RU2396368C2 - СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ СИСТЕМЫ Mg-Al-Zn - Google Patents

СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ СИСТЕМЫ Mg-Al-Zn Download PDF

Info

Publication number
RU2396368C2
RU2396368C2 RU2008130584/02A RU2008130584A RU2396368C2 RU 2396368 C2 RU2396368 C2 RU 2396368C2 RU 2008130584/02 A RU2008130584/02 A RU 2008130584/02A RU 2008130584 A RU2008130584 A RU 2008130584A RU 2396368 C2 RU2396368 C2 RU 2396368C2
Authority
RU
Russia
Prior art keywords
alloy
temperature
ecap
alloys
pressing
Prior art date
Application number
RU2008130584/02A
Other languages
English (en)
Other versions
RU2008130584A (ru
Inventor
Владимир Нинелович Серебряный (RU)
Владимир Нинелович Серебряный
Сергей Владимирович Добаткин (RU)
Сергей Владимирович Добаткин
Виктор Александрович Пименов (RU)
Виктор Александрович Пименов
Original Assignee
Российская Федерация, от имени которой выступает государственный заказчик-Федеральное агентство по науке и инновациям
Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (РАН) (Государственное учреждение)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает государственный заказчик-Федеральное агентство по науке и инновациям, Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (РАН) (Государственное учреждение) filed Critical Российская Федерация, от имени которой выступает государственный заказчик-Федеральное агентство по науке и инновациям
Priority to RU2008130584/02A priority Critical patent/RU2396368C2/ru
Publication of RU2008130584A publication Critical patent/RU2008130584A/ru
Application granted granted Critical
Publication of RU2396368C2 publication Critical patent/RU2396368C2/ru

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Forging (AREA)

Abstract

Изобретение относится к обработке сплавов системы Mg-Al-Zn и может быть использовано в авиастроении, ракетной технике, автомобилестроении. Способ включает прямое прессование сплава при температуре 300-450°С со степенью вытяжки 7-18 и равноканальное угловое прессование (РКУП) сплава в четыре прохода при температуре 220-260°С с истинной степенью деформации ε=4,5 по схеме: первые два прохода по маршруту С, третий проход по маршруту Вс и четвертый проход по маршруту С. Перед РКУП и после него осуществляют отжиг сплава при температуре 345°С в течение 1 часа с охлаждением на воздухе. Способ позволяет повысить пластичность и деформируемость магниевых сплавов при комнатной температуре.

Description

Изобретение относится к области металлургии, в частности к термомеханической обработке магниевых сплавов, и может быть использовано в авиастроении для изготовления различных деталей самолетов и вертолетов, например колес и вилок шасси, различных рычагов, корпусов приборов; в ракетной технике для изготовления корпусов ракет, обтекателей, топливных и кислородных баков; в конструкциях автомобилей, особенно гоночных; в атомных реакторах для изготовления оболочек тепловыводящих элементов.
Магниевые сплавы значительно легче алюминиевых, хорошо поглощают механические вибрации, что и определило их использование в качестве конструкционных материалов в авиации, ракетной технике и транспорте.
Магниевые сплавы имеют гексагональную структуру, поэтому при высокой удельной прочности они обладают низкой пластичностью и деформируемостью, особенно при низких температурах, близких к комнатной. В связи с чем при обработке давлением магниевых сплавов возникают существенные трудности.
Повышение пластичности и деформируемости при сохранении высокого уровня прочности является самой актуальной проблемой при разработке сплавов на магниевой основе.
Известны способы обработки магниевых сплавов, повышающие их деформируемость, в которых после теплой и холодной обработки давлением проводят термообработку.
Так в патенте Японии № 2004-115863, опубликованном 15.04.2004, в процессе получения тонких листов из магниевых сплавов системы Mg-Al-Zn-Мn после холодной прокатки листы подвергают термообработке при температурах 200÷450°С.
Из патента Японии № 2005-281848, опубликованном 13.10.2005, известен способ обработки магниевых сплавов, включающий термообработку при 170÷450°С после холодной прокатки.
Недостатком известных способов является использование лишь одного механизма повышения комплекса свойств сплавов - создание полигонизованной дислокационной структуры, что ограничивает возможность одновременного улучшения прочностных и пластических характеристик. Сплавы, обработанные по указанным выше технологиям, обладают недостаточной пластичностью и деформируемостью при комнатной температуре.
Физико-механические свойства сплавов могут быть заметно улучшены созданием в них различными методами рассеянной базисной текстуры и ультрамелкозернистой структуры. К таким методам относится интенсивная пластическая деформация, позволяющая в условиях высоких давлений измельчать микроструктуру в объемных заготовках до ультрамелкозернистой и значительно ослаблять остроту базисной компоненты текстуры.
Так известен способ обработки магниевых сплавов при котором предварительно нагретые до 200-350°С слитки подвергают равноканальному угловому прессованию (РКУП) в несколько проходов с повторным нагревом при 230-350°С перед каждым следующим проходом [KR 102003 0060830, опубликован 01.09.2003].
Также известен способ термомеханической обработки сплавов системы Mg-Al-Zn, включающий предварительный нагрев отливки до температуры 280-350°С и проведение при указанной температуре РКУП за шесть и более проходов с повторным нагревом между проходами при 280-350°С, при этом образец после каждого прохода поворачивается вокруг направления прессования [KR 102003 0060829, опубликован 01.09.2003].
Недостатком этих способов является использование повторных нагревов при 230-350°С перед каждым следующим проходом РКУП, что приводит к заметному росту зерна. Это в совокупности приводит к повышению пластичности при более низких температурах деформации на последующих проходах. Однако уровень прочности при этом уменьшается при практически неизменном пределе текучести.
Также известен способ обработки магниевых сплавов, включающий прямое прессование сплава (экструзию) при температуре 300°С и равноканальное угловое прессование (РКУП) сплава при температуре 200°С в четыре прохода по маршруту Вс [статья Ю. Эстрин и др. Повышение свойств магниевых сплавов равноканальным угловым прессованием. Металловедение и термическая обработка металлов, №11, 2006, с.35-38], который принят в качестве наиболее близкого к предложенному изобретению. Проведение РКУП при температуре 200°С в четыре прохода по маршруту Вс при угле пересечения каналов 90° позволяет измельчить зерно до субмикроскопического уровня. Это приводит к повышению пластичности при растяжении при практически неизменном пределе текучести и пределе прочности сплава.
Задача, на решение которой направлено настоящее изобретение, заключается в создании способа обработки позволяющего получить сплавы системы Mg-Al-Zn, обладающие одновременно достаточно высокими уровнями пластичности и прочности, и как, следствие, повышенным уровнем деформируемости данного материала.
Техническим результатом изобретения является повышение прочности, пластичности и деформируемости сплавов системы Mg-Al-Zn.
Технический результат достигается тем, что в способе термомеханической обработки сплавов системы Mg-Al-Zn, включающем прямое прессование сплава и равноканальное угловое прессование (РКУП) сплава в четыре прохода согласно изобретению, перед РКУП и после него осуществляют отжиг сплава при температуре 345°С в течение 1 часа с охлаждением на воздухе, прямое прессование сплава ведут при температуре 300-450°С со степенью вытяжки 7-18, а РКУП осуществляют при температуре 220-260°С с истинной степенью деформации ε=4,5 по схеме: первые два прохода по маршруту С, третий проход по маршруту Вс и четвертый проход по маршруту С.
Маршрут С представляет собой поворот образца на 180° вокруг оси, перпендикулярной направлению прессования.
Маршрут Вс представляет собой поворот образца на 90° вокруг оси прессования.
Сущность изобретения заключается в следующем.
Прямое прессование сплава приводит к повышению прочности за счет образования субзеренной полигонизованной структуры и острой аксиальной двухкомпонентной текстуры <1010> + <0001>, но пластичность при этом резко снижается. Экспериментально установлено, что максимальное упрочнение при оптимальном снижении пластичности достигается при проведении прессования в заявленных режимах. При температуре прессования ниже 300°С формируется частично ячеистая структура, уменьшающая пластичность. Прессование при температуре выше 450°С сопровождается значительным ростом зерна.
Для повышения пластичности прессованного магниевого сплава и сохранения высокого уровня прочности его подвергают РКУП с истинной степенью деформации ε=4,5 при температуре 220-260°С. При этом, чтобы обеспечить РКУП при минимально возможно низкой температуре, обеспечивающей максимальное измельчение зерна, перед РКУП осуществляют отжиг при температуре 345°С в течение часа при последующем охлаждении заготовки на воздухе. В результате субмикроскопическая полигонизованная структура трансформируется в рекристаллизационную с равноосным достаточно мелким зерном, а тип и острота текстуры при этом практически не изменяются. В процессе РКУП такая исходная структура и текстура обеспечивают достачно высокую пластичность материала при относительно невысоких температурах прессования. Схема проходов при РКУП построена таким образом, чтобы после каждого прохода данный тип структуры сохранялся, а средний размер равноосных зерен с каждым проходом уменьшался. Такая схема РКУП позволяет снижать температуру прессования с каждым последующим проходом РКУП, доведя ее в последнем проходе до 220°С. Выбор угла пересечения каналов в 90° обеспечивает трансформацию исходной текстуры в наклоненную на угол 40-50° по отношению к направлению прессования, наиболее благоприятную для активизации базисного скольжения, что приводит к повышению ресурса пластичности сплава. Электронно-микроскопические исследования показали, что в процессе деформации в магниевом сплаве развивается непрерывная динамическая рекристаллизация. Пластическая деформация при ε<4 ведет к формированию смешанной структуры, состоящей из областей равноосных субзерен и полос, содержащих ячейки и плотные дислокационные сетки. В интервале ε=4-5 малоугловые границы субзерен и полос трансформируются в высокоугловые границы и в материале формируется относительно однородная ультрамелкозернистая структура с размером зерен 1-3 мкм и отклоненная достаточно острая базисная текстура, что и приводит к повышению пластичности материала при сохранении достаточно высокого уровня пределов текучести и прочности. Заключительная термообработка (отжиг при 345°С в течение 1 часа с охлаждением на воздухе) направлена на уменьшение предела текучести сплава за счет рассеяния отклоненной базисной текстуры и некоторого увеличения размера зерна. Таким образом, предложенные в изобретении дополнительные приемы приводят к повышению пластичности и деформируемости материала за счет получения высоких значений равномерного относительного удлинения при растяжении, коэффициентов нормальной пластической анизотропии и упрочнения и низких значений отношения предела текучести и прочности.
Способ иллюстрируется следующими примерами.
Пример 1. Литой сплав на основе магния, содержащий 4,5 мас.% Аl, 1,3 мас.% Zn и 0,5 мас.% Мn подвергли обработке по следующим режимам:
- прямое прессование при 340°С со степенью вытяжки 10 и скоростью экструдирования 1 мм/с;
- отжиг при 345°С в течение 1 час с охлаждением сплава на воздухе;
- РКУП с 4 проходами по режиму: 1-й проход при температуре 260°С, 2-й проход при температуре 240°С маршруту С; 3-й проход при температуре 240°С маршруту Вс и 4-й заключительный проход при температуре 220°С маршруту С (скорость прессования 10 мм/мин, истинная степень деформации ε=4,5);
- отжиг при 345°С в течение 1 час с охлаждением сплава на воздухе.
Обработанный по заявленной технологии сплав имел предел текучести σ0,2=135 МПа, предел прочности σВ=251 МПа, отношение σ0,2в=0,54, относительное равномерное удлинение δр=25,8%, произведение коэффициентов нормальной пластической анизотропии и упрочнения R·n=0,63.
Пример 2. Для сравнения сплав был обработан по режимам, частично исключающим операции заявленного способа с измерением аналогичных параметров.
После прямого прессования и отжига при 375°С, 1 часа с охлаждением на воздухе сплав имел σ0,2=239 МПа, σВ=298 МПа, σ0,2В=0,80, δр=10,3% и R·n =0,09.
После прямого прессования и отжига при 375°С, 1 часа с охлаждением на воздухе и последующего РКУП при 260-220°С сплав имел σ0,2=184 МПа, σВ=246 МПа, σ0,2В=0,75, δр=15,9% и R·n=0,48.
Анализ полученных данных показал, что пластичность и деформируемость после РКУП с последующим отжигом предварительно прессованного и отожженного магниевого сплава повышается в 2,5 раза, а деформируемость, оцененная по отношению σ0,2В, повышается в 1,5 раза, а она же, оцененная по параметру R·n, повышается в 7 раз.
Таким образом, только при совместном проведении всех заявленных технологических операций по заявленным режимам возможно получить магниевые сплавы, обладающие одновременно высокой пластичностью и деформируемостью.

Claims (1)

  1. Способ термомеханической обработки сплава системы Mg-Al-Zn, включающий прямое прессование сплава и равноканальное угловое прессование (РКУП) сплава в четыре прохода, отличающийся тем, что перед РКУП и после него осуществляют отжиг сплава при температуре 345°С в течение 1 ч с охлаждением на воздухе, прямое прессование сплава ведут при температуре 300-450°С со степенью вытяжки 7-18, а РКУП осуществляют при температуре 220-260°С с истинной степенью деформации ε=4,5 по схеме: первые два прохода по маршруту С, третий проход по маршруту Вс и четвертый проход по маршруту С.
RU2008130584/02A 2008-07-24 2008-07-24 СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ СИСТЕМЫ Mg-Al-Zn RU2396368C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008130584/02A RU2396368C2 (ru) 2008-07-24 2008-07-24 СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ СИСТЕМЫ Mg-Al-Zn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008130584/02A RU2396368C2 (ru) 2008-07-24 2008-07-24 СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ СИСТЕМЫ Mg-Al-Zn

Publications (2)

Publication Number Publication Date
RU2008130584A RU2008130584A (ru) 2010-01-27
RU2396368C2 true RU2396368C2 (ru) 2010-08-10

Family

ID=42121785

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008130584/02A RU2396368C2 (ru) 2008-07-24 2008-07-24 СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ СИСТЕМЫ Mg-Al-Zn

Country Status (1)

Country Link
RU (1) RU2396368C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443786C1 (ru) * 2010-12-08 2012-02-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ обработки низкоуглеродистых сталей
RU2664744C1 (ru) * 2017-11-28 2018-08-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ обработки магниевого сплава системы Mg-Al-Zn методом ротационной ковки
RU2678111C1 (ru) * 2018-05-21 2019-01-23 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ обработки магниевого сплава системы Mg-Y-Nd-Zr методом равноканального углового прессования
US10851447B2 (en) 2016-12-02 2020-12-01 Honeywell International Inc. ECAE materials for high strength aluminum alloys
US11649535B2 (en) 2018-10-25 2023-05-16 Honeywell International Inc. ECAE processing for high strength and high hardness aluminum alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЭСТРИН Ю. и др. Повышение свойств магниевых сплавов равноканальным угловым прессованием. Металловедение и термическая обработка металлов. №11, 2006, с.35-38. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443786C1 (ru) * 2010-12-08 2012-02-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ обработки низкоуглеродистых сталей
US10851447B2 (en) 2016-12-02 2020-12-01 Honeywell International Inc. ECAE materials for high strength aluminum alloys
US11248286B2 (en) 2016-12-02 2022-02-15 Honeywell International Inc. ECAE materials for high strength aluminum alloys
US11421311B2 (en) 2016-12-02 2022-08-23 Honeywell International Inc. ECAE materials for high strength aluminum alloys
RU2664744C1 (ru) * 2017-11-28 2018-08-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ обработки магниевого сплава системы Mg-Al-Zn методом ротационной ковки
RU2678111C1 (ru) * 2018-05-21 2019-01-23 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ обработки магниевого сплава системы Mg-Y-Nd-Zr методом равноканального углового прессования
US11649535B2 (en) 2018-10-25 2023-05-16 Honeywell International Inc. ECAE processing for high strength and high hardness aluminum alloys

Also Published As

Publication number Publication date
RU2008130584A (ru) 2010-01-27

Similar Documents

Publication Publication Date Title
He et al. An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties
Chen et al. Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure
Yao et al. Influence of heat-treatment on the dynamic behavior of 3D laser-deposited Ti–6Al–4V alloy
US8372220B2 (en) Aluminum alloy forgings and process for production thereof
CA3109213C (en) High-strength titanium alloy for additive manufacturing
KR102224687B1 (ko) 마그네슘 합금 시트의 압연 및 준비 방법
RU2396368C2 (ru) СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ СИСТЕМЫ Mg-Al-Zn
Nikulin et al. Superplasticity in a 7055 aluminum alloy processed by ECAE and subsequent isothermal rolling
CN104073689A (zh) 汽车用铝合金锻造件及其制造方法
Li et al. Aging response of laser melting deposited Ti–6Al–2Zr–1Mo–1V alloy
CA3016443C (en) Improved methods for finishing extruded titanium products
RU2555267C2 (ru) Способ изготовления тонких листов из двухфазного титанового сплава и изделие из этих листов
CN114367611B (zh) 一种镁合金回转体结构件及其制备工艺
Kalsar et al. Microstructure evolution, enhanced aging kinetics, and mechanical properties of AA7075 alloy after friction extrusion
RU2351686C1 (ru) Способ термомеханической обработки сплавов на основе магния
Wang et al. Twin-induced plasticity of an ECAP-processed TWIP steel
KR100768568B1 (ko) 마그네슘 재료의 상온 ecap 방법
Sriraman et al. Influence of thermomechanical processing on microstructure, mechanical and strain hardening properties of single-phase Mg-4Li-0.5 Ca alloy for structural application
Semiatin et al. Plastic flow and microstructure evolution during thermomechanical processing of laser-deposited Ti-6Al-4V preforms
KR100666478B1 (ko) 저온 초소성 나노 결정립 티타늄 합금 및 이의 제조 방법
KR20130082215A (ko) 고강도 및 고성형성을 가지는 티타늄 합금의 제조방법 및 이에 의한 티타늄 합금
Bry³a et al. Grain refinement in AZ31 alloy processed by equal channel angular pressing
Yanushkevich et al. Recrystallization kinetics of an austenitic high-manganese steel subjected to severe plastic deformation
CN115519058A (zh) 一种镁合金筒形件及其成形方法
Chen et al. Microstructure evolution and mechanical properties of large-scale AZ80 magnesium alloy billets produced by multitemperature multidirectional forging

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20170728

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180725