RU2408876C1 - Способ измерения концентрации веществ в средах - Google Patents

Способ измерения концентрации веществ в средах Download PDF

Info

Publication number
RU2408876C1
RU2408876C1 RU2009124842/28A RU2009124842A RU2408876C1 RU 2408876 C1 RU2408876 C1 RU 2408876C1 RU 2009124842/28 A RU2009124842/28 A RU 2009124842/28A RU 2009124842 A RU2009124842 A RU 2009124842A RU 2408876 C1 RU2408876 C1 RU 2408876C1
Authority
RU
Russia
Prior art keywords
sample
oscillatory circuit
sensor
medium
measuring
Prior art date
Application number
RU2009124842/28A
Other languages
English (en)
Inventor
Анатолий Александрович Козяев (RU)
Анатолий Александрович Козяев
Вячеслав Алексеевич Ермаков (RU)
Вячеслав Алексеевич Ермаков
Дмитрий Алексеевич Загвоздин (RU)
Дмитрий Алексеевич Загвоздин
Original Assignee
Открытое акционерное общество "Научно-производственная корпорация "Иркут" (ОАО "Корпорация "Иркут")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственная корпорация "Иркут" (ОАО "Корпорация "Иркут") filed Critical Открытое акционерное общество "Научно-производственная корпорация "Иркут" (ОАО "Корпорация "Иркут")
Priority to RU2009124842/28A priority Critical patent/RU2408876C1/ru
Application granted granted Critical
Publication of RU2408876C1 publication Critical patent/RU2408876C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Предлагаемое изобретение относится к области измерительной техники и может быть использовано для измерения концентрации в диэлектрической среде веществ с другими диэлектрическими или магнитными свойствами. Способ измерения концентрации веществ в средах заключается во взаимодействии образца испытуемой среды с емкостным или индуктивным датчиком, включенными в колебательный контур, измерении параметров колебательного контура, сравнении их с эталонными значениями для образцов испытуемых сред и оценке результатов сравнения, при этом непосредственно перед измерениями определяют параметры колебательного контура при отсутствии взаимодействия какого-либо образца с датчиком, а в зависимости от этого измеренного значения параметра колебательного контура выбирают эталонные зависимости для образцов испытуемых сред, а характеристики испытуемой среды определяют по данным эталонным зависимостям в зависимости от величины измеренного параметра колебательного контура при взаимодействии образца испытуемой среды с датчиком. Изобретение обеспечивает повышение достоверности измерений в производственных условиях, в частности при изменении температуры в помещении. 3 ил.

Description

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в различных отраслях промышленности для измерения концентрации в диэлектрической среде веществ с другими диэлектрическими или магнитными свойствами, например, влажности древесины, зерна, муки и т.д. или концентрации магнитных включений в диэлектрических жидкостях или пластмассах.
Известен способ измерения электрических и магнитных характеристик сред, в частности, для определения концентрации какого-либо вещества в среде, включающий размещение образца исследуемой среды в датчике, измерение собственной частоты колебательного контура, в который включен емкостный или индуктивный датчик с образцом исследуемой среды, и определение концентрации вещества в исследуемой среде по эталонным зависимостям в зависимости от величины разности измеренных собственных частот колебательного контура без образца исследуемой среды и с образцом исследуемой среды (см. а.с. СССР № 1372226, опубл. 07.02.1988 г.).
Недостатком данного способа является низкая точность измерения. В частности, при изменении температуры изменяются параметры колебательного контура и параметры среды, что приводит к ошибкам при измерении. Эти же недостатки присущи и техническому решению по патенту РФ № 2149390, опубл. 20.05.2000 г. и именно поэтому измерения по данному способу осуществляют только при известной температуре.
Наиболее близким к предлагаемому является способ измерения концентрации веществ в средах, включающий размещение образца исследуемой среды в датчике, измерение собственной частоты колебательного контура, в который включен емкостный или индуктивный датчик с образцом исследуемой среды, и определение концентрации вещества в исследуемой среде по эталонным зависимостям в зависимости от величины разности измеренных собственных частот колебательного контура без образца исследуемой среды и с образцом исследуемой среды, в котором, в отличие от вышеприведенных технических решений, образцы испытуемой среды и эталонной среды взаимодействуют с емкостным или индуктивным датчиком поочередно (см. патент РФ № 2275625, опубл. 27.04.2006 г.). Это позволяет несколько повысить точность измерений, но существенно усложняет сам процесс измерения, так как необходимо постоянно чередовать измерения параметров колебательного контура при взаимодействии с датчиком образцов испытуемой среды и образцов эталонной среды. Кроме этого, параметры колебательного контура зависят и от температуры, поэтому необходимо либо поддерживать заданную температуру в помещении, где проводятся измерения, для достижения заданной температуры образцов испытуемой и эталонной сред и устройств, реализующих способ, либо, по крайней мере, периодически, измерять эту температуру и вводить в показания приборов соответствующие поправки. Для реализации способа в производственных условиях необходимо измерительное устройство оснащать термочувствительным элементом, например, терморезистором и системой преобразования сигнала от термочувствительного элемента, что усложняет реализацию способа и увеличивает погрешность измерений.
Указанные недостатки ограничивают возможность применения данного способа.
Задачей данного изобретения является повышение достоверности измерений в производственных условиях, в частности при изменении температуры в помещении.
Технический результат заключается в достижении возможности упрощения конструкции устройства, реализующего способ.
Для получения указанного технического результата предлагается способ измерения концентрации веществ в средах, включающий измерение собственной частоты колебательного контура, в который включен емкостный или индуктивный датчик, при отсутствии взаимодействия какого-либо образца с датчиком, выбор по этому измеренному значению эталонной зависимости для образца исследуемой среды, размещение образца исследуемой среды в датчике, измерение собственной частоты колебательного контура с образцом исследуемой среды и определение концентрации вещества в исследуемой среде по полученным эталонным зависимостям в зависимости от величины разности измеренных собственных частот колебательного контура без образца исследуемой среды и с образцом исследуемой среды.
Отличительные признаки заявляемого технического решения: измерение собственной частоты колебательного контура, в который включен емкостный или индуктивный датчик, при отсутствии взаимодействия какого-либо образца с датчиком и выбор по этому измеренному значению эталонной зависимости для образца исследуемой среды.
Указанные отличительные признаки в известных технических решениях не обнаружены.
Предложенный способ позволяет без измерения температуры в процессе измерения параметров колебательного контура и без введения в конструкцию измерительных приборов каких-либо термочувствительных датчиков и преобразователей производить с высокой точностью измерения в условиях нестабильной температуры окружающей среды. Кроме этого, для реализации способа в конструкции устройства достаточно одного колебательного контура, что дополнительно упрощает данное устройство.
На фиг.1 и фиг.2 приведены примеры структурных схем устройств, реализующих данный способ, а именно структурная схема влагомера для древесины (фиг.1) и структурная схема прибора для измерения концентрации магнитопорошковой суспензии (фиг.2). На фиг.3 изображена зависимость отклонения частоты (Δf) в колебательном контуре одного из устройств при изменении температуры окружающей среды в условиях отсутствия взаимодействия датчика с каким-либо образцом.
Пример 1. Влагомер для древесины (фиг.1) содержит колебательный контур 1, включающий емкостный датчик 2 и индуктивность 3. Колебательный контур 1 включен в обратную связь усилителя 4 и вместе они образуют генератор незатухающих колебаний. Выход усилителя 4 связан с контроллером 5, а контроллер 5 - с блоком индикации 6.
Для определения концентрации влаги в древесине емкостный датчик 2 прикладывают к испытуемому образцу 7. В зависимости от породы древесины и ее влажности, а также температуры окружающей среды, изменяется электрическая емкость емкостного датчика 2 и, соответственно, частота собственных колебаний в колебательном контуре 1. Разность частот колебательного контура при наличии испытуемого образца 7 и без образца при одной и той же температуре является параметром, по которому определяется влажность образца 7. Для учета влияния температуры непосредственно перед измерениями влажности древесины измеряют отклонение частоты колебательного контура 1 устройства при отсутствии взаимодействия какого-либо образца с датчиком 2. По этой величине отклонения контроллер 5 выбирает эталонную зависимость, по которой и будет проводиться измерение влажности. Из графика фиг.3, полученного для одного из устройств опытным путем, видно, что отклонение частоты (Δf) в колебательном контуре в условиях отсутствия взаимодействия датчика с каким-либо образцом зависит от температуры и является параметром, по которому целесообразно выбирать эталонные зависимости. Непосредственно после выбора эталонной зависимости проводится определение влажности образца путем сравнения частоты в колебательном контуре при контакте образца 7 с емкостным датчиком 2 и при отсутствии контакта, при этом сопоставление разности частот с соответствующей эталонной зависимостью производится также с помощью контроллера 5, а индикация результатов вычислений производится с помощью блока индикации 6.
Пример 2. Прибор для измерения концентрации магнитопорошковой суспензии (фиг.2) содержит колебательный контур 8, включающий емкость 9 и индуктивный датчик 10. Колебательный контур 8 включен в обратную связь усилителя 11 и вместе они образуют генератор незатухающих колебаний. Выход усилителя 11 связан с контроллером 12, а контроллер 12 - с блоком индикации 13. Индуктивный датчик 10 представляет собой катушку индуктивности из проводника 14, заключенную в герметичный корпус 15 в виде полого цилиндра.
Для измерения концентрации магнитопорошковой суспензии, в частности, в процессе приготовления контрольного раствора для магнитопорошковой дефектоскопии, индуктивный датчик 10 опускается в контрольный раствор таким образом, чтобы полость корпуса 15 была заполнена контрольным раствором. В зависимости от концентрации магнитопорошковой суспензии и температуры окружающей среды изменяется индуктивность индуктивного датчика 10 и, соответственно, частота собственных колебаний в колебательном контуре 8. Разность частот колебательного контура при наличии контрольного раствора в полости корпуса 15 индуктивного датчика 10 и при отсутствии раствора при одной и той же температуре является параметром, по которому определяется концентрация магнитопорошковой суспензии. Для учета влияния температуры непосредственно перед измерениями концентрации магнитопорошковой суспензии измеряют отклонение частоты колебательного контура 8 устройства при отсутствии контрольного раствора в индуктивном датчике 10. По этой величине отклонения контроллер 12 выбирает эталонную зависимость, по которой и будет проводиться измерение концентрации магнитопорошковой суспензии, так как именно эта величина характеризует температуру элементов колебательного контура и, соответственно в установившемся режиме, температуру окружающей среды. Температурная зависимость для любого колебательного контура аналогична приведенной на фиг.3. После выбора эталонной зависимости проводится определение концентрации магнитопорошковой суспензии путем сравнения частоты в колебательном контуре при наличии контрольного раствора в полости корпуса 15 индуктивного датчика 10 и при отсутствии раствора, при этом сопоставление разности частот с соответствующей эталонной зависимостью производится также с помощью контроллера 12, а индикация результатов вычислений производится с помощью блока индикации 13.
Таким образом, предложенный способ позволяет путем измерения такого параметра колебательного контура, как частота собственных колебаний, определять не только концентрацию веществ в средах, например концентрацию воды в древесине (влажность) или концентрацию магнитного порошка в контрольной жидкости, но и компенсировать изменения температуры окружающей среды, что значительно повышает достоверность измерений. При этом в конструкции устройств, реализующих способ, достаточно одного колебательного контура и не устанавливается каких-либо дополнительных элементов, например термочувствительных датчиков и преобразователей, которые снижают надежность работы устройств.
Применение данного способа измерений в экспериментальных образцах влагомера для древесины и измерителя концентрации магнитопорошковой суспензии позволило упростить конструкцию устройств и расширить температурный диапазон их работы.

Claims (1)

  1. Способ измерения концентрации веществ в средах, включающий измерение собственной частоты колебательного контура, в который включен емкостный или индуктивный датчик, при отсутствии взаимодействия какого-либо образца с датчиком, выбор по этому измеренному значению эталонной зависимости для образца исследуемой среды, размещение образца исследуемой среды в датчике, измерение собственной частоты колебательного контура с образцом исследуемой среды и определение концентрации вещества в исследуемой среде по полученным эталонным зависимостям в зависимости от величины разности измеренных собственных частот колебательного контура без образца исследуемой среды и с образцом исследуемой среды.
RU2009124842/28A 2009-06-29 2009-06-29 Способ измерения концентрации веществ в средах RU2408876C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009124842/28A RU2408876C1 (ru) 2009-06-29 2009-06-29 Способ измерения концентрации веществ в средах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009124842/28A RU2408876C1 (ru) 2009-06-29 2009-06-29 Способ измерения концентрации веществ в средах

Publications (1)

Publication Number Publication Date
RU2408876C1 true RU2408876C1 (ru) 2011-01-10

Family

ID=44054695

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009124842/28A RU2408876C1 (ru) 2009-06-29 2009-06-29 Способ измерения концентрации веществ в средах

Country Status (1)

Country Link
RU (1) RU2408876C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197394U1 (ru) * 2019-11-06 2020-04-23 Публичное акционерное общество "Научно-производственная корпорация "Иркут" (ПАО "Корпорация "Иркут") Устройство для измерения концентрации магнитного порошка

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197394U1 (ru) * 2019-11-06 2020-04-23 Публичное акционерное общество "Научно-производственная корпорация "Иркут" (ПАО "Корпорация "Иркут") Устройство для измерения концентрации магнитного порошка

Similar Documents

Publication Publication Date Title
US8220313B2 (en) Apparatus for ascertaining and/or monitoring a process variable of a meduim
EP2807480B1 (en) Acoustic method and device for measuring a fluid density
EP2153190B1 (en) Pressure gauge
US6060889A (en) Sensing water and moisture using a delay line
US11994420B2 (en) Vibronic multisensor with pressure detection unit
WO2011085193A1 (en) Gas sensor
US10605778B2 (en) Gas sensor incorporating a temperature-controlled sensing material
US20200264122A1 (en) Resonant sensors for wireless monitoring of cell concentration
US11714066B2 (en) Self-calibrating analyte sensor
Bhadra et al. Electrode potential-based coupled coil sensor for remote pH monitoring
JP5220890B2 (ja) 試料の密度の正確な測定方法
RU2408876C1 (ru) Способ измерения концентрации веществ в средах
Heidari et al. Conductivity effect on the capacitance measurement of a parallel-plate capacitive sensor system
RU2433393C1 (ru) Устройство для измерения влажности почвы
WO2014123450A1 (ru) Влагомер
RU2556288C2 (ru) Анализатор общего давления, плотности и парцианального давления паров воды в низком вакууме
US20140116119A1 (en) Device and Method for Measuring a Quantity of Water in Oil or Oil Products
RU2199731C1 (ru) Устройство для определения влажности нефтепродуктов в трубопроводе
RU207887U1 (ru) Акустический газоанализатор
RU2427851C1 (ru) Способ измерения физической величины
RU2354980C2 (ru) Способ определения диэлектрической постоянной диэлектрического продукта
US11913968B2 (en) Automatic liquid density measurement device
KR200292528Y1 (ko) 고주파 2개 주파수 변화의 조합을 이용한 정밀 수분 측정장치
RU181064U1 (ru) Устройство для измерения физических свойств жидкости
Lata et al. Design of a Hydrostatic Liquid Level Wireless Transmitter for Efficient Level Measurement

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner