RU2407885C2 - Электродная система скважинного электрогидроимпульсного устройства - Google Patents

Электродная система скважинного электрогидроимпульсного устройства Download PDF

Info

Publication number
RU2407885C2
RU2407885C2 RU2008125027/03A RU2008125027A RU2407885C2 RU 2407885 C2 RU2407885 C2 RU 2407885C2 RU 2008125027/03 A RU2008125027/03 A RU 2008125027/03A RU 2008125027 A RU2008125027 A RU 2008125027A RU 2407885 C2 RU2407885 C2 RU 2407885C2
Authority
RU
Russia
Prior art keywords
electrode
electrode system
positive electrode
housing
well
Prior art date
Application number
RU2008125027/03A
Other languages
English (en)
Other versions
RU2008125027A (ru
Inventor
Анатолий Яковлевич Картелев (RU)
Анатолий Яковлевич Картелев
Алексей Михайлович Глыбин (RU)
Алексей Михайлович Глыбин
Андрей Иванович Краев (RU)
Андрей Иванович Краев
Анатолий Тимофеевич Шахалкин (RU)
Анатолий Тимофеевич Шахалкин
Original Assignee
Анатолий Яковлевич Картелев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анатолий Яковлевич Картелев filed Critical Анатолий Яковлевич Картелев
Priority to RU2008125027/03A priority Critical patent/RU2407885C2/ru
Publication of RU2008125027A publication Critical patent/RU2008125027A/ru
Application granted granted Critical
Publication of RU2407885C2 publication Critical patent/RU2407885C2/ru

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

Изобретение относится к электрогидроимпульсным устройствам для воздействия на призабойную зону нефтяных и газовых скважин. Техническим результатом является повышение прочности и надежности электродной системы устройства как при спуске в скважину, так и при работе на интервале перфорации, а также повышение качества обработки скважин. Для этого электродная система содержит полый металлический корпус, заполненный диэлектрической жидкостью и выполненный с окнами, перекрытыми кольцевой эластичной мембраной. Электродная система включает также центральный положительный электрод, изолированный от корпуса, и отрицательный электрод, соединенный с корпусом и установленный соосно положительному электроду. При этом, кольцевая эластичная мембрана установлена внутри полого корпуса. Кроме того, эластичная мембрана с одной стороны плотно охватывает отрицательный электрод, с другой стороны - изолятор положительного электрода. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к электрогидроимпульсным устройствам для воздействия на призабойную зону нефтегазоносных скважин с целью очистки зон перфорации, противопесчаных фильтров скважин и повышения проницаемости продуктивного пласта при добыче нефти, газа и воды, а также для воздействия через обсадную колонну на тампонажный раствор после окончания его продавки в заколонное пространство с целью повышения качества цементирования обсадной колонны в скважине.
Известны электродные системы электрогидравлических установок для дробления горных пород, состоящие из коаксиальных центрального анода, наружного катода и промежуточного изолятора (см. книгу Гаврилов Г.Н., Егоров А.Л., Коровин С.К. Электрогидроимпульсная технология в горном деле и строительстве, М., Недра, 1991, с.21-24, рис.15). Центральный анод имеет диаметр 8-12 мм и выполнен из вольфрама, молибдена, никеля или специальных эрозионно стойких материалов МКВ70НЗ, МВ70НЗ или АМВ30. Катод может представлять собой оплетку коаксиального кабеля, полую металлическую трубку или дно металлического бака. В качестве промежуточного изолятора, разделяющего анод и катод, наиболее часто применяют стеклопластики, полиэтилен, вакуумную резину и фторопласт. В качестве технологической жидкости используют техническую воду или неионизированные жидкости, такие как этанол, ацетон, глицерин.
При приложении высокого импульсного напряжения к промежутку анод - катод происходит пробой технологической жидкости, быстрое выделение энергии, запасенной в конденсаторах, образование плазменного канала и разогрев жидкости. Расширяющийся плазменный канал порождает волну сжатия или ударную волну, а возникающая позже парогазовая полость - гидродинамические возмущения в виде скоростного гидропотока. Эти два разрушающих фактора используются для направленного разрушения, дробления и переизмельчения горных пород и грунтов.
Недостатки известных электродных систем:
- конструкции и материалы электродных систем, особенно их изоляторы, непригодны для работы в условиях высоких температур и больших гидростатических давлений;
- амплитуда ударной волны сильно зависит от проводимости воды (в ней при измельчении горных пород растворяются соли калия и кальция, вследствие чего вода становится минерализованной и проводящей, электрический разряд становится объемным, как в жидкостном резисторе, а не нитевидным, соответственно, взрывного перегрева воды не происходит и ударная волна имеет малую амплитуду).
В качестве прототипа выбрана электродная система электрогидроимпульсного скважинного устройства по а.с. СССР №1457489, кл. МПК5 E21B 43/24, опубл. в БИ №37, 07.10.91, авторы Н.И.Кускова, Р.А.Максутов, П.П.Малюшевский, О.Н.Сизоненко, А.В.Соколов, В.И.Щекин, содержащая полый металлический корпус, заполненный диэлектрической жидкостью и выполненный с окнами, перекрытыми кольцевой эластичной мембраной, центральный положительный и отрицательный электроды, установленные друг против друга на оси корпуса. Положительный электрод выполнен трубчатой формы, например, в виде намотки ленты из эрозионно стойкого композиционного материала. Положительный электрод изолирован от корпуса с помощью трех коаксиальных изоляторов: одного основного изолятора и двух сменных изолирующих втулок. Отрицательный электрод имеет резьбовой хвостовик, завинчиваемый в корпус и контрящийся гайкой. Электродная система электрически связана с генератором импульсных токов.
В этой электродной системе, благодаря гидроизоляции диэлектрической жидкости от минерализованной скважинной жидкости с помощью резиновой мембраны, параметры электрического разряда и ударной волны остаются квазистатическими до тех пор, пока электрохимическая коррозия материала электродов не начнет повышать проводимость диэлектрической жидкости. Это обычно происходит, когда число разрядов превышает 1000.
К недостаткам электродной системы - прототипа, препятствующим получению требуемого технического результата, следует отнести то, что:
- еще до начала электрогидравлической обработки пласта, а именно, при спуске устройства на интервал перфорации резиновая мембрана, расположенная поверх корпуса электродной системы, может быть содрана с корпуса системы солевыми наростами и неоднородностями на стенках обсадной колонны и стыках муфт обсадной колонны;
- при электрогидравлической обработке интервала перфорации, для которого характерно наличие вокруг пулевых или кумулятивных отверстий острых кромок (своего рода кратеров) и вдоль которого скважинное электрогидроимпульсное устройство несколько раз перемещается и производит до 500 разрядов на один погонный метр интервала перфорации, изменяя при каждом разряде - ударе свое положение в стволе скважины, резиновая мембрана на электродной системе с высокой вероятностью может быть разрезана на вышеуказанных острых кромках.
В обоих случаях разгерметизация электродной системы приведет к тому, что минерализованная скважинная жидкость попадет в межэлектродный промежуток, электрический разряд поведет себя как ток в жидкостном резисторе и станет объемным, а не нитевидным, соответственно, взрывного перегрева воды не будет и ударная волна будет иметь малую амплитуду. В результате, интервал перфорации нефтяной скважины не будет очищен от солевых, асфальтосмолистых и парафиновых отложений.
Третьим недостатком прототипа является хаотичная ориентация ударной волны вследствие частого электрического пробоя на боковые ребра металлического корпуса электродной системы, а не на катод, соосный аноду. В результате этого снижается уровень ударного воздействия на продуктивный пласт, и увеличивается ударное действие на изолятор анода.
Задачей настоящего изобретения является повышение жизнеспособности и ресурса электродной системы скважинного электрогидроимпульсного устройства как при спуске в скважину, так и при работе на интервале перфорации.
Технический результат изобретения - повышение механической прочности и надежности электродной системы, а также улучшение условий формирования осевого канала разряда и цилиндрической ударной волны.
Указанный технический результат достигается тем, что в известной электродной системе, содержащей полый металлический корпус, заполненный диэлектрической жидкостью и выполненный с окнами, перекрытыми кольцевой эластичной мембраной, центральный положительный электрод, изолированный от корпуса, и отрицательный электрод, соединенный с корпусом и установленный соосно положительному электроду, новым является то, что кольцевая эластичная мембрана установлена внутри полого корпуса.
Кроме того, эластичная мембрана с одной стороны (конца) плотно охватывает отрицательный электрод, с другой стороны (конца) - изолятор положительного электрода; эластичная мембрана выполнена из фторкаучука или фторэластомера.
Установка кольцевой эластичной мембраны внутри полого корпуса обеспечивает:
- механическую защиту кольцевой эластичной мембраны металлическим корпусом электродной системы (не резиновая мембрана, а металлический корпус системы теперь будет скользить по солевым наростам на стенках обсадной колонны, неоднородностям на стыках муфт в обсадной колонне и острым кромкам на краях пулевых и кумулятивных перфорационных отверстий). В результате ресурс работы и живучесть электродной системы возрастают.
- уменьшение до нуля числа электрических пробоев на боковую стенку металлического корпуса, формирование канала разряда по оси электродной системы и цилиндрической ударной волны, направленной в призабойную зону нефтяного пласта. Это обусловлено тем, что резиновая мембрана является хорошим диэлектриком и препятствует развитию лидеров и разрядов на боковую поверхность корпуса электродной системы. В результате этого ослабляется ударное воздействие на изолятор положительного электрода и возрастают скорость и эффективность очистки интервала перфорации от солевых, асфальтосмолистых и парафиновых отложений. В прототипе пробой начинается с положительного стержня образованием «куста» лидеров, которые, развиваясь, расходятся от острия анода преимущественно по радиальным направлениям, практически не ориентируясь на противолежащий катод, и устремляются к боковой поверхности корпуса. Соответственно в прототипе, в большинстве случаев, ударная волна направляется не в зону продуктивного пласта, а на анод и изолятор анода электродной системы, постепенно разрушая их.
На чертеже показана в разрезе предлагаемая электродная система скважинного электрогидроимпульсного устройства.
Электродная система содержит центральный положительный электрод 1, размещенный в изоляторе 2, отрицательный электрод 3, соединенный с полым металлическим корпусом 4. В корпусе 4, являющимся продолжением отрицательного электрода, выполнены окна 5, расположенные по периметру корпуса напротив межэлектродного промежутка Н. С внутренней стороны корпуса 4 установлена кольцевая эластичная мембрана 6. Мембрана 6 плотно обтягивает с одной стороны отрицательный электрод 3, с другой стороны - изолятор 2 положительного электрода 1. Отрицательный электрод 3 зафиксирован в корпусе 4 при помощи гайки 7 и колпачка 8. Изолятор 2 положительного электрода 1 зафиксирован в корпусе 4 при помощи металлического кольца 9 и загерметизирован от прорыва скважинной жидкости в сторону коммутатора при помощи кольцевых уплотнений 10.
Центральный положительный электрод 1 и отрицательный электрод 2 выполнены из металла с высокой стойкостью к электрохимической коррозии, например технической меди.
Мембрана 6 выполнена методом горячей вулканизации резиновой смеси марки Аф-15. Эта смесь приготовлена на основе фторэластомера типа Aflas и технического углерода и обладает уникальными свойствами: температурный предел эксплуатации от минус 35 до плюс 250°С, относительное удлинение до 200%, может работать в среде масел, топлив, пластовых жидкостей, алифатических углеводородов.
Внутренняя полость 11 электродной системы заполнена рабочей жидкостью в виде дистиллированной воды или раствора кальцинированной соды в воде с концентрацией 0,1-0,3 г/л.
Электродная система подключается через коммутатор к генератору импульсных токов скважинного электрогидроимпульсного устройства, спускаемого в скважину при помощи геофизического кабеля и запитываемого через него.
Электродная система работает следующим образом. При подаче высокого напряжения от генератора импульсных токов на положительный электрод 1 электрический разряд развивается с конца этого электрода в направлении на отрицательный электрод 3. Развитию лидеров на боковую поверхность корпуса 4 электродной системы препятствует резиновая мембрана 6, являющаяся хорошим диэлектриком. Ввод энергии в плазменный канал сопровождается быстрым разогревом рабочей жидкости и образованием в ней парогазового пузыря. Расширяющийся плазменный канал порождает волну сжатия или ударную волну, а парогазовая полость - гидродинамические возмущения в виде скоростного гидропотока. Ударная волна распространяется в радиальном направлении симметрично относительно канала разряда (оси электродной системы и оси нефтяной скважины) сначала по рабочей жидкости, поступает далее на стенку обсадной колонны нефтяной скважины и с затуханием уходит во внешнюю геологическую среду. Расширяющаяся парогазовая полость вызывает, в свою очередь, перемещение жидкости в полости 11 электродной системы и за ее пределами - в стволе обсадной колонны нефтяной скважины и призабойной зоне скважины, так как эластичная мембрана 6 практически не влияет на гидродинамические процессы. Многократное повторение до 200-500 разрядов - электрогидравлических ударов на погонный метр интервала перфорации приводит к очистке его от солевых, асфальтосмолистых и парафиновых отложений и повышению дебита нефтяной скважины.
Таким образом, внутреннее расположение эластичной мембраны улучшает условия формирования центрального канала разряда и цилиндрической ударной волны, а также обеспечивает механическую защиту мембраны при перемещении электродной системы по наростам солевых отложений и острым кромкам перфорационных отверстий на обсадной колонне нефтяной скважины. Подобранный материал мембраны обеспечивает ее живучесть в агрессивной среде и жестких условиях эксплуатации.

Claims (2)

1. Электродная система скважинного электрогидроимпульсного устройства, содержащая полый металлический корпус, заполненный диэлектрической жидкостью и выполненный с окнами, перекрытыми кольцевой эластичной мембраной, и размещенные в корпусе центральный положительный электрод, изолированный от корпуса, и отрицательный электрод, установленный соосно положительному электроду и соединенный с корпусом, отличающаяся тем, что кольцевая эластичная мембрана установлена внутри полого корпуса, причем мембрана с одного конца плотно охватывает отрицательный электрод, а с другого конца - изолятор положительного электрода.
2. Электродная система по п.1, отличающаяся тем, что эластичная мембрана выполнена из фторкаучука или фторэластомера.
RU2008125027/03A 2008-06-23 2008-06-23 Электродная система скважинного электрогидроимпульсного устройства RU2407885C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008125027/03A RU2407885C2 (ru) 2008-06-23 2008-06-23 Электродная система скважинного электрогидроимпульсного устройства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008125027/03A RU2407885C2 (ru) 2008-06-23 2008-06-23 Электродная система скважинного электрогидроимпульсного устройства

Publications (2)

Publication Number Publication Date
RU2008125027A RU2008125027A (ru) 2009-12-27
RU2407885C2 true RU2407885C2 (ru) 2010-12-27

Family

ID=41642478

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008125027/03A RU2407885C2 (ru) 2008-06-23 2008-06-23 Электродная система скважинного электрогидроимпульсного устройства

Country Status (1)

Country Link
RU (1) RU2407885C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2461704C1 (ru) * 2011-04-07 2012-09-20 Анатолий Яковлевич Картелев Электродная система скважинного электрогидравлического устройства

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973065B (zh) * 2019-03-20 2024-10-11 南京苏佰能能源科技有限公司 一种高聚能电脉冲解堵电极装置及解堵方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2461704C1 (ru) * 2011-04-07 2012-09-20 Анатолий Яковлевич Картелев Электродная система скважинного электрогидравлического устройства

Also Published As

Publication number Publication date
RU2008125027A (ru) 2009-12-27

Similar Documents

Publication Publication Date Title
US10738536B2 (en) Drilling a rock formation with a drill bit assembly-with electrodes
WO1998016713A1 (fr) Procede d'excavation a l'aide d'impulsions electriques et excavatrice associee
CN105952426A (zh) 一种基于液电脉冲激波的油井解堵增产装置
CN103946479A (zh) 使用井液电解进行人工举升的方法和装置
RU2407885C2 (ru) Электродная система скважинного электрогидроимпульсного устройства
RU82764U1 (ru) Электроимпульсный буровой наконечник
US20140060804A1 (en) Well Cleaning Device
EP3234297B1 (en) Device and method for crushing rock by means of pulsed electric energy
RU2656653C1 (ru) Электроимпульсный буровой наконечник
US11261710B2 (en) Well perforating using electrical discharge machining
RU131503U1 (ru) Устройство для генерирования упругих импульсов в гидросфере горизонтальной скважины
RU2319009C2 (ru) Способ бурения горных пород электрическими импульсными разрядами и буровой снаряд
CN113494282B (zh) 一种应用于油井解堵的激波发射器及油井解堵系统
Yan et al. Experimental study on the discharging characteristics of pulsed high-voltage discharge technology in oil plug removal
EP3277919B1 (en) Apparatus and method of focused in-situ electrical heating of hydrocarbon bearing formations
RU2283937C2 (ru) Электроимпульсный бур
RU2631749C1 (ru) Электроимпульсное буровое долото
RU2500873C1 (ru) Электроимпульсный буровой снаряд
RU2317413C1 (ru) Электродная система скважинного электрогидравлического устройства
RU2438014C1 (ru) Электродная система скважинного электрогидравлического устройства (варианты)
RU2303690C2 (ru) Устройство для магнитно-гидроимпульсной обработки скважин (варианты)
US20190242206A1 (en) Method and Apparatus for Completing Wells
RU2524101C2 (ru) Способ электроимпульсного бурения скважин, электроимпульсной буровой наконечник
CN113914822B (zh) 一种适用于解堵的激波放电电极、激波发射器和解堵系统
RU2254444C2 (ru) Устройство для очистки нефтяных скважин

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101218