RU2402045C1 - Различение наведенной природными трещинами или напряжениями акустической анизотропии с использованием сочетания изобразительных и акустических каротажных диаграмм - Google Patents

Различение наведенной природными трещинами или напряжениями акустической анизотропии с использованием сочетания изобразительных и акустических каротажных диаграмм Download PDF

Info

Publication number
RU2402045C1
RU2402045C1 RU2009113531/28A RU2009113531A RU2402045C1 RU 2402045 C1 RU2402045 C1 RU 2402045C1 RU 2009113531/28 A RU2009113531/28 A RU 2009113531/28A RU 2009113531 A RU2009113531 A RU 2009113531A RU 2402045 C1 RU2402045 C1 RU 2402045C1
Authority
RU
Russia
Prior art keywords
cracks
fast
shear
acoustic
wave
Prior art date
Application number
RU2009113531/28A
Other languages
English (en)
Inventor
Ромен ПРИУЛЬ (US)
Ромен ПРИУЛЬ
Джон Адам ДОНАЛД (US)
Джон Адам ДОНАЛД
Рандолф КЕПСЕЛЛ (US)
Рандолф КЕПСЕЛЛ
Том Р. БРАТТОН (US)
Том Р. Браттон
Питер КАУФМАНН (US)
Питер КАУФМАНН
Клод ЗИГНЕР (US)
Клод ЗИГНЕР
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Application granted granted Critical
Publication of RU2402045C1 publication Critical patent/RU2402045C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Изобретение относится к областям скважинной геологии и геофизики и, более конкретно, к идентификации и оцениванию глубинных зон, имеющих упругую среду, видоизмененную наведенными природными трещинами или напряжениями эффектов. В соответствии с одним осуществлением изобретения способ различения наведенной природными трещинами и напряжениями акустической анизотропии содержит этапы, на которых регистрируют данные в виде изображения и акустические данные, связанные со стволом скважины; используют акустические данные для оценивания по меньшей мере одного модуля сжатия и двух модулей сдвига и направления дипольной быстрой поперечной волны; используют данные в виде изображения для идентификации типа и ориентации трещин; вычисляют азимут быстрой поперечной волны и разность медленностей между быстрой и медленной поперечными волнами, обусловленную геологическими трещинами; и идентифицируют глубинные зоны с упругой средой, находящейся под воздействием по меньшей мере одного из присутствия раскрытых природных трещин, сомкнутых природных трещин и эффектов неравных главных напряжений. Согласно другому осуществлению изобретения устройство для различения наведенной трещинами и напряжениями акустической анизотропии содержит запоминающее устройство, функционирующее для сохранения данных в виде изображения и акустических данных, связанных со стволом скважины; схемы, функционирующие для использования акустических данных для оценивания по меньшей мере одного модуля сжатия и двух модулей сдвига и направления дипольной быстрой поперечной волны; схемы, функционирующие для использования данных в виде изображения для идентификации типа и ориентации трещин; схемы, функционирующие для вычисления азимута быстрой поперечной волны и разности медленностей между быстрой и медленной поперечными волнами, обусловленной геологическими трещинами; и схемы, функционирующие для идентификации глубинных зон с упругой средой, находящейся под воздействием по меньшей мере одного из присутствия раскрытых природных трещин, сомкнутых природных трещин и эффектов неравных главных напряжений. 2 н. и 16 з.п. ф-лы, 2 ил.

Description

Область техники, к которой относится изобретение
В общем настоящее изобретение относится к областям скважинной геологии и геофизики и, более конкретно, к идентификации и оцениванию глубинных зон, имеющих упругую среду, видоизмененную наведенными природными трещинами или напряжениями эффектов.
Предпосылки создания изобретения
Нефть и природный газ извлекают из подземных пластов путем бурения стволов скважины в углеводородсодержащих зонах, выполнения работ по заканчиванию скважины и после этого добычи продукта. Различные датчики используют для совершенствования процесса образования ствола скважины и повышения продуктивности законченной скважины. Например, акустические приборы, спускаемые на кабеле, или для каротажа в процессе бурения применяют для измерения динамических упругих свойств пласта вокруг ствола скважины, используя измерения скоростей продольных и поперечных волн. Когда упругие свойства пласта являются анизотропными, можно измерять несколько скоростей и использовать их для частичного или полного описания тензора анизотропной упругости, зависящего от распространения и направления поляризации. Различные условия могут вызывать анизотропию, включая, но без ограничения ими, собственные свойства пород, трещины и неравные главные напряжения. Последнее условие имеет некоторое значение для устойчивости ствола скважины, оптимального гидравлического разрыва пласта, схемы заканчивания скважины и других геофизических и петрофизических применений. Поэтому правильная идентификация причины анизотропии является важной.
Известны некоторые способы идентификации причины анизотропии. Акустические данные монопольных продольных и поперечных волн, монопольных волн Стоунли и поперечных волн со скрещенных диполей в анизотропном пласте могут быть использованы для оценивания одного модуля сжатия и трех модулей сдвига [Sinha B., et al. “Radial profiling of three formation shear moduli”, 75th Ann. Internat. Mtg. Soc. of Expl. Geophys., 2005; патент США №6714480 под названием “Determination of anisotropic moduli of earth formations” (Sinha B., et al.), выданный 30 марта 2004 г., источники во всей полноте включены в настоящую заявку путем ссылки]. Орторомбический пласт с вертикальной осью симметрии характеризуется тремя модулями сдвига: с44, с55 и с66. В вертикальном стволе скважины два модуля (с44 и с55) вертикального сдвига могут быть непосредственно оценены на основании анализа азимутальной анизотропии волновых сигналов со скрещенных диполей. Азимут быстрой поперечной волны можно вычислить, используя такой метод как вращение Алфорда, а медленности быстрой и медленной поперечных волн можно оценить по пределам нулевой частоты дисперсий сигналов со скрещенных диполей [Alford R.M. “Shear data in the presence of azimuthal anisotropy”, 56th Ann. Internat. Mtg., Soc. of Expl. Geophys., 1986; Esmersoy C., et al. “Dipole shear anisotropy logging”, 64th Ann. Internat. Mtg., Soc. of Expl. Geophys., 1994; Sinha B., et al. “Radial profiling of three formation shear moduli”, 75th Ann. Internat. Mtg. Soc. of Expl. Geophys., 2004; патент США №5214613 под названием “Method and apparatus for determining properties of anisotropic elastic media” (Esmersoy C.), выданный 25 мая 1993 г.; патент США №5808963 под названием “Dipole shear anisotropy logging” (Esmersoy C.), выданный 15 сентября 1998 г.; или для ознакомления с альтернативным методом см. патент США №6718266 под названием “Determination of dipole shear anisotropy of earth formations” (Sinha B., et al.), выданный 6 апреля 2004 г.; Tang X., et al. “Simultaneous inversion of formation shear-wave anisotropy parameters from cross-dipole acoustic-array waveform data”, Geophysics, 1999, источники полностью включены в настоящую заявку путем ссылки]. Третий модуль с66 сдвига можно оценить на основании данных волн Стоунли при условии применения поправок для исключения влияний любого изменения состава пород вблизи ствола скважины и приборов [Norris A.N., et al. “Weak elastic anisotropy and the tube wave”, Geophysics, 1993, 58, 1091-1098; патент США №6714480 под названием “Determination of anisotropic moduli of earth formations” (Sinha B., et al.), выданный 30 марта 2004 г., источники полностью включены в настоящую заявку путем ссылки]. Кроме того, дипольные дисперсионные кривые используют для идентификации причины анизотропии упругих свойств: (i) наведенных напряжениями эффектов (вследствие неравных главных напряжений в дальнем поле и концентрации напряжений в ближнем поле вокруг ствола скважины) путем использования характеристического пересечения дипольных кривых [Sinha B.K., et al. “Stress-induced azimuthal anisotropy in borehole flexural waves”, Geophysics, 1996; Winkler K.W., et al. “Effects of borehole stress concentrations on dipole anisotropy measurements”, Geophysics, 1998; Sinha B.K., et al. “Dipole dispersion crossover and sonic logs in a limestone reservoir”, Geophysics, 2000; патент США №5398215 под названием “Identification of stress induced anisotropy in formations” (Sinha B.), выданный 14 марта 1995 г., источники полностью включены в настоящую заявку путем ссылки], или (ii) собственной или наведенной трещинами анизотропии путем использования характеристик параллельных дисперсионных кривых [Sinha B.K., et al. “Borehole flexural modes in anisotropic formations”, Geophysics, 1994; патент США №5398215 под названием “Identification of stress induced anisotropy in formations” (Sinha B.), выданный 14 марта 1995 г., источники полностью включены в настоящую заявку путем ссылки]. Однако когда имеются оба эффекта, трещин и напряжений или когда анализ дисперсионных кривых является трудным для осуществления интерпретации вследствие затухания высоких частот [Donald A., et al. “Advancements in acoustic techniques for evaluating natural fractures”, 47th Annu. Logging Symp., SPWLA, 2006, источник полностью включен в настоящую заявку путем ссылки], или когда ось симметрии анизотропной среды и ось ствола скважины не совпадают, интерпретация наблюдаемой анизотропии становится более сомнительной. Необходимо получать независимую информацию для подтверждения наблюдений и различения относительной значимости различных эффектов.
Различение относительной значимости различных эффектов является особенно важным в случаях, когда направления главных напряжений и нормали к плоскостям природных трещин не совпадают. Анализ отражений и затухания волн Стоунли позволяет осуществлять идентификацию раскрытых трещин в стволе скважины и оценивать их апертуры [патент США №4870627 под названием “Method and apparatus for detecting and evaluating borehole wall” (Hsu K.), выданный 26 сентября 1989 г.; Hornby B.E., et al. “Fracture evaluation using reflected Stoneley-wave arrivals”, Geophysics, 1989; Tezuka K., et al. “Modeling of low-frequency Stoneley-wave propagation in an irregular borehole”, Geophysics, 1997; патент США №4831600 под названием “Borehole logging method for fracture detection and evaluation” (Hornby B.), выданный 16 мая 1989 г., источники полностью включены в настоящую заявку путем ссылки]. Кроме того, интерпретация изображений (электрических и ультразвуковых) ствола скважины может быть использована для идентификации раскрытых или сомкнутых трещин [Luthi S.M. “Geological well logs: their use in reservoir modeling”, Springer, 2000; патент США №5243521 под названием “Width determination of fractures intersecting a borehole” (Luthi S.), выданный 7 сентября 1993 г., источники полностью включены в настоящую заявку путем ссылки]. В таком случае можно вычислять характеристики трещин, например ориентацию и местоположение. Однако не существует практического способа для прямого количественного моделирования акустической анизотропии, наведенной природными трещинами и напряжениями, чтобы осуществлять различение относительных эффектов.
Сущность изобретения
В соответствии с одним осуществлением изобретения способ различения наведенной природными трещинами и напряжениями акустической анизотропии содержит этапы, на которых регистрируют данные в виде изображения и акустические данные, связанные со стволом скважины; используют акустические данные для оценивания по меньшей мере одного модуля сжатия и двух модулей сдвига и направления дипольной быстрой поперечной волны; используют данные в виде изображения для идентификации типа и ориентации трещин; вычисляют азимут быстрой поперечной волны и разность медленностей между быстрой и медленной поперечными волнами, обусловленную геологическими трещинами; и идентифицируют глубинные зоны с упругой средой, находящейся под воздействием по меньшей мере одного из присутствия раскрытых природных трещин, сомкнутых природных трещин и эффектов неравных главных напряжений.
Согласно другому осуществлению изобретения устройство для различения наведенной трещинами и напряжениями акустической анизотропии содержит запоминающее устройство, функционирующее для сохранения данных в виде изображения и акустических данных, связанных со стволом скважины; схемы, функционирующие для использования акустических данных для оценивания по меньшей мере одного модуля сжатия и двух модулей сдвига, и направления дипольной быстрой поперечной волны; схемы, функционирующие для использования данных в виде изображения для идентификации типа и ориентации трещин; схемы, функционирующие для вычисления азимута быстрой поперечной волны и разности медленностей между быстрой и медленной поперечными волнами, обусловленной геологическими трещинами; и схемы, функционирующие для идентификации глубинных зон с упругой средой, находящейся под воздействием по меньшей мере одного из присутствия раскрытых природных трещин, сомкнутых природных трещин и эффектов неравных главных напряжений.
Краткое описание чертежей
На чертежах:
фиг.1 - иллюстрация обработки акустических данных при подготовке к идентификации и оцениванию анизотропии; и
фиг.2 - иллюстрация идентификации и оценивания глубинных зон, имеющих упругую среду, видоизмененную наличием природных трещин и эффектами неравных главных напряжений и любым сочетанием их.
Подробное описание
Обратимся к фиг.1 и 2, где на начальном этапе (100) регистрируют акустические каротажные диаграммы при наличии любой одной или сочетания имеющихся волн, включая, но без ограничения ими, монопольную, дипольную и Стоунли. Акустические данные монопольных продольных и поперечных волн, монопольной волны Стоунли и поперечных волн со скрещенных диполей, связанные с анизотропным пластом, используют для оценивания одного модуля сжатия и трех модулей сдвига. Орторомбический пласт с вертикальной осью симметрии характеризуется тремя модулями сдвига: с44, с55 и с66.
Акустические каротажные данные, регистрируемые на этапе (100), обрабатывают в порядке подготовки к идентификации и оцениванию анизотропных характеристик медленности акустической волны. Как показано на этапе (101), медленность продольной волны идентифицируют на основании монопольной волны. Медленность продольной волны на основании монопольной волны используют в качестве входных данных на этапе (221). Как показано на этапе (102), анизотропию поперечных волн идентифицируют на основании данных дипольной волны. В вертикальном стволе скважины два модуля (с44 и с55) сдвига непосредственно оценивают по вертикальному диполю на основании анализа азимутальной анизотропии волновых сигналов со скрещенных диполей. Кроме того, определяют направление (или азимут) быстрой поперечной волны. Способы определения направления быстрой поперечной волны включают в себя, но без ограничения ими, вращение Алфорда и параметрическую инверсию волновых сигналов со скрещенных диполей. Наибольший из модулей сдвига (с44 или с55) используют в качестве входных данных на этапе (221). Азимут быстрой поперечной волны и медленности быстрой и медленной волн используют в качестве входных данных на этапе (224) для вычисления несоответствия между прогнозируемыми и наблюдаемыми акустическими измерениями. Как показано на этапе (103), дипольные дисперсионные кривые могут быть использованы для идентификации причины анизотропии: (i) наведенных напряжениями эффектов (вследствие неравных главных напряжений в дальнем поле и концентрации напряжений в ближнем поле вокруг ствола скважины) путем использования характеристического пересечения дипольных кривых, или (ii) собственной или наведенной трещинами анизотропии путем использования характеристик параллельных дисперсионных кривых. На этапе (300) дисперсионные кривые используют в качестве индикатора контроля качества (КК). Как показано на этапе (104), третий модуль с66 сдвига оценивают на основании данных волн Стоунли в вертикальном стволе скважины при условии применения поправок для исключения влияний изменения состава пород вблизи ствола скважины и приборов. Модуль сдвига на основании волн Стоунли также используют в качестве входных данных на этапе (221), если он является наибольшим из модулей сдвига при сравнении с44, с55 и с66. В случае невертикальных скважин в орторомбическом пласте с вертикальной или невертикальной осью симметрии этапы (101, 102 и 104) объединяют. Три модуля упругости оценивают, используя систему выражений для скоростей поперечных волн с горизонтальной поляризацией и поперечных волн с вертикальной поляризацией вдоль оси ствола скважины, и четыре сочетания модулей упругости оценивают на основании выражения для скорости квазипродольной волны. Затем измеренные значения медленности (DTcomeas) продольной волны, определенные на основании монопольной волны, и самой малой (DTsfastmeas) из медленностей поперечных волн на основании дипольной волны или (DTsST) на основании волны Стоунли используют в качестве входных данных на этапе (221). Анализ трещин на основании волны Стоунли выполняют на этапе (105). Анализ отражений волны Стоунли позволяет осуществить идентификацию раскрытых трещин в стволе скважины и оценку их апертур. На этапе (300) идентификацию местоположений трещин на основании волны Стоунли используют в качестве индикатора контроля качества.
Теперь обратимся к фиг.2, где на этапе (201) анализ трещин выполняют на основании изобразительных каротажных диаграмм, зарегистрированных на этапе (200). Интерпретация изображений ствола скважины обычно включает в себя анализ слоистости, структурный анализ и анализ неоднородности пласта, а также анализ трещин. Идентификация трещин основана на наблюдении на электрических приборах скачка удельного сопротивления на границе вмещающей породы (проводящие или резистивные трещины) и сочетания времени пробега волны и скачка амплитуды на ультразвуковых приборах. Интерпретация изображений ствола скважины включает в себя различение разных типов трещин (например, природных трещин или трещин, наведенных неравными главными напряжениями и концентрацией напряжений вокруг ствола скважины) и определение геометрических характеристик трещин (например, местоположения и ориентации с учетом глубины, угла падения и азимутальных характеристик падения). Кроме того, интерпретация может включать в себя определение апертур трещин [Luthi S.M., et al. “Fracture apertures from electrical borehole scans”, Geophysics, 1990, источник полностью включен в настоящую заявку путем ссылки], связности длины следа разрыва, трещинной пористости, разнесения трещин в коллекторе и интенсивности трещиноватости в случае группы трещин.
Геологический и геомеханический анализ позволяет осуществлять различение природных трещин и трещин, наведенных неравными главными напряжениями и концентрацией напряжений вокруг ствола скважины. Наведенные напряжениями трещины представляют собой наведенные в процессе бурения трещины растяжения и скола, разломы и смещения на уже существующих плоскостях. Наведенные в процессе бурения трещины растяжения легко обнаруживаются на изображении ствола скважины, поскольку они симметричны относительно стенки ствола скважины, традиционно почти вертикальные и наблюдаются вдоль плоскостей, перпендикулярных к минимальному главному напряжению. Наведенные в процессе бурения трещины скола обнаруживаются в ориентации, перпендикулярной к минимальному главному напряжению, но проявляются несимметрично на противоположных сторонах стенки ствола скважины при угле трещины, меньшем, чем вертикальный, и связаны с механической прочностью литологической единицы. Разломы обладают отличительными чертами, когда одна или предпочтительно две недостаточно оформленные дуги, то есть радиусы которых близки к радиусам долота, разделены двумя поврежденными зонами на угловом расстоянии около 180°. Разлом возникает в случае, когда имеется максимальное тангенциальное напряжение на стенке ствола скважины. Поскольку вертикальная скважина часто является параллельной вертикальному главному напряжению, разломы просто указывают азимут минимального главного напряжения. Наклонно направленная скважина наклонена по отношению к трем главным напряжениям, которые влияют на максимальное тангенциальное напряжение. Плоскости смещений в породах могут повторно формироваться во время или после бурения. Такие плоскости обычно лежат под косым углом к текущим осям напряжений. В поясняемом способе при рассмотрении раскрытых природных трещин, сомкнутых природных трещин и наведенных напряжениями трещин число типов (или групп) трещин может быть равно трем, но не ограничено этим значением. Анализ трещин на этапе (201) приводит к определению типов трещин и геометрических характеристик (например, угла наклона и азимута наклона), которые используются в качестве входных данных при вычислениях на этапе (221).
В случае когда имеются несколько планарных трещин с различными ориентациями, и они могут быть идентифицированы по изобразительным каротажным диаграммам, разомкнутые трещины будут создавать избыточную податливость в упругой среде и, следовательно, повышать медленности акустических волн, то есть уменьшать скорость [см., например, Schoenberg M., et al. “Seismic anisotropy of fractured rock”, Geophysics, 1995, источник полностью включен в настоящую заявку путем ссылки]. Однако крустифицированные трещины могут снижать общую податливость среды, например, заполненные кварцем или кальцитом. При условии присутствия одной или нескольких групп параллельных трещин длинноволновая эффективная среда может рассматриваться как анизотропная упругая порода с различными возможными симметриями, например изотропной в поперечном направлении, орторомбической, моноклинной или даже триклинной. Однако Grechka и Kachanov [Grechka V., et al. “Seismic characterization of multiple fracture sets: does orthotropy suffice?”, Geophysics, 2006, источник полностью включен в настоящую заявку путем ссылки] показали, что орторомбическая симметрия обычно является достаточной для сухих трещин независимо от числа групп трещин, плотностей расколов и ориентаций. Симметрии низшего порядка, такие как моноклинные и триклинные, могут быть получены, если трещины заполнены сжимаемыми флюидами или если принимать во внимание шероховатость поверхностей трещин. На основании интерпретации типа трещин, геометрии и других характеристик трещин может быть выполнен анализ наблюдаемых трещин, которые оказывают влияние на упругую среду. Раскрытия трещин, обнаруживаемые на изобразительных каротажных диаграммах и методом волн Стоунли, обычно имеют порядок от 10 мкм до 2 мм. При заданной частоте 1-5 кГц акустических волн и медленностях 100-800 мкс/фут (328-2624 мкс/м) типичные длины волн акустических колебаний имеют порядок от 0,25 фута до 10 футов (от 0,08 до 3,05 м). Таким образом, длина волны низкочастотного акустического колебания всегда больше раскрытия трещины. Другим важным параметром для группы трещин является расстояние между соседними трещинами, описываемое параметром интенсивности трещиноватости (относительным показателем числа трещин на протяжении заданного расстояния). Типичные значения интенсивности трещиноватости в случае очень разреженных групп меньше 0,75 (единицей измерения является 1/м), тогда как в случае плотных групп они могут превышать 10 (1/м). Разнесение трещин (величина, обратная интенсивности трещиноватости) всегда больше раскрытия трещины, но разнесение трещин может быть меньше, равно или больше длины волны акустического колебания. Когда разнесение трещин намного меньше длины волны, можно применять модели эффективной среды, и параметры модели будут зависеть только от ориентации и интенсивности групп трещин, свойств материала, заполняющего трещины, и коэффициентов упругости вмещающей породы [теории эффективной среды для невзаимодействующих расколов изложены, например, у Kachanov M. “Continuum model of medium with cracks”, J. Eng. Mech. Div. Am. Soc. Civ. Eng., 1980; Schoenberg M. “Elastic wave behavior across linear slip interfaces”, Journal of the Acoustical Society of America, 1980; Hudson J.A. “Overall properties of cracked solid”, Mathematical Proceedings of the Cambridge Philosophical Society, 1980, источники полностью включены в настоящую заявку путем ссылки]. Когда разнесение трещин близко к или больше длины волны акустического колебания, теории эффективной среды не являются строго обоснованными для осуществления количественного сравнения данных и моделирования. Однако когда эффектами рассеяния первого порядка можно пренебречь, моделирование все же можно использовать в качественном методе.
Sayers и Kachanov, а также Schoenberg и Sayers [Sayers C.M., et al. “Microcrack-induced elastic wave anisotropy of brittle rocks”, J. Geophys. Res., 1995; Schoenberg and Sayers Schoenberg M., et al. “Seismic anisotropy of fractured rock”, Geophysics, 1995, источники полностью включены в настоящую заявку путем ссылки] описали простой способ разрыва перемещений для включения влияний геологически реалистичных расколов и трещин на распространение сейсмических волн через трещиноватую породу. Они рассмотрели тонкие расколы произвольной формы и конечных размеров или группы планарных и параллельных трещин, таких, что различные расколы и трещины не являются взаимодействующими (предполагается, что каждый раскол подвергается воздействию однородного поля напряжений, которое не возмущается соседними расколами). Численные проверки приближения отсутствия взаимодействия показали, что взаимодействия и пересечения расколов и трещин оказывают небольшое влияние на эффективную упругость [Grechka V., et al. “Effective elasticity of rocks with closely spaced and intersecting cracks”, Geophysics, 2006, источник полностью включен в настоящую заявку путем ссылки]. При такой гипотезе полную упругую податливость sijkl можно разложить посредством линейного суммирования податливостей
Figure 00000001
группы расколов или трещин и податливостей
Figure 00000002
вмещающей среды:
Figure 00000003
Когда расколы и трещины являются вращательно инвариантными (например, плоскими), избыточные податливости
Figure 00000004
относительно вмещающей среды можно записать в виде
Figure 00000005
где δij является символом Кронекера, αij является тензором второго ранга, и βijkl является тензором четвертого ранга. Для отдельных расколов, включенных в репрезентативный объем V, Sayers и Kachanov (1995) определяют αij и βijkl как
Figure 00000006
Figure 00000007
где
Figure 00000008
и
Figure 00000009
являются нормальной и тангенциальной податливостью, соответственно, раскола r (в единицах длина/напряжение),
Figure 00000010
является составляющей i нормали к расколу, и A(r) является площадью раскола внутри V.
Для групп планарных и параллельных трещин Shoenberg и Sayers (1995) определяют αij и βijkl как
Figure 00000011
Figure 00000012
где
Figure 00000013
и
Figure 00000014
являются нормальной и тангенциальной податливостью, соответственно, трещины m (в единицах 1/напряжение),
Figure 00000015
является составляющей i нормали к трещине. Зависимость между двумя представлениями может быть установлена для конкретных случаев, например одна группа из N параллельных тонких расколов с регулярными промежутками s=L/N и одинаковой площадью A=L×L внутри куба V=L×L×L (расколы параллельны одной грани куба) имеет вид BTN/L=BT/s=ZT и (BN-BT)N/L=(BN-BT)/s=ZN-ZT.
Основываясь на характеристиках трещин, полученных в результате интерпретации изображений ствола скважины, эту модель можно применить для вычисления наведенной трещинами акустической анизотропии, если удовлетворяются условия длинноволновой эффективной среды. Определяют (221) податливости
Figure 00000016
трещин вмещающей породы и одну из
Figure 00000017
и
Figure 00000018
. Упругой средой, зондируемой между акустическим излучателем и приемниками (при известности геометрии прибора), определяется объем, на протяжении которого удовлетворяется длинноволновое приближение. Податливости
Figure 00000019
вмещающей среды связаны с упругими свойствами среды (то есть с медленностями акустических волн) без трещин. В скважине они являются неизвестными, поскольку среда со всеми объединенными эффектами определяется как
Figure 00000020
. Однако удовлетворительное практическое отправное положение заключается в учете вмещающей среды как изотропной. Затем две постоянные изотропной упругости находят на дискретных глубинах с помощью измеренной медленности (DTcomeas) продольной волны на основании монопольной волны, наименьшей (DTsfastmeas) из медленностей поперечной волны на основании дипольной волны и плотности. В случае задачи прямого моделирования нормальная
Figure 00000021
и тангенциальная
Figure 00000022
податливости являются неизвестными и могут быть особыми для каждой трещины. В данном случае каждая трещина (m), наблюдаемая на изобразительной каротажной диаграмме, предполагается частью группы (n) трещин определенного типа с податливостями
Figure 00000023
и
Figure 00000024
. Сначала на основании геологической интерпретации каждую трещину относят к определенной группе. На более поздней стадии (220) последовательности выполняемых действий каждая трещина может быть вновь отнесена к другой группе трещин. В случае сухих или газонаполненных трещин
Figure 00000025
является хорошим приближением, но в общем случае для заполненных водой или нефтью трещин
Figure 00000026
(Sayers, 2002). Когда нормальная и тангенциальная податливости являются равными
Figure 00000027
, βijkl обращается в нуль, и возможная симметрия низшего порядка упругого тензора является орторомбической. Оценки нормальной и поперечной податливостей трещин при лабораторных измерениях на породах кварцевого монцонита и известняка имеют значения в диапазоне от 0,01.1е-12 до 0,5.1е-12 м/Па; [Pyrak-Nolte L.J. “The seismic response of fractures and the interrelationships among fracture properties”, Int. J. Rock Mech. Min., 1995; Lubbe R. “A field and laboratory investigation of the compliance of fractured rocks”, DPhil Thesis, 2005, источники полностью включены в настоящую заявку путем ссылки]; и от 0,25.1е-12 до 3,5.1е-12 м/Па при межскважинных сейсмических экспериментах на доминирующей частоте 2 кГц [Lubbe R., et al. “A field investigation of fracture compliance”, Geophys. Prosp., 2006, источник полностью включен в настоящую заявку путем ссылки]. Зависимости нормальной и тангенциальной податливостей
Figure 00000028
и
Figure 00000029
от физических характеристик трещин находятся за пределами объема этого патента; для получения дополнительных подробностей см. Pyrak-Nolte (1995). В предложенном способе особый тип трещин различают с помощью различных групп трещин. Например, используя интерпретацию изображения ствола скважины, можно определить три группы трещин в виде раскрытых природных трещин, сомкнутых природных трещин и наведенных напряжениями трещин. Поскольку упругая податливость
Figure 00000030
трещин (уравнения 5 и 6) является результатом линейного сложения отдельных вкладов трещин, полная податливость трещин может быть разложена в линейное сложение заданного числа групп, например, составляющей
Figure 00000031
для раскрытых природных трещин, составляющей
Figure 00000032
для сомкнутых природных трещин и составляющей
Figure 00000033
для наведенных напряжениями трещин в виде:
Figure 00000034
Тензоры
Figure 00000035
,
Figure 00000036
и
Figure 00000037
избыточной податливости находят соответственно из уравнений
Figure 00000038
Figure 00000039
Figure 00000040
с тензорами
Figure 00000041
,
Figure 00000042
и
Figure 00000043
второго ранга и тензорами
Figure 00000044
,
Figure 00000045
и
Figure 00000046
четвертого ранга, определяемыми с использованием уравнения 5 и уравнения 6 вместе с соответствующими нормальными и тангенциальными составляющими
Figure 00000047
,
Figure 00000048
,
Figure 00000049
,
Figure 00000050
,
Figure 00000051
и
Figure 00000052
. На этапе 221, в зависимости от числа определенных групп, нормальные и тангенциальные податливости приписывают к каждой группе (n) в виде
Figure 00000053
и
Figure 00000054
.
На этапе (222), используя уравнение 7, вычисляют избыточную податливость, обусловленную всеми группами трещин.
Прогнозирование медленностей быстрой и медленной поперечных волн и азимута осуществляют на этапе (223). После нахождения описанных выше параметров вычисления могут быть выполнены для дискретных глубинных точек. Для дискретной выбранной глубины трещины, присутствующие в пределах глубинного окна ниже и выше выбранной глубины, включают в расчет, и знание глубин трещин, углов наклона и азимутов наклонов дает возможность осуществлять определение
Figure 00000055
для каждой трещины и вычисление полного тензора упругой податливости. Тензор податливости может быть обращен для нахождения тензора жесткости. Заявитель отмечает, что в этом подходе не предполагается никакой особой симметрии упругой среды. Затем тензор жесткости используют, чтобы найти решение для движения с помощью уравнения Кристоффеля для произвольной анизотропии. Задав направление распространения вдоль оси ствола скважины, из распространения упругой волны находят решение для векторов поляризации трех волн, одной квазипродольной qP-волны и двух квазипоперечных qS1- и qS2-волн. Анализ азимутального изменения скоростей поперечных волн в плоскости, ортогональной к стволу скважины, обеспечивает получение двух характеристик, обычно наблюдаемых при акустической анизотропии: азимута быстрых поперечных волн и двух медленностей быстрых и медленных поперечных волн.
Выходные данные этапа (223), то есть спрогнозированные азимут быстрых поперечных волн и медленности быстрых и медленных поперечных волн, используют на этапе (224).
На этапе (224) несоответствие между наблюдением и прогнозированием используют для проведения различия между зонами, находящимися под влиянием раскрытых природных трещин, сомкнутых природных трещин и наведенных напряжениями трещин. На глубине z ошибка прогнозирования или несоответствие между наблюдаемым и прогнозируемым азимутом быстрой поперечной волны и разность медленностей могут быть выражены как:
Figure 00000056
Figure 00000057
Затем находят следующие нормы Ln вектора несоответствия:
Figure 00000058
или
Figure 00000059
где σi являются среднеквадратическими отклонениями от наблюдений, использованными в уравнениях 11 и 12.
Используя уравнения 11 и 12, находят следующие нормы:
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Затем, повторно приписывая отдельные трещины к различным типам и переопределяя характеристики податливости трещин для каждого типа трещин, выполняют петлю оптимизации (этап 220) с повторением вычислительных этапов 221, 222, 223, 224. Приведенные выше уравнения (уравнение 15, уравнение 16, уравнение 17, уравнение 18, независимо, или уравнение 19 для комплексного обращения) могут быть минимизированы в качестве обратной задачи для нахождения оптимального типа и характеристик
Figure 00000065
,
Figure 00000066
,
Figure 00000067
,
Figure 00000068
,
Figure 00000069
и
Figure 00000070
податливостей для каждой трещины на заданном глубинном интервале. Кроме того, может быть сформулирован любой алгоритм обращения (наименьших квадратов или нет, то есть n=2 или n≠2), который минимизирует уравнения 15, 16, 17, 18 и 19. Петлю оптимизации обрывают, когда величины в уравнениях 15, 16, 17, 18 и 19 становятся меньше заданного критерия. Выходные данные 224 представляют собой коллекцию трещин, которые повторно приписаны к одному из трех типов трещин: раскрытым природным трещинам, сомкнутым природным трещинам и наведенным напряжениями трещинам, и для которых характеристики
Figure 00000071
,
Figure 00000072
,
Figure 00000073
,
Figure 00000074
,
Figure 00000075
и
Figure 00000076
податливостей теперь являются известными.
На этапе 300 на дискретных глубинах в пределах глубинного окна пропорциональную долю трещин для каждого из трех типов вычисляют и отображают в виде кривых с цветовыми кодами/цветными затенениями, показывающих зоны, находящиеся под воздействием раскрытых природных трещин, сомкнутых природных трещин и наведенных напряжениями трещин.
Результаты можно сравнить с зонами собственной или наведенной напряжениями анизотропии, идентифицированными с использованием дипольных дисперсионных кривых (этап 104), и зонами, где трещина идентифицирована с использованием волны Стоунли (этап 105).
Хотя изобретение описано с помощью приведенных выше примеров осуществлений, специалистам в данной области техники должно быть понятно, что модификация и изменение поясненных осуществлений могут быть сделаны без отступления от концепций изобретения, раскрытых в настоящей заявке. Кроме того, хотя предпочтительные осуществления описаны применительно к различным иллюстративным структурам, специалист в данной области техники должен осознавать, что способ может быть осуществлен с использованием ряда конкретных структур. В соответствии с этим изобретение не должно рассматриваться как ограниченное, кроме как объемом и сущностью прилагаемой формулы изобретения.

Claims (18)

1. Способ различения наведенной природными трещинами и напряжениями акустической анизотропии, содержащий этапы, на которых:
регистрируют данные в виде изображения и акустические данные, связанные со стволом скважины;
используют акустические данные для оценивания по меньшей мере одного модуля сжатия и двух модулей сдвига и направления дипольной быстрой поперечной волны;
используют данные в виде изображения для идентификации типа и ориентации трещин;
вычисляют азимут быстрой поперечной волны и разность медленностей между быстрой и медленной поперечными волнами, обусловленную геологическими трещинами; и
идентифицируют глубинные зоны, находящиеся под воздействием по меньшей мере одного из раскрытых природных трещин, сомкнутых природных трещин и наведенных напряжениями трещин.
2. Способ по п.1, включающий в себя дополнительный этап, на котором вычисляют азимут быстрой поперечной волны и разность медленностей между быстрой и медленной поперечными волнами, обусловленную геологическими трещинами, при использовании прямой количественной модели наведенной природными трещинами и напряжениями акустической анизотропии, основанной на знании характеристик трещин, интерпретированных по данным в виде изображения.
3. Способ по п.2, в котором прямая модель основана на механической модели.
4. Способ по п.3, включающий в себя дополнительный этап, на котором вычисляют несоответствие между прогнозируемыми и наблюдаемыми акустическими измерениями, то есть азимутом быстрой поперечной волны и медленностями.
5. Способ по п.1, включающий в себя дополнительный этап, на котором используют монопольные продольные волны для оценивания медленности продольной волны и связанных с ней модулей упругости.
6. Способ по п.5, включающий в себя дополнительный этап, на котором используют монопольные поперечные волны для оценивания медленности поперечной волны и связанных с ней модулей упругости.
7. Способ по п.6, включающий в себя дополнительный этап, на котором используют акустические данные поперечных волн со скрещенных диполей для оценивания двух медленностей поперечных волн и связанных с ними модулей упругости и направления быстрой поперечной волны.
8. Способ по п.7, включающий в себя дополнительный этап, на котором используют монопольную волну Стоунли для оценивания медленности поперечной волны и связанных с ней модулей.
9. Способ по п.1, включающий в себя дополнительный этап, на котором используют данные в виде изображения для идентификации характеристик трещин с помощью геологического и геомеханического анализа, приводящего к априорному различению раскрытых природных трещин, сомкнутых природных трещин и наведенных напряжениями эффектов.
10. Устройство для различения наведенной трещинами и напряжениями акустической анизотропии, содержащее:
запоминающее устройство, функционирующее для сохранения данных в виде изображения и акустических данных, связанных со стволом скважины;
схемы, функционирующие для использования акустических данных для оценивания по меньшей мере одного модуля сжатия и двух модулей сдвига, и направления дипольной быстрой поперечной волны;
схемы, функционирующие для использования данных в виде изображения для идентификации типа и ориентации трещин;
схемы, функционирующие для вычисления азимута быстрой поперечной волны и разности медленностей между быстрой и медленной поперечными волнами, обусловленной геологическими трещинами; и
схемы, функционирующие для идентификации глубинных зон, находящихся под воздействием по меньшей мере одного из раскрытых природных трещин, сомкнутых природных трещин и наведенных напряжениями эффектов.
11. Устройство по п.10, дополнительно включающее в себя схемы, функционирующие для вычисления азимута быстрой поперечной волны и разности медленностей между быстрой и медленной поперечными волнами, обусловленной геологическими трещинами, при использовании прямой количественной модели наведенной природными трещинами и напряжениями акустической анизотропии, основанной на знании характеристик трещин, интерпретированных по данным в виде изображения.
12. Устройство по п.11, в котором прямая модель основана на механической модели.
13. Устройство по п.12, дополнительно включающее в себя схемы, функционирующие для вычисления несоответствия между прогнозируемыми и наблюдаемыми акустическими измерениями, то есть азимутом быстрой поперечной волны и медленностями.
14. Устройство по п.10, дополнительно включающее в себя схемы, функционирующие для использования монопольных продольных волн для оценивания медленности продольной волны и связанных с ней модулей упругости.
15. Устройство по п.14, дополнительно включающее в себя схемы, функционирующие для использования монопольных поперечных волн для оценивания медленности поперечной волны и связанных с ней модулей упругости.
16. Устройство по п.15, дополнительно включающее в себя схемы, функционирующие для использования акустических данных поперечных волн со скрещенных диполей для оценивания двух медленностей поперечных волн и связанных с ними модулей упругости и направления быстрой поперечной волны.
17. Устройство по п.16, дополнительно включающее в себя схемы, функционирующие для использования монопольной волны Стоунли для оценивания медленности поперечной волны и связанных с ней модулей.
18. Устройство по п.10, дополнительно включающее в себя схемы, функционирующие для использования данных в виде изображения для идентификации характеристик трещин с помощью геологического и геомеханического анализа, приводящего к априорному различению раскрытых природных трещин, сомкнутых природных трещин и наведенных напряжениями эффектов.
RU2009113531/28A 2006-09-12 2007-09-10 Различение наведенной природными трещинами или напряжениями акустической анизотропии с использованием сочетания изобразительных и акустических каротажных диаграмм RU2402045C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82529806P 2006-09-12 2006-09-12
US60/825,298 2006-09-12

Publications (1)

Publication Number Publication Date
RU2402045C1 true RU2402045C1 (ru) 2010-10-20

Family

ID=38886775

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009113531/28A RU2402045C1 (ru) 2006-09-12 2007-09-10 Различение наведенной природными трещинами или напряжениями акустической анизотропии с использованием сочетания изобразительных и акустических каротажных диаграмм

Country Status (4)

Country Link
US (1) US7457194B2 (ru)
CN (1) CN101553742B (ru)
RU (1) RU2402045C1 (ru)
WO (1) WO2008033770A1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084752A1 (en) * 2012-11-30 2014-06-05 Schlumberger Holdings Limited A method for processing acoustic waveforms
WO2014084751A1 (en) * 2012-11-30 2014-06-05 Schlumberger Holdings Limited A method for processing acoustic waveforms
RU2652394C2 (ru) * 2013-06-24 2018-04-26 Бейкер Хьюз Инкорпорейтед Оценка трещиноватости в скважинах с обсаженным стволом
RU2716757C2 (ru) * 2015-05-19 2020-03-16 Шлюмбергер Текнолоджи Б.В. Анализ дифференциальной энергии при дипольном акустическом измерении
CN111830563A (zh) * 2019-04-17 2020-10-27 中国石油天然气集团有限公司 纯横波多层裂缝裂缝方向及快慢波时差确定方法及装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7529150B2 (en) * 2006-02-06 2009-05-05 Precision Energy Services, Ltd. Borehole apparatus and methods for simultaneous multimode excitation and reception to determine elastic wave velocities, elastic modulii, degree of anisotropy and elastic symmetry configurations
US8190369B2 (en) 2006-09-28 2012-05-29 Baker Hughes Incorporated System and method for stress field based wellbore steering
US7777606B2 (en) * 2007-01-09 2010-08-17 Westerngeco L.L.C. Fracture cluster mapping
US7647183B2 (en) * 2007-08-14 2010-01-12 Schlumberger Technology Corporation Method for monitoring seismic events
US7649804B2 (en) * 2007-10-25 2010-01-19 Schlumberger Technology Corporation In-situ determination of yield stress state of earth formations
US9477002B2 (en) * 2007-12-21 2016-10-25 Schlumberger Technology Corporation Microhydraulic fracturing with downhole acoustic measurement
FR2928959B1 (fr) * 2008-03-21 2010-03-12 Inst Francais Du Petrole Procede d'estimation de la densite de fractures dans un milieu rocheux
US8478530B2 (en) * 2008-07-07 2013-07-02 Baker Hughes Incorporated Using multicomponent induction data to identify drilling induced fractures while drilling
US8908473B2 (en) * 2008-12-23 2014-12-09 Schlumberger Technology Corporation Method of subsurface imaging using microseismic data
US8117014B2 (en) * 2009-03-27 2012-02-14 Schlumberger Technology Corporation Methods to estimate subsurface deviatoric stress characteristics from borehole sonic log anisotropy directions and image log failure directions
CN102236101B (zh) * 2010-05-07 2013-03-13 中国石油天然气股份有限公司 多层裂缝预测方法和装置
CN101907725B (zh) * 2010-06-12 2011-12-28 中国石油天然气股份有限公司 裂缝预测方法和装置
US9157318B2 (en) * 2011-01-04 2015-10-13 Schlumberger Technology Corporation Determining differential stress based on formation curvature and mechanical units using borehole logs
CN102253415B (zh) * 2011-04-19 2013-03-20 中国石油大学(华东) 基于裂缝等效介质模型的地震响应模式建立方法
CN102183788B (zh) * 2011-05-13 2012-11-21 上海石油天然气有限公司 地层条件下横波测井曲线的合成方法
CN102879800B (zh) * 2011-07-15 2015-04-29 中国石油天然气集团公司 一种横波分裂裂缝检测的方法
US10436921B2 (en) 2011-07-27 2019-10-08 Schlumberger Technology Corporation Multi-well anisotropy inversion
CN102540253B (zh) * 2011-12-30 2014-02-05 中国石油天然气股份有限公司 一种陡倾角地层及裂缝地震偏移方法和装置
US20140078288A1 (en) * 2012-06-19 2014-03-20 Schlumberger Technology Corporation Far Field In Situ Maximum Horizontal Stress Direction Estimation Using Multi-Axial Induction And Borehole Image Data
CN103852798A (zh) * 2012-11-28 2014-06-11 中国石油集团长城钻探工程有限公司 井孔斯通利波的慢度测量方法
AU2012396820A1 (en) 2012-12-11 2015-05-14 Halliburton Energy Services, Inc. Method and system for direct slowness determination of dispersive waves in a wellbore environment
US9581716B2 (en) * 2013-01-21 2017-02-28 Schlumberger Technology Corporation Methods and apparatus for estimating borehole mud slownesses
US20140241111A1 (en) * 2013-02-28 2014-08-28 Weatherford/Lamb, Inc. Acoustic borehole imaging tool
CA2927137C (en) * 2013-12-06 2018-05-01 Halliburton Energy Services, Inc. Fracture detection and characterization using resistivity images
CA2944375C (en) 2014-03-31 2023-01-24 John Adam Donald Subsurface formation modeling with integrated stress profiles
CN104977606A (zh) * 2014-04-02 2015-10-14 中国石油化工股份有限公司 一种缝洞型储层地震数值模型建立方法
CN103993871B (zh) * 2014-05-08 2017-02-15 中国石油化工股份有限公司 针对薄互层地层的测井资料标准化处理方法及装置
CN105467438B (zh) * 2014-09-04 2017-11-24 中国石油化工股份有限公司 一种基于三模量的泥页岩地应力三维地震表征方法
CN104199097B (zh) * 2014-09-17 2017-12-26 西南石油大学 用于挤压构造体系潜在断裂定量判识的新方法
WO2016057384A1 (en) * 2014-10-03 2016-04-14 Schlumberger Canada Limited Method and apparatus for processing waveforms
CN104612646B (zh) * 2014-12-10 2018-03-16 中国石油大学(华东) 棋盘格式可视化水力裂缝模拟装置
US10724365B2 (en) 2015-05-19 2020-07-28 Weatherford Technology Holdings, Llc System and method for stress inversion via image logs and fracturing data
CN105068117B (zh) * 2015-08-25 2016-06-08 中国矿业大学(北京) 用于裂缝性介质的avo反演方法、装置和设备
CN106168678B (zh) * 2016-07-15 2018-08-17 中国矿业大学(北京) 一种裂隙中传播横波的分离方法及系统
CN109098707B (zh) * 2017-06-21 2022-02-11 中国石油化工股份有限公司 砂砾岩体油藏的直井缝网压裂的适应性评价方法、砂砾岩体油藏的直井缝网压裂方法
CN110295894B (zh) * 2018-03-22 2022-03-01 中国石油化工股份有限公司 一种建立水平井产能预测模型的方法
CN108983312B (zh) * 2018-05-25 2019-09-24 中国海洋石油集团有限公司 一种裂缝型储层各向异性岩石模量估算方法
CN109040047B (zh) * 2018-07-25 2021-03-30 中国石油天然气股份有限公司 示功图数据压缩、传输方法和装置、计算机设备和存储介质
US10977489B2 (en) * 2018-11-07 2021-04-13 International Business Machines Corporation Identification of natural fractures in wellbore images using machine learning
CN111273341B (zh) * 2018-12-05 2022-05-10 中国石油天然气股份有限公司 根据裂缝空间分布的含裂缝储层岩石物理建模方法
CN109902422B (zh) * 2019-03-08 2021-07-27 西南石油大学 一种井眼轨迹选取方法及装置
CN110174696B (zh) * 2019-05-29 2021-04-30 长安大学 一种介质对称轴与观测坐标轴互换的地震波采集方法
CN111736218B (zh) * 2020-05-29 2023-10-27 中国石油天然气集团有限公司 地层各向异性成因定量分析方法、设备及可读存储介质
CN112034516B (zh) * 2020-08-17 2021-11-12 中国石油大学(华东) 一种评价井周横波三维各向异性的方法
US11525935B1 (en) 2021-08-31 2022-12-13 Saudi Arabian Oil Company Determining hydrogen sulfide (H2S) concentration and distribution in carbonate reservoirs using geomechanical properties
US11921250B2 (en) 2022-03-09 2024-03-05 Saudi Arabian Oil Company Geo-mechanical based determination of sweet spot intervals for hydraulic fracturing stimulation

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870627A (en) * 1984-12-26 1989-09-26 Schlumberger Technology Corporation Method and apparatus for detecting and evaluating borehole wall fractures
US4831600A (en) * 1986-12-31 1989-05-16 Schlumberger Technology Corporation Borehole logging method for fracture detection and evaluation
US5243521A (en) * 1988-10-03 1993-09-07 Schlumberger Technology Corporation Width determination of fractures intersecting a borehole
US5060204A (en) * 1990-06-27 1991-10-22 Chevron Research And Technology Company Method of layer stripping to determine fault plane stress build-up
US5214613A (en) * 1991-03-12 1993-05-25 Schlumberger Technology Corporation Method and apparatus for determining properties of anisotropicelastic media
US5398215A (en) * 1993-11-19 1995-03-14 Schlumberger Technology Corporation Identification of stress induced anisotropy in formations
US5475650A (en) * 1993-11-19 1995-12-12 Schlumberger Technology Corporation Measurement of nonlinear properties of formation using sonic borehole tool while changing pressure in borehole
US5808963A (en) * 1997-01-29 1998-09-15 Schlumberger Technology Corporation Dipole shear anisotropy logging
WO1998059264A1 (en) * 1997-06-20 1998-12-30 Bp Amoco Corporation High resolution determination of seismic polar anisotropy
US5960371A (en) * 1997-09-04 1999-09-28 Schlumberger Technology Corporation Method of determining dips and azimuths of fractures from borehole images
GB2329043B (en) * 1997-09-05 2000-04-26 Geco As Method of determining the response caused by model alterations in seismic simulations
US5999486A (en) * 1998-07-23 1999-12-07 Colorado School Of Mines Method for fracture detection using multicomponent seismic data
US6098021A (en) * 1999-01-15 2000-08-01 Baker Hughes Incorporated Estimating formation stress using borehole monopole and cross-dipole acoustic measurements: theory and method
US7062072B2 (en) * 1999-12-22 2006-06-13 Schlumberger Technology Corporation Methods of producing images of underground formations surrounding a borehole
US6925031B2 (en) * 2001-12-13 2005-08-02 Baker Hughes Incorporated Method of using electrical and acoustic anisotropy measurements for fracture identification
US6714873B2 (en) * 2001-12-17 2004-03-30 Schlumberger Technology Corporation System and method for estimating subsurface principal stresses from seismic reflection data
USH2116H1 (en) * 2001-12-31 2005-04-05 Southwest Research Institute Method for detecting, locating, and characterizing single and multiple fluid-filled fractures in fractured formations
US6714480B2 (en) * 2002-03-06 2004-03-30 Schlumberger Technology Corporation Determination of anisotropic moduli of earth formations
US6920082B2 (en) * 2002-06-27 2005-07-19 Baker Hughes Incorporated Method and apparatus for determining earth formation shear-wave transverse isotropy from borehole stoneley-wave measurements
US6718266B1 (en) * 2002-10-31 2004-04-06 Schlumberger Technology Corporation Determination of dipole shear anisotropy of earth formations
US7035165B2 (en) * 2003-01-29 2006-04-25 Baker Hughes Incorporated Imaging near-borehole structure using directional acoustic-wave measurement
US7516015B2 (en) * 2005-03-31 2009-04-07 Schlumberger Technology Corporation System and method for detection of near-wellbore alteration using acoustic data
US7529150B2 (en) * 2006-02-06 2009-05-05 Precision Energy Services, Ltd. Borehole apparatus and methods for simultaneous multimode excitation and reception to determine elastic wave velocities, elastic modulii, degree of anisotropy and elastic symmetry configurations
US7486589B2 (en) * 2006-02-09 2009-02-03 Schlumberger Technology Corporation Methods and apparatus for predicting the hydrocarbon production of a well location

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084752A1 (en) * 2012-11-30 2014-06-05 Schlumberger Holdings Limited A method for processing acoustic waveforms
WO2014084751A1 (en) * 2012-11-30 2014-06-05 Schlumberger Holdings Limited A method for processing acoustic waveforms
RU2652394C2 (ru) * 2013-06-24 2018-04-26 Бейкер Хьюз Инкорпорейтед Оценка трещиноватости в скважинах с обсаженным стволом
RU2716757C2 (ru) * 2015-05-19 2020-03-16 Шлюмбергер Текнолоджи Б.В. Анализ дифференциальной энергии при дипольном акустическом измерении
CN111830563A (zh) * 2019-04-17 2020-10-27 中国石油天然气集团有限公司 纯横波多层裂缝裂缝方向及快慢波时差确定方法及装置
CN111830563B (zh) * 2019-04-17 2023-06-30 中国石油天然气集团有限公司 纯横波多层裂缝裂缝方向及快慢波时差确定方法及装置

Also Published As

Publication number Publication date
US7457194B2 (en) 2008-11-25
WO2008033770A1 (en) 2008-03-20
US20080062814A1 (en) 2008-03-13
CN101553742A (zh) 2009-10-07
CN101553742B (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
RU2402045C1 (ru) Различение наведенной природными трещинами или напряжениями акустической анизотропии с использованием сочетания изобразительных и акустических каротажных диаграмм
US11015443B2 (en) Estimation of horizontal stresses and nonlinear constants in anisotropic formations such as interbedded carbonate layers in organic-shale reservoirs
CA2323676C (en) Formation stress identification and estimation using borehole monopole and cross-dipole acoustic measurements
Haldorsen et al. Borehole acoustic waves
Wang Seismic properties of carbonate rocks
US7652950B2 (en) Radial profiling of formation mobility using horizontal and vertical shear slowness profiles
US7679993B2 (en) Method of characterizing a fractured reservoir using seismic reflection amplitudes
US6611761B2 (en) Sonic well logging for radial profiling
Sinha et al. Dipole dispersion crossover and sonic logs in a limestone reservoir
Prioul et al. Forward modeling of fracture-induced sonic anisotropy using a combination of borehole image and sonic logs
US20080319675A1 (en) Method, system and apparatus for determining rock strength using sonic logging
Harrison et al. Acquisition and analysis of sonic waveforms from a borehole monopole and dipole source for the determination of compressional and shear speeds and their relation to rock mechanical properties and surface seismic data
US20080151690A1 (en) Imaging Near-Borehole Reflectors Using Shear Wave Reflections From a Multi-Component Acoustic Tool
MX2011009298A (es) Metodos para estimar las caracteristicas del esfuerzo desviatorico de la subsuperficie a partir de las direcciones de la anisotropia de registro sonico y las diecciones de falla de registro de imagen del agujero del pozo.
MX2008001681A (es) Metodo para caracterizador anisotropia de formacion de onda de esfuerzo cortante.
Cheng et al. Identifying and estimating formation stress from borehole monopole and cross-dipole acoustic measurements
Fang et al. Investigation of borehole cross-dipole flexural dispersion crossover through numerical modeling
Plona et al. Mechanical damage detection and anisotropy evaluation using dipole sonic dispersion analysis
Frignet et al. Stress-induced dipole anisotropy: Theory, experiment and field data
Yang et al. Mud and casing effects on borehole crossdipole flexural wave dispersion subjected to stress-induced anisotropy
Prioul et al. Discrimination of fracture and stress effects using image and sonic logs for hydraulic fracturing design
Velez et al. Core data integration/validation of sonic derived anisotropic mechanical properties to expedite well decisions in unconventional reservoirs
Patterson et al. Pit falls in dipole logging-anisotropy: cause of discrepancy in borehole acoustic measurements
AU2003254730C1 (en) Estimating formation stress using borehole monopole and cross-dipole acoustic measurements: theory and method
Liu et al. Quantitative determination of hydraulic properties of fractured rock using seismic techniques

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140911