измерений. Такое движение получается из-за комбинаций азимутального вращения роботизированных манипуляторов и вертикального перемещения корпуса измерительного зонда вверх или вниз по нефтегазовой скважине и/или обсадной колонне.
Система управления может быть пассивной, активной или сочетать в себе оба эти механизма. Пассивное управление обеспечивается, например, пассивной системой управления контактным усилием датчика посредством пружинной системы или системы подвески. Средства активного управления, например, представляют собой систему, которая включает в свой состав датчики и их обратную связь с целью управления роботизированным манипулятором для обеспечения контактного усилия, необходимого для наилучших условий проведения измерений. Средства управления представляют собой, например, компьютер, микропрограммное обеспечение и/или операторское управление, а также запрограммированную последовательность. Роботизированный манипулятор (манипуляторы) отслеживает изменения размеров нефтегазовой скважины подобно скважинному профилометру в процессе перемещения измерительного зонда внутри нефтегазовой скважины и/или обсадной колонны до/после скважинных измерений.
Вращающиеся контактные наконечники представляют собой концевые узлы, прикрепленные к механическим манипуляторам, которые контактируют со стенками ствола нефтегазовой скважины и/или обсадной колонны, и на которых располагаются датчики, являющиеся источниками и/или приемниками излучения. Пример исполнения вращающегося контактного наконечника см.:
http://www.slb.com/content/services/evaluation/wireline/tufftrac.asp
Вращающиеся наконечники в зависимости от скважинных условий для обеспечения наилучшего контакта при перемещении измерительного зонда могут иметь различную форму: от округлой до многоугольной. Материал для вращающихся наконечников выбирается в зависимости от скважинных условий с обеспечением наибольшей эксплуатационной гибкости для проведения измерений с приемлемой точностью при различных условиях. Материалом может служить металл, композиты, органические/полимерные вещества и/или их комбинации. Вращающиеся наконечники могут крепиться на концах механических манипуляторов, внутри них или использовать их в качестве суппортов. Вращение может достигаться посредством фрикционного механизма или с помощью привода, например, двигателя. Это обеспечивает оптимальный точечный/линейный контакт с геологической формацией или обсадной колонной. Полигональные вращающиеся наконечники снижают уровень поверхностных шумов и уменьшают повреждение внутрискважинной поверхности.
Датчики представляют собой устройства, которые излучают и принимают сигналы в направлении формации, обсадной колонны и границы формации/цемента через обсадную колонну. Датчики располагаются или используются для измерений посредством вращающихся наконечников. Излучатели могут приводиться в действие механическим позиционированием или запускаться системой управления. Датчики могут быть акустическими, радиоактивными или электромагнитным. К акустическим средствам относятся ультразвуковые, звуковые, сейсмические, оптоакустические и т.д. Радиоактивные средства включают химические источники, радиоактивные источники и т.д. Электромагнитные датчики в свой состав включают датчики электрического тока, напряжения, индукции, оптоэлектрические датчики и т.д. Конкретный пример одного из применяемых датчиков см.:
http://www.npp-geofizika.ru/pr_gg3.html
Принцип работы и устройства оптоакустических датчиков представлен в (см.):
http://window.edu.ru/window_catalog/files/r20381/9801_095.pdf
Поскольку проблема, связанная со стыковочными узлами, играет ключевую роль в акустических измерениях, прямая стыковка ствола нефтегазовой скважины способна обеспечить возможность реализации следующих функций:
1) эффективная передача/прием энергии;
2) возможность векторных измерений;
3) минимизация эффектов, связанных с перемещением скважинного прибора;
4) измерение медленного сдвига без скважинной моды;
5) точное позиционирование источника/приемника по глубине;
6) устранение эффектов, связанных с отсутствием прямого соединения (изменения акустических мод, обусловленные скважинными условиями и геометрией скважины, головная волна и т.д.);
7) очень высокое качество применяемого к геологической формации возбуждения, что обеспечивает лучшие результаты при обработке сигнала в процессе интерпретации;
8) упрощение механизма возбуждения/распространения акустических волн, более простое моделирование и прогнозирование отклика объекта (например, продуктивного пласта, обсадной колонны, цемента, а также их комбинации).
Например, в случае акустических измерений с использованием оптоакустического принципа свет (лазер) порождает волны теплового сжатия и расширения, которые индуцируют напряжения в геологической формации. Этот свет модулируется, и частота волн напряжений соответствует модулируемому свету. Данные волны перемещаются в геологической формации и могут восприниматься приемниками, которые расположены в корпусе прибора и другим манипулятором, в устройстве которого используется инверсия оптоакустического принципа, для измерения изменения оптических свойств формации, обусловленных акустическими волнами в формации (акустооптический эффект). Поскольку оптический сигнал в скважине легко ослабляется, если он проходит через скважинный флюид, схема настоящего изобретения может существенно повысить возможности измерений.
При дополнении акустики другими физическими компонентами, например измерениями, которые требуют коррекции с учетом окружающей скважинной среды, электродными контактами, точечным, линейным или малым источником и т.д. с помощью данного механизма достигаются существенные преимущества. Кроме того, возможно применение пьезоэлектрического материала в электрических преобразователях давления (или усилия), а также оптических (оптоакустических, оптоэлектронных и т.д.) преобразователей.
Предложение соответствует критерию «промышленная применимость», поскольку его осуществление возможно при использовании существующих средств производства с применением известных технологий.

Claims (19)

1. Измерительный зонд для нефтегазовой скважины и/или обсадной колонны, содержащий основной корпус и измерительное средство, отличающийся тем, что зонд снабжен по меньшей мере одним роботизированным манипулятором, прикрепленным к основному корпусу и оборудованным на своем свободном конце контактным наконечником, выполненным с возможностью вращения и обеспечивающим в процессе перемещения зонда постоянный последовательный контакт между вращающейся поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны, причем контактный наконечник по меньшей мере одного манипулятора снабжен по меньшей мере одним источником излучения, обеспечивающим излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, а измерительное средство представляет собой по меньшей мере один датчик, расположенный на контактном наконечнике по меньшей мере одного манипулятора и регистрирующий отклик геологической формации на излученный источником сигнал.
2. Измерительный зонд по п.1, отличающийся тем, что контактный наконечник имеет полигональную форму, и последовательный контакт между поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны осуществляется по вершинам наконечника.
3. Измерительный зонд по п.1, отличающийся тем, что контактный наконечник имеет округлую форму, и последовательный контакт между поверхностью наконечника и внутренней стенкой нефтегазовой скважины и/или обсадной колонны осуществляется по окружности наконечника.
4. Измерительный зонд по п.1, отличающийся тем, что при использовании двух и более роботизированных манипуляторов по меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, и по меньшей мере один датчик, регистрирующий отклик геологической формации на излучаемый этим источником сигнал, расположены на разных роботизированных манипуляторах.
5. Измерительный зонд по п.4, отличающийся тем, что по меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, и по меньшей мере один датчик, регистрирующий отклик геологической формации на излучаемый этим источником сигнал, расположены на роботизированных манипуляторах, прикрепленных к основному корпусу на разной высоте.
6. Измерительный зонд по п.1, отличающийся тем, что при использовании двух и более роботизированных манипуляторов по меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию через точку контакта наконечника с внутренней стенкой нефтегазовой скважины и/или обсадной колонны, и по меньшей мере один датчик, регистрирующий отклик геологической формации на излучаемый этим источником сигнал, расположены на одном роботизированном манипуляторе.
7. Измерительный зонд по п.1, отличающийся тем, что по меньшей мере один роботизированный манипулятор выполнен с возможностью вращения в азимутальном направлении.
8. Измерительный зонд по п.1, отличающийся тем, что роботизированный манипулятор выполнен с возможностью управления им посредством системы управления контактным усилием наконечника с помощью пружинной системы или системы подвески.
9. Измерительный зонд по п.1, отличающийся тем, что роботизированный манипулятор выполнен с возможностью управления им посредством компьютера, микропрограммного обеспечения и/или операторского управления.
10. Измерительный зонд по п.1, отличающийся тем, что контактный наконечник закреплен на конце роботизированного манипулятора или внутри него.
11. Измерительный зонд по п.1, отличающийся тем, что контактный наконечник выполнен с возможностью вращения посредством фрикционного механизма или с помощью привода.
12. Измерительный зонд по п.1, отличающийся тем, что контактный наконечник выполнен из металла или композитного материала, или полимерного вещества, или из их комбинаций.
13. Измерительный зонд по п.1, отличающийся тем, что по меньшей мере один источник излучения, обеспечивающий излучение сигнала в геологическую формацию, одновременно является датчиком, регистрирующим отклик геологической формации на излученный сигнал.
14. Измерительный зонд по п.1, отличающийся тем, что по меньшей мере один источник излучения представляет собой источник акустического излучения.
15. Измерительный зонд по п.1, отличающийся тем, что по меньшей мере один источник излучения представляет собой источник электромагнитного излучения.
16. Измерительный зонд по п.1, отличающийся тем, что по меньшей мере один источник излучения представляет собой источник радиоактивного излучения.
17. Измерительный зонд по п.1, отличающийся тем, что контактный наконечник по меньшей мере одного роботизированного манипулятора содержит комбинацию источников излучения разного типа.
18. Измерительный зонд по п.1, отличающийся тем, что при использовании двух и более роботизированных манипуляторов их наконечники снабжены источниками излучения разного типа.
19. Измерительный зонд по п.1, отличающийся тем, что по меньшей мере один датчик выполнен из пьезоэлектрического материала.
RU2009141895/28A 2009-11-16 2009-11-16 Измерительный зонд для нефтегазовой скважины и/или обсадной колонны RU2411548C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2009141895/28A RU2411548C1 (ru) 2009-11-16 2009-11-16 Измерительный зонд для нефтегазовой скважины и/или обсадной колонны
US12/947,276 US20110132082A1 (en) 2009-11-16 2010-11-16 Measuring probe for oil and gas wells and/or casings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009141895/28A RU2411548C1 (ru) 2009-11-16 2009-11-16 Измерительный зонд для нефтегазовой скважины и/или обсадной колонны

Publications (1)

Publication Number Publication Date
RU2411548C1 true RU2411548C1 (ru) 2011-02-10

Family

ID=44080661

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009141895/28A RU2411548C1 (ru) 2009-11-16 2009-11-16 Измерительный зонд для нефтегазовой скважины и/или обсадной колонны

Country Status (2)

Country Link
US (1) US20110132082A1 (ru)
RU (1) RU2411548C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143395A (zh) * 2018-09-16 2019-01-04 六盘水久翔爆破工程有限责任公司 一种竖直爆破孔地质探测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680865B2 (en) * 2010-03-19 2014-03-25 Schlumberger Technology Corporation Single well reservoir imaging apparatus and methods
CN102359372B (zh) * 2011-11-11 2013-11-13 郑州宜源翔石油科技有限公司 卧式推靠器
CN103216223B (zh) * 2012-01-18 2016-06-08 中国石油天然气集团公司 微球聚焦测井仪单推靠器
US10816683B2 (en) * 2013-12-12 2020-10-27 Westerngeco L.L.C. Seismic data recording units
BR112018015243A2 (pt) * 2016-03-07 2018-12-18 Halliburton Energy Services Inc aparelho e sistema de ferramenta de inspeção, e, método para operar um aparelho de ferramenta de inspeção
CN110295897A (zh) * 2019-07-01 2019-10-01 中国海洋石油集团有限公司 一种推靠器
CN114198085B (zh) * 2021-11-22 2024-07-12 中国石油天然气股份有限公司 探针式套损检测装置及方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2582314A (en) * 1949-06-15 1952-01-15 Schlumberger Well Surv Corp Electromagnetic well logging system
US2712627A (en) * 1950-05-12 1955-07-05 Schlumberger Well Surv Corp Electrical resistivity well logging method and apparatus
US2725282A (en) * 1952-04-30 1955-11-29 Exxon Research Engineering Co Well logging apparatus
US3205702A (en) * 1963-12-30 1965-09-14 Chemetron Corp Ultrasonic coupling device
US3361225A (en) * 1966-05-31 1968-01-02 North American Aviation Inc Sonic testing device
US3423993A (en) * 1966-07-20 1969-01-28 Parametrics Inc Rolling ultrasonic transducer
US3541840A (en) * 1968-11-13 1970-11-24 Shurtronics Corp Rotating probe assembly
US3648515A (en) * 1969-10-29 1972-03-14 Dresser Ind Radioactivity logging apparatus having shielded wall contacting source and detector
US3698051A (en) * 1970-02-06 1972-10-17 North American Rockwell Method of making an acoustical transducer
US3612920A (en) * 1970-10-05 1971-10-12 Branson Instr Wheel-type transducer probe
US3718978A (en) * 1970-10-16 1973-03-06 Koevering B Van Pipeline survey vehicle
US3771354A (en) * 1971-12-06 1973-11-13 Rockwell International Corp Rapid ultrasonic inspection apparatus
US4055990A (en) * 1975-07-28 1977-11-01 Frederick Victor Topping Pipeline inspection apparatus
US4165648A (en) * 1977-07-25 1979-08-28 Pagano Dominick A Two wheel ultrasonic rail testing system and method
US4218923A (en) * 1979-02-07 1980-08-26 Triad & Associates, Inc. System for monitoring the condition of a pipeline
GB2055201B (en) * 1979-07-19 1983-07-20 British Gas Corp Pressure-balanced probe
US4291577A (en) * 1979-12-03 1981-09-29 The Institute Of Paper Chemistry On line ultrasonic velocity gauge
JPS57161672A (en) * 1981-03-31 1982-10-05 Fujitsu Ltd Measuring method utilizing ultrasonic wave
GB2128739B (en) * 1982-09-15 1986-05-21 Schlumberger Electronics Ultrasonic inspection devices
GB2144545B (en) * 1983-08-04 1986-12-03 British Gas Corp A wheel probe
US4615218A (en) * 1984-09-12 1986-10-07 Pagano Dominick A Ultrasonic wheel probe with acoustic barrier
US4612808A (en) * 1985-02-19 1986-09-23 United Kingdom Atomic Energy Authority Contact ultrasonic probe holders
FR2580813B1 (fr) * 1985-04-17 1987-07-03 Aerospatiale Dispositif de controle par ultra-sons pourvu d'un organe de roulement
JP3317545B2 (ja) * 1993-03-25 2002-08-26 株式会社東芝 紙葉類給送装置
US5574223A (en) * 1994-04-05 1996-11-12 Gas Research Institute Scan assembly and method using scan rate modulation
US5864232A (en) * 1996-08-22 1999-01-26 Pipetronix, Ltd. Magnetic flux pipe inspection apparatus for analyzing anomalies in a pipeline wall
US5907100A (en) * 1997-06-30 1999-05-25 Gas Research Institute Method and system for detecting and displaying defects in piping
US6404189B2 (en) * 1999-03-17 2002-06-11 Southeast Research Institute Method and apparatus for inspecting pipelines from an in-line inspection vehicle using magnetostrictive probes
WO2003076916A1 (fr) * 2002-03-13 2003-09-18 Burn-Am Co., Ltd. Procede et dispositif d'inspection interieure pour canalisation souterraine, et procede de recherche des deteriorations du beton sur la face interieure d'une canalisation souterraine
FR2844297B1 (fr) * 2002-09-10 2005-07-01 Schlumberger Services Petrol Sonde de mesure pour un puits d'hydrocarbures
US7213459B2 (en) * 2004-03-24 2007-05-08 General Electric Company High speed inspection system and method
GB2437547B (en) * 2006-04-28 2010-07-14 Genesis Oil And Gas Consultant Method and apparatus for inspecting pipes
US7908923B2 (en) * 2006-12-07 2011-03-22 Siemens Aktiengesellschaft Method of non-destructively testing a work piece and non-destructive testing arrangement
US7698937B2 (en) * 2007-10-18 2010-04-20 Neidhardt Deitmar J Method and apparatus for detecting defects in oilfield tubulars

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143395A (zh) * 2018-09-16 2019-01-04 六盘水久翔爆破工程有限责任公司 一种竖直爆破孔地质探测装置
CN109143395B (zh) * 2018-09-16 2023-09-19 六盘水久翔爆破工程有限责任公司 一种竖直爆破孔地质探测装置

Also Published As

Publication number Publication date
US20110132082A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
RU2411548C1 (ru) Измерительный зонд для нефтегазовой скважины и/или обсадной колонны
EP3250784B1 (en) Devices and methods for downhole acoustic imaging
US20200033494A1 (en) Through tubing cement evaluation using seismic methods
AU2011382521B2 (en) Acoustic transducer apparatus, systems, and methods
AU2013271387A1 (en) Communication in pipes using acoustic modems that provide minimal obstruction to fluid flow
AU2013390016B2 (en) System and method for pipe and cement inspection using borehole electro-acoustic radar
US10047603B2 (en) Analyzing subsurface material properties using a laser vibrometer
US20150098487A1 (en) Magnetostrictive Dual Temperature and Position Sensor
RU2608636C1 (ru) Устройство для определения плотности без источника, способы и системы
US9702855B2 (en) Acoustic interface device
US8235109B2 (en) Instrument centralizer configurable for use with cement evaluation well logging instruments
Leonard Development of a downhole ultrasonic transducer for imaging while drilling
US10901104B2 (en) Encoded driving pulses for a range finder
US11248455B2 (en) Acoustic geosteering in directional drilling
RU2444030C1 (ru) Скважинный сейсмический прибор
US20240288600A1 (en) Slim sonic logging tool with multiple modules for borehole resonance mode and pitch-catch measurement
RU2823220C1 (ru) Обнаружение и наблюдение за отличительными признаками пласта месторождения с помощью оптического волокна
US20240183825A1 (en) Downhole status detection using vibration
RU2580209C1 (ru) Способ акустического каротажа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171117