RU2408743C1 - Инертный анод электролизера для производства алюминия - Google Patents

Инертный анод электролизера для производства алюминия Download PDF

Info

Publication number
RU2408743C1
RU2408743C1 RU2009119068/02A RU2009119068A RU2408743C1 RU 2408743 C1 RU2408743 C1 RU 2408743C1 RU 2009119068/02 A RU2009119068/02 A RU 2009119068/02A RU 2009119068 A RU2009119068 A RU 2009119068A RU 2408743 C1 RU2408743 C1 RU 2408743C1
Authority
RU
Russia
Prior art keywords
current
inert anode
rod
anode
contact
Prior art date
Application number
RU2009119068/02A
Other languages
English (en)
Other versions
RU2009119068A (ru
Inventor
Александр Олегович Гусев (RU)
Александр Олегович Гусев
Дмитрий Александрович Симаков (RU)
Дмитрий Александрович Симаков
Владимир Игоревич Кирко (RU)
Владимир Игоревич Кирко
Егор Игоревич Степанов (RU)
Егор Игоревич Степанов
Владимир Иннокентьевич Побызаков (RU)
Владимир Иннокентьевич Побызаков
Юрий Владимирович Васильев (RU)
Юрий Владимирович Васильев
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" (ООО "РУСАЛ ИТЦ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" (ООО "РУСАЛ ИТЦ") filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" (ООО "РУСАЛ ИТЦ")
Priority to RU2009119068/02A priority Critical patent/RU2408743C1/ru
Publication of RU2009119068A publication Critical patent/RU2009119068A/ru
Application granted granted Critical
Publication of RU2408743C1 publication Critical patent/RU2408743C1/ru

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом, а именно к конструкции инертных анодов электролизеров для производства алюминия. Инертный анод электролизера для производства алюминия содержит корпус, выполненный из электропроводного материала, устойчивого к воздействию криолит-глиноземного расплава, токоподводящий стержень с полой камерой, расположенной в зоне контакта токоподводящего стержня с корпусом инертного анода и снабженной сквозными щелями, узел герметизации инертного анода. Полая камера токоподводящего стержня снабжена токопроводящим наполнителем, термическое расширение которого выше термического расширения токоподводящего стержня и корпуса инертного анода. Зона контакта корпуса инертного анода и токоподводящего стержня снабжена слоем токопроводящего материала. Слой токопроводящего материала выполнен в виде припоя или покрытия, например, электропроводной пастой, клеем. Обеспечиваются снижение токовых потерь в контактном узле и получение оптимального токораспределения. 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом, а именно к конструкции инертных анодов электролизеров для производства алюминия.
Наличие большого числа электрических контактных узлов в ошиновке электролизера приводит к существенному падению напряжения на электролизере в целом, в результате чего снижаются технико-экономические показатели процесса электролиза. Одним из наиболее ответственных узлов электролизера является анод. Независимо от типа анода: самообжигающийся, обожженный или инертный, - актуальной остается проблема снижения токовых потерь в контакте «тело анода - токоподводящий элемент».
В настоящее время известен целый ряд технических решений в области производства инертных анодов, принадлежащих различным, в основном, зарубежным фирмам, лидерами среди которых можно считать следующие фирмы: «Moltech Invent S.A.» (LU), «Alcoa, Inc., Pittsburgh, PA» (US), «Aluminium Pechiney» (FR) и т.д.
В конструктивном плане инертные аноды, как правило, имеют два обязательных элемента: корпус инертного анода, непосредственно контактирующий с криолит-глиноземным расплавом, и токоподводящий элемент, соединяющий анодную шину с корпусом инертного анода и расположенный внутри корпуса анода.
Так, из патента US №7169270 «Электрический контактный узел инертного анода» (С25В 11/02, дата публ. - 30.01.2007 г.) известен инертный анод, включающий: корпус инертного анода, выполненный из керамики, металла или кермета; цельный или пустотелый токоподводящий стержень, выполненный из никеля, инконеля и/или стали; наполнитель в виде порошка из электропроводного материала определенного гранулометрического состава. Гранулометрическому составу порошка уделяется особое внимание, как фактору, определяющему электропроводность наполнителя. Токопроводящий порошок, помещенный в зазор между корпусом анода и стержнем, спекается либо в процессе предварительного нагрева, либо непосредственно в электролизере в процессе эксплуатации анода.
Существенным недостатком данного решения является следующее. В процессе нагрева в корпусе инертного анода возникает избыточное термонапряжение как следствие термического расширения токоподводящего стержня и токопроводящего наполнителя, причем составляющая силового воздействия на корпус анода от терморасширения порошкообразного наполнителя будет значительно выше, чем от токоподводящего стержня. Практика показывает, что в результате такого терморасширения с течением времени наблюдается растрескивание корпуса инертного анода.
Другим недостатком инертного анода данной конструкции является высокое электросопротивление контактного узла, причем более значительное влияние на величину электросопротивления оказывает токопроводящий порошковый наполнитель. Электрический контакт «корпус-стержень», обеспечиваемый посредством токопроводящего наполнителя в виде дисперсной среды «твердое - газ», каким бы идеальным не был гран-состав дисперсной среды, уступает непосредственному сплошному поверхностному электрическому контакту «корпус-стержень».
Известен патент US №4450061 «Электродный узел: металлический стержень - керамический корпус» (С25С 7/02, С25В 11/04, C25D 17/12, опубл. 22.05.1984 г.). Данный патент направлен, как отмечено в описании, на решение одной из основных проблем производства и использования инертных анодов, заключающейся в разработке электрического контактного узла «корпус - токоподводящий стержень» с низким электросопротивлением.
По технической сущности, по количеству сходных существенных признаков данное техническое решение выбрано в качестве ближайшего аналога (прототипа). В данном патенте, так же как в предлагаемом решении, токоподводящий стержень непосредственно контактирует с корпусом инертного анода.
В техническом решении по прототипу токоподводящий стержень крепится в керамическом пустотелом корпусе посредством резьбового соединения. Токоподводящий стержень снабжен полой камерой в зоне контакта с корпусом инертного анода. На контактных стенках токоподводящего стержня выполнены щели для компенсации термического расширения стержня. Причем щели могут быть как сквозными, то есть доходить, как указано в патенте, до внешней кромки стенки, так и несквозными. Для обеспечения лучшего токораспределения дно корпуса и наружная донная часть металлического штыря должны плотно прилегать друг к другу. Для защиты контактного узла от коррозии под воздействием агрессивной среды электролизного производства инертный анод снабжен узлом герметизации в форме крышки.
Недостатком прототипа является, прежде всего, его конструктивное решение. Традиционно инертный анод подвешивается к шине посредством токоподводящего стержня с помощью зажима. Зажимаемая верхняя часть стержня находится, по прототипу, в жесткой связи с его контактными стенками, расположенными внутри корпуса анода. В условиях высокой температуры процесса электролиза под действием веса инертного анода металл токоподводящего стержня будет деформироваться, в результате чего будет наблюдаться подъем донной контактной стенки с отрывом ее от дна керамического корпуса. Кроме того, наличие полой камеры в зоне электроконтакта создает условия для его нарушения и в зоне вертикальных контактных стенок, выполненных гибкими для предупреждения разрушающего воздействия токоподвода при его терморасширении. Таким образом, надежность данной конструкции инертного анода в плане обеспечения минимальных токовых потерь в контакте «корпус-токоподводящий стержень» вызывает сомнение, так как не обеспечивается плотное прилегание контактных стенок токоподводящего стержня к внутренней поверхности корпуса анода.
В основу изобретения положена задача, заключающаяся в создании прочного, надежного, простого в изготовлении токоподвода к инертному аноду, работающему в условиях высокой плотности тока.
Техническим результатом внедрения предлагаемого технического решения является снижение токовых потерь в контактном узле «токоподводящий стержень - корпус анода», снижение термомеханических нагрузок на керамический корпус анода, а также получение оптимального токораспределения.
Технический результат достигается тем, что в инертном аноде электролизера для производства алюминия, включающем корпус, выполненный из электропроводного материала, устойчивого к воздействию криолит-глиноземного расплава, токоподводящий стержень с полой камерой, расположенной в зоне контакта токоподводящего стержня с корпусом инертного анода и имеющий сквозные щели, узел герметизации инертного анода, согласно заявляемому изобретению полая камера токоподводящего стержня снабжена токопроводящим наполнителем, коэффициент линейного расширения материала которого выше коэффициента линейного расширения материала токоподводящего стержня и материала корпуса инертного анода.
В зоне контакта корпуса инертного анода и токоподводящего стержня он может быть выполнен со слоем из токопроводящего материала либо в виде припоя, либо в виде покрытия, например, электропроводной пастой, клеем.
Техническая сущность предлагаемого решения заключается в следующем.
Снижение электросопротивления в контактной зоне «корпус инертного анода - токоподводящий стержень» обеспечивается за счет увеличения плотности прилегания контактирующих поверхностей под воздействием термических напряжений, возникающих в объеме инертного анода, снабженного наполнителем. Причем величина силового воздействия на корпус анода от терморасширения порошкообразного наполнителя должна быть значительно выше, чем от токоподводящего стержня. На стадии проектирования можно с максимальной точностью рассчитать необходимое и достаточное усилие, обеспечивающее максимальный контакт поверхностей для каждого конкретного варианта выполнения анода как в части используемых материалов, так и в части конструкционных решений.
Одним из факторов варьирования при использовании в качестве наполнителя дисперсной системы «твердое-газ» является гран-состав сыпучего наполнителя, так как при различном гран-составе одного и того же материала можно получить различную величину развивающегося термоусилия. При использовании в качестве наполнителя однофазной системы (сплошные среды), например металлы или их сплавы, предпочтительно выбирать материал с коэффициентом линейного расширения, намного большим, чем у материала токоподводящего стержня.
Помимо снижения токовых потерь в вертикальной контактной зоне наполнитель обеспечивает надежный электроконтакт с горизонтальной внутренней поверхностью корпуса анода. Таким образом, в токораспределение вовлекается максимально возможная поверхность инертного анода, что особенно важно при работе на высоких плотностях тока. Выравнивание токораспределения за счет равнозначной проводимости наполнителя в любом направлении исключает возможность возникновения на рабочей поверхности анода локальных участков с повышенной анодной плотностью тока.
Наличие сквозных щелей в контактной части токоподводящего стержня исключает возникновение разрушающего воздействия токоподводящего стержня на корпус инертного анода в процессе электролиза.
Наличие узла герметизации инертного анода обеспечивает в условиях агрессивной среды защиту контактного узла от коррозии. Узел герметизации выполняется из термостойкого газонепроницаемого материала, помещаемого в паз, выполненный в корпусе анода и токоподводящем стержне. В качестве такого материала могут выступать, например, керамобетоны, обеспечивающие помимо герметизации и достаточно надежную фиксацию корпуса анода на стержне.
Инертный анод по предлагаемому решению отличается повышенной надежностью, обеспечиваемой не только наличием узла герметизации, но и спаиванием контактных поверхностей внутри корпуса анода, причем спаивание может осуществляться как вне электролизера в процессе предварительного прогрева при необходимой температуре, так и непосредственно в электролизере в процессе эксплуатации инертного анода.
Простота изготовления предлагаемого инертного анода обусловлена простотой крепления токоподводящего стержня к керамическому корпусу анода, а именно отказом от резьбового соединения и использованием такого физического явления, как терморасширение.
Сущность предлагаемого технического решения поясняется на одном из вариантов конструктивного решения инертного анода. На фиг.1 представлен главный вид инертного анода. На фиг.2 представлен вид сверху с горизонтальным разрезом А-А на фиг.1; на фиг.3 представлен вертикальный разрез Б-Б на фиг.2
Инертный анод состоит из корпуса 1, выполненного из электропроводного материала, устойчивого к воздействию криолит-глиноземного расплава; токоподводящего стержня, состоящего из металлического анододержателя 2, снабженного уплотняющей бобышкой 3 и резьбой 4, и электроконтактной втулки 5, имеющий в верхней части сквозные щели 6, в зоне контакта токоподводящего стержня с корпусом инертного анода. Узел герметизации инертного анода выполнен в виде паза 7 и заполнен термостойким газонепроницаемым материалом. Полая камера токоподводящего стержня 8 образована внутренней стенкой электроконтактной втулки 5, днищем корпуса анода 1 и горизонтальной поверхностью бобышки 3 и снабжена токопроводящим наполнителем 9. В зоне контакта корпуса инертного анода 1 и токоподводящего стержня он выполнен со слоем из токопроводящего материала 10. Между контактными поверхностями корпуса 1 и анододержателя 2 устанавливается прокладка 11 из электропроводящего материала, например пенометалла.
Предлагаемый в качестве примера конкретной реализации заявляемого технического решения вариант конструктивного выполнения инертного анода не требует предварительной высокотемпературной обработки.
Подготовка инертного анода к эксплуатации осуществляется следующим образом.
На внутреннюю поверхность корпуса 1 инертного анода и наружную поверхность электроконтактной втулки 5 токоподводящего стержня предварительно в зоне контакта наносят слой токопроводящего материала 10. В корпус инертного анода 1 устанавливают электроконтактную втулку 5. В полую камеру 8 токоподводящего стержня засыпают наполнитель 9. Между контактными поверхностями корпуса 1 и анододержателя 2 устанавливают прокладку 11 из электропроводящего материала, например пенометалла. С помощью резьбы 4 на электроконтактной втулке 5 фиксируют металлический анододержатель 2, бобышка 3 которого уплотняет наполнитель 9 в процессе скручивания анододержателя 2 и электроконтактной втулки 5. В результате уплотняющего воздействия бобышки 3 происходит первоначальная (холодная) стадия деформации гибких контактных стенок втулки 5. Затем выполняют узел герметизации путем заливки в паз 7 термостойкого газонепроницаемого материала, например керамобетона.
В настоящее время в стадии завершения лабораторные испытания инертных анодов, выполненных согласно предлагаемому техническому решению, испытания доказали работоспособность предлагаемого технического решения. Эффективность данного решения будет доказана в процессе опытно-промышленных испытаний.

Claims (4)

1. Инертный анод электролизера для производства алюминия, содержащий корпус, выполненный из электропроводного материала, устойчивого к воздействию криолит-глиноземного расплава, токоподводящий стержень с полой камерой, расположенной в зоне контакта токоподводящего стержня с корпусом инертного анода и имеющей сквозные щели, узел герметизации инертного анода, отличающийся тем, что полая камера токоподводящего стержня снабжена токопроводящим наполнителем, коэффициент линейного расширения которого выше коэффициента линейного расширения материала токоподводящего стержня и материала корпуса инертного анода.
2. Инертный анод по п.1, отличающийся тем, что в зоне контакта корпуса инертного анода и токоподводящего стержня он выполнен со слоем из токопроводящего материала.
3. Инертный анод по п.2, отличающийся тем, что слой из токопроводящего материала выполнен в виде припоя.
4. Инертный анод по п.2, отличающийся тем, что слой из токопроводящего материала выполнен в виде покрытия, например электропроводной пастой, клеем.
RU2009119068/02A 2009-05-21 2009-05-21 Инертный анод электролизера для производства алюминия RU2408743C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009119068/02A RU2408743C1 (ru) 2009-05-21 2009-05-21 Инертный анод электролизера для производства алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009119068/02A RU2408743C1 (ru) 2009-05-21 2009-05-21 Инертный анод электролизера для производства алюминия

Publications (2)

Publication Number Publication Date
RU2009119068A RU2009119068A (ru) 2010-11-27
RU2408743C1 true RU2408743C1 (ru) 2011-01-10

Family

ID=44054620

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009119068/02A RU2408743C1 (ru) 2009-05-21 2009-05-21 Инертный анод электролизера для производства алюминия

Country Status (1)

Country Link
RU (1) RU2408743C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679224C1 (ru) * 2018-04-06 2019-02-06 Михаил Константинович Кулеш Термохимически стойкий анод для электролиза алюминия
CN110004463A (zh) * 2019-04-28 2019-07-12 镇江慧诚新材料科技有限公司 一种氧铝联产电解用陶瓷基非碳阳极与金属导杆的连接方法
RU2727384C1 (ru) * 2019-12-23 2020-07-21 Михаил Константинович Кулеш Термохимически стойкий анод для электролиза алюминия
RU2734512C1 (ru) * 2020-06-09 2020-10-19 Михаил Константинович Кулеш Термохимически стойкий анод для электролиза алюминия

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679224C1 (ru) * 2018-04-06 2019-02-06 Михаил Константинович Кулеш Термохимически стойкий анод для электролиза алюминия
RU2679224C9 (ru) * 2018-04-06 2019-02-13 Михаил Константинович Кулеш Термохимически стойкий анод для электролиза алюминия
CN110004463A (zh) * 2019-04-28 2019-07-12 镇江慧诚新材料科技有限公司 一种氧铝联产电解用陶瓷基非碳阳极与金属导杆的连接方法
RU2727384C1 (ru) * 2019-12-23 2020-07-21 Михаил Константинович Кулеш Термохимически стойкий анод для электролиза алюминия
RU2734512C1 (ru) * 2020-06-09 2020-10-19 Михаил Константинович Кулеш Термохимически стойкий анод для электролиза алюминия

Also Published As

Publication number Publication date
RU2009119068A (ru) 2010-11-27

Similar Documents

Publication Publication Date Title
RU2403324C2 (ru) Катоды для алюминиевых электролизеров с пазом неплоской конфигурации
RU2389826C2 (ru) Катоды для алюминиевых электролизеров с пенографитовой облицовкой
EP2006419A1 (en) Reduced voltage drop anode assembly for aluminium electrolysis cell
RU2449058C2 (ru) Электролизер для производства алюминия, содержащий средства для уменьшения падения напряжения
RU2408743C1 (ru) Инертный анод электролизера для производства алюминия
AU2015348020B2 (en) Cathode current collector for a hall-heroult cell
WO2011148347A1 (en) Hall-heroult cell cathode design
CA2509839A1 (en) Cathode systems for the electrolytic production of aluminum
JP2022016478A (ja) ホール・エルーセルのカソード集電体/コネクタ
CN109923243A (zh) 用于生产铝的阴极组件
RU2683683C2 (ru) Анодное устройство
US20100258434A1 (en) Composite Collector Bar
JP6089137B1 (ja) カソード
SA08290056B1 (ar) هيكل واقي من الحرارة لجزء طرفي في خلية تحليل كهربي لإنتاج الألومنيوم
US4450061A (en) Metal stub and ceramic body electrode assembly
RU2679224C1 (ru) Термохимически стойкий анод для электролиза алюминия
CA3087116A1 (en) Cathode elements for a hall-heroult cell for aluminium production and a cell of this type having such elements installed
RU2734512C1 (ru) Термохимически стойкий анод для электролиза алюминия
AU2015282392B2 (en) Anode assembly
RU2727384C1 (ru) Термохимически стойкий анод для электролиза алюминия
RU2657682C2 (ru) Катодный токоподводящий стержень алюминиевого электролизера
RU2381301C1 (ru) Катодное устройство алюминиевого электролизера
Tremblay et al. In Situ Investigation of Current Distribution in the Anode
RU2456382C1 (ru) Анодный токоподвод алюминиевого электролизера
CA3179900A1 (en) Cathode assembly for a hall-heroult cell for aluminium production and method for making same

Legal Events

Date Code Title Description
TC4A Altering the group of invention authors

Effective date: 20120723