RU2395268C2 - Способ получения лекарственного средства - Google Patents

Способ получения лекарственного средства Download PDF

Info

Publication number
RU2395268C2
RU2395268C2 RU2008100301/15A RU2008100301A RU2395268C2 RU 2395268 C2 RU2395268 C2 RU 2395268C2 RU 2008100301/15 A RU2008100301/15 A RU 2008100301/15A RU 2008100301 A RU2008100301 A RU 2008100301A RU 2395268 C2 RU2395268 C2 RU 2395268C2
Authority
RU
Russia
Prior art keywords
nanoparticles
bacteriorhodopsin
molecules
diaminohexane
polylysine
Prior art date
Application number
RU2008100301/15A
Other languages
English (en)
Other versions
RU2008100301A (ru
Inventor
Евгений Петрович Гребенников (RU)
Евгений Петрович Гребенников
Григорий Евгеньевич Адамов (RU)
Григорий Евгеньевич Адамов
Original Assignee
Евгений Петрович Гребенников
Григорий Евгеньевич Адамов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Петрович Гребенников, Григорий Евгеньевич Адамов filed Critical Евгений Петрович Гребенников
Priority to RU2008100301/15A priority Critical patent/RU2395268C2/ru
Publication of RU2008100301A publication Critical patent/RU2008100301A/ru
Application granted granted Critical
Publication of RU2395268C2 publication Critical patent/RU2395268C2/ru

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Изобретение относится к способу получения лекарственного средства на основе биологически активного вещества, который включает присоединение биологически активного вещества к нейтральному носителю, при этом в качестве нейтрального носителя используют металлические или полупроводниковые наночастицы, а в качестве биологически активного вещества используют бактериородопсин в терапевтически эффективном количестве, молекулы которого пришивают к поверхности наночастиц с образованием лигандной оболочки. Полученные наночастицы обеспечивают эффективную транспортировку бактериородопсина в клетки и ткани.

Description

Изобретение относится к области медицины и может быть использовано в терапевтических целях для получения лекарственного средства на основе биологически активного вещества с повышенным лечебным эффектом, обеспечивающего стимуляцию процессов восстановления структуры и функции органов, поврежденных различными болезнетворными факторами.
Из уровня техники известен способ получения лекарственного средства на основе биологически активного вещества, включающий присоединение биологически активного вещества к нейтральному носителю (RU 2309732 C1, A61K 9/20, 2007). В данном решении биологически активные вещества используют в гомеопатических разведениях, что обуславливает их относительно невысокую терапевтическую эффективность.
Изобретение направлено на создание лекарственного средства для стимуляции регенераторных процессов в различных органах, в том числе и для стимуляции продукции стволовых клеток в костном мозге, в виде нанокомпозиционного материала на основе бактериородопсина.
Решение поставленной задачи обеспечивается тем, что в способе получения лекарственного средства на основе биологически активного вещества, включающем присоединение биологически активного вещества к нейтральному носителю, согласно изобретению, в качестве нейтрального носителя используют металлические или полупроводниковые наночастицы, а в качестве биологически активного вещества используют бактериородопсин в терапевтически эффективном количестве, молекулы которого пришивают к поверхности наночастиц с образованием лигандной оболочки.
Бактериородопсин - биологически активный светочувствительный белок, который встроен в клеточные мембраны (пурпурные мембраны) галобактерий Halobacterium salinarum (H.Salinarum), (см., например, М.В.Гусев, Л.А.Минеева, Микробиология, Издательство Московского Университета, 1992, глава 18), обладает высокой эффективностью воздействия на клетки ткани с проявлением защитных, стимулирующих и восстановительных свойств, и не вызывает отрицательных иммунных реакций организма. При заявленном использовании бактериородопсина в виде лигандной оболочки, образованной на поверхности наночастиц, которые характеризуются наличием сильных локальных полей, влияющих на скорость электронных переходов, т.е., процессов поглощения и спонтанного излучения света, изменяющих спектральные характеристики этих процессов, и приводящих к значительному усилению различных нелинейных оптических эффектов, происходит существенное повышение эффективности воздействия бактериородопсина на клетки ткани, особенно при его дополнительном освещении (облучении). Кроме того, наночастицы обеспечивают эффективную транспортировку бактериородопсина в клетки ткани.
Бактериородопсин получают в составе пурпурных мембран из лизата клеточной массы бактерий Halobacterium salinarum, при этом проводят очистку бактериородопсина от биологических макромолекул и структур, образующихся при лизисе клеток Halobacterium salinarum. Первоначально лизированную суспензию центрифугируют, например, на установке ОПн-8 в течение 10 мин при 3000 об/мин при 22°С и отделяют образовавшийся осадок, а полученный супернатант повторно центрифугируют, например, на установке Jouan KR 25i в течение 15 мин при 35000g при 4°С. Затем супернатант отделяют от осадка пурпурных мембран, осадок ресуспендируют в 30 мл бидистиллированной воды. Для получения бактериородопсина высокой чистоты осаждение и ресуспендирование (40 мин, 50000g) производят 8÷10 раз.
Заявленный способ осуществляют следующим образом.
Пример 1.
Полупроводниковые люминесцентные наночастицы CdSe/ZnS со структурой типа ядро/оболочка диаметром 3,2 нм, полученные известным методом в гексане, осаждают и ресуспендируют в водном растворе 1,6-диаминогексана. Концентрацию 1,6-диаминогексана выбирают таким образом, чтобы на 1 мг наночастиц приходилось 500 мкг диамина. Молекулы 1,6-диаминогексана формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия одной аминогруппы и атома цинка, а другая аминогруппа остается свободной, что обуславливает агрегативную устойчивость наночастиц CdSe/ZnS. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц CdSe/ZnS, стабилизированных молекулами 1,6-диаминогексана, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп 1,6-диаминогексана и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование лекарственного средства в виде нанокомпозиционного материала осуществляют смешиванием суспензии бактериородопсина и наночастиц CdSe/ZnS, стабилизированных молекулами 1,6-диаминогексана, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.
Пример 2.
Полупроводниковые люминесцентные наночастицы CdS/ZnO со структурой типа ядро/оболочка диаметром 5,1 нм, полученные известным методом в гексане, осаждают и ресуспендируют в водном растворе 1,6-диаминогексана. Концентрацию 1,6-диаминогексана выбирают таким образом, чтобы на 1 мг наночастиц приходилось 800 мкг диамина. Молекулы 1,6-диаминогексана формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия одной аминогруппы и атома цинка, а другая аминогруппа остается свободной, что обуславливает агрегативную устойчивость наночастиц CdS/ZnO. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц CdS/ZnO, стабилизированных молекулами 1,6-диаминогексана, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп 1,6-диаминогексана и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование нанокомпозиционного материала производят смешиванием суспензии бактериородопсина и наночастиц CdS/ZnO, стабилизированных молекулами 1,6-диаминогексана, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.
Пример 3.
Металлические наночастицы серебра (Ag) получают известным методом в дистиллированной воде с использованием в качестве стабилизатора полимер-полилизина, концентрацию которого выбрают из условия, чтобы на 1 мг наночастиц приходилось 800 мкг полилизина. Молекулы полилизина формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия аминогрупп с атомами серебра. При этом половина аминогрупп полимерной молекулы остаются свободными, что обуславливает агрегативную устойчивость наночастиц Ag. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц Ag, стабилизированных молекулами полилизина, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп полилизина и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование нанокомпозиционного материала осуществляют смешиванием суспензии бактериородопсина и наночастиц Ag, стабилизированных молекулами полилизина, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.
Пример 4.
Металлические наночастицы золота (Аu) получают известным методом в дистиллированной воде (в качестве стабилизатора использован полимер-полилизин). Концентрация полилизина была выбрана таким образом, чтобы на 1 мг наночастиц приходилось 200 мкг полилизина. Молекулы полилизина формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия аминогрупп с атомами золота. При этом половина аминогрупп полимерной молекулы остаются свободными, что обуславливает агрегативную устойчивость наночастиц Аu. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц Аu, стабилизированных молекулами полилизина, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп полилизина и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование нанокомпозиционного материала осуществляется смешиванием суспензии бактериородопсина и наночастиц Аu, стабилизированных молекулами полилизина, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.
Пример 5.
Металлические наночастицы платины (Pt) получают известным методом в дистиллированной воде (в качестве стабилизатора использован полимер-полилизин). Концентрация полилизина была выбрана таким образом, чтобы на 1 мг наночастиц приходилось 750 мкг полилизина. Молекулы полилизина формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия аминогрупп с атомами платины. При этом половина аминогрупп полимерной молекулы остаются свободными, что обуславливает агрегативную устойчивость наночастиц Pt. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц Pt, стабилизированных молекулами полилизина, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп полилизина и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование нанокомпозиционного материала осуществляется смешиванием суспензии бактериородопсина и наночастиц Pt, стабилизированных молекулами полилизина, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.
Пример 6.
Металлические наночастицы палладия (Pd) получают известным методом в дистиллированной воде (в качестве стабилизатора использован полимер-полилизин). Концентрация полилизина была выбрана таким образом, чтобы на 1 мг наночастиц приходилось 1 мг полилизина. Молекулы полилизина формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия аминогрупп с атомами палладия. При этом половина аминогрупп полимерной молекулы остаются свободными, что обуславливает агрегативную устойчивость наночастиц Pd. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц Pd, стабилизированных молекулами полилизина, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп полилизина и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование нанокомпозиционного материала осуществляется смешиванием суспензии бактериородопсина и наночастиц Pd, стабилизированных молекулами полилизина, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.
Пример 7.
Полупроводниковые люминесцентные наночастицы CdS/CdSe со структурой типа ядро/оболочка диаметром 3,6 нм, полученные известным методом в гексане, осадили и ресуспендировали в водном растворе 1,6-диаминогексана. Концентрация 1,6-диаминогексана была выбрана таким образом, чтобы на 1 мг наночастиц приходилось 800 мкг диамина. Молекулы 1,6-диаминогексана формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия одной аминогруппы и атома кадмия, а другая аминогруппа остается свободной, что обуславливает агрегативную устойчивость наночастиц CdS/CdSe. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц CdS/CdSe, стабилизированных молекулами 1,6-диаминогексана, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп 1,6-диаминогексана и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование нанокомпозиционного материала осуществляется смешиванием суспензии бактериородопсина и наночастиц CdS/CdSe, стабилизированных молекулами 1,6-диаминогексана, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.
Пример 8.
Полупроводниковые люминесцентные наночастицы CdS/CdTe со структурой типа ядро/оболочка диаметром 4,5 нм, полученные известным методом в гексане, осадили и ресуспендировали в водном растворе 1,6-диаминогексана. Концентрация 1,6-диаминогексана была выбрана таким образом, чтобы на 1 мг наночастиц приходилось 800 мкг диамина. Молекулы 1,6-диаминогексана формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия одной аминогруппы и атома кадмия, а другая аминогруппа остается свободной, что обуславливает агрегативную устойчивость наночастиц CdS/CdTe. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц CdS/CdTe, стабилизированных молекулами 1,6-диаминогексана, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп 1,6-диаминогексана и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование нанокомпозиционного материала осуществляется смешиванием суспензии бактериородопсина и наночастиц CdS/CdTe, стабилизированных молекулами 1,6-диаминогексана, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.
Пример 9.
Полупроводниковые люминесцентные наночастицы CdSe/ZnS со структурой типа ядро/оболочка диаметром 6,2 нм, полученные известным методом в гексане, осадили и ресуспендировали в водном растворе 1,6-диаминогексана. Концентрация 1,6-диаминогексана была выбрана таким образом, чтобы на 1 мг наночастиц приходилось 800 мкг диамина. Молекулы 1,6-диаминогексана формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия одной аминогруппы и атома цинка, а другая аминогруппа остается свободной, что обуславливает агрегативную устойчивость наночастиц CdSe/ZnS. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц CdSe/ZnS, стабилизированных молекулами 1,6-диаминогексана, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп 1,6-диаминогексана и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование нанокомпозиционного материала осуществляется смешиванием суспензии бактериородопсина и наночастиц CdSe/ZnS, стабилизированных молекулами 1,6-диаминогексана, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.
Пример 10.
Полупроводниковые люминесцентные наночастицы CdS диаметром 2,5 нм, полученные известным методом в гексане, осадили и ресуспендировали в водном растворе 1,6-диаминогексана. Концентрация 1,6-диаминогексана была выбрана таким образом, чтобы на 1 мг наночастиц приходилось 800 мкг диамина. Молекулы 1,6-диаминогексана формируют на поверхности наночастиц лигандную оболочку за счет взаимодействия одной аминогруппы и атома кадмия, а другая аминогруппа остается свободной, что обуславливает агрегативную устойчивость наночастиц CdS. Свободные аминогруппы на поверхности наночастицы являются функциональными для пришивки к ним различных белковых молекул, в частности фотохромного белка бактериородопсина. Пришивка бактериородопсина к поверхности наночастиц CdS, стабилизированных молекулами 1,6-диаминогексана, осуществляется за счет процессов самоорганизации, инициируемых взаимодействием положительно заряженных аминогрупп 1,6-диаминогексана и отрицательно заряженных карбоксильных групп остатков аспарагиновой и глютаминовой кислоты, входящих в аминокислотную последовательность полипептидной структуры бактериородопсина. Формирование нанокомпозиционного материала осуществляется смешиванием суспензии бактериородопсина и наночастиц CdS, стабилизированных молекулами 1,6-диаминогексана, в молярном соотношении 6:1 и экспозицией полученного раствора в течение 2 часов.

Claims (1)

  1. Способ получения лекарственного средства на основе биологически активного вещества, включающий присоединение биологически активного вещества к нейтральному носителю, отличающийся тем, что в качестве нейтрального носителя используют металлические или полупроводниковые наночастицы, а в качестве биологически активного вещества используют бактериородопсин в терапевтически эффективном количестве, молекулы которого пришивают к поверхности наночастиц с образованием лигандной оболочки.
RU2008100301/15A 2008-01-15 2008-01-15 Способ получения лекарственного средства RU2395268C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008100301/15A RU2395268C2 (ru) 2008-01-15 2008-01-15 Способ получения лекарственного средства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008100301/15A RU2395268C2 (ru) 2008-01-15 2008-01-15 Способ получения лекарственного средства

Publications (2)

Publication Number Publication Date
RU2008100301A RU2008100301A (ru) 2009-07-20
RU2395268C2 true RU2395268C2 (ru) 2010-07-27

Family

ID=41046560

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008100301/15A RU2395268C2 (ru) 2008-01-15 2008-01-15 Способ получения лекарственного средства

Country Status (1)

Country Link
RU (1) RU2395268C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526967C2 (ru) * 2012-11-29 2014-08-27 Общество с ограниченной ответственностью "Суперматериал" Способ получения наночастиц серебра с модифицированной лигандной оболочкой в высокоывязкой матрице

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГУСЕВ М.В., МИНЕЕВА Л.А. Микробиология. Кафедра клеточной физиологии и иммунологии биологического факультета МГУ им. М.В.Ломоносова, 1992-2001, глава 18. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526967C2 (ru) * 2012-11-29 2014-08-27 Общество с ограниченной ответственностью "Суперматериал" Способ получения наночастиц серебра с модифицированной лигандной оболочкой в высокоывязкой матрице

Also Published As

Publication number Publication date
RU2008100301A (ru) 2009-07-20

Similar Documents

Publication Publication Date Title
Chu et al. Near-infrared carbon dot-based platform for bioimaging and photothermal/photodynamic/quaternary ammonium triple synergistic sterilization triggered by single NIR light source
Sironmani et al. Silver nanoparticles–universal multifunctional nanoparticles for bio sensing, imaging for diagnostics and targeted drug delivery for therapeutic applications
JP5008607B2 (ja) 不規則な表面構造の早期導入により高収率のバイオイメージングナノ粒子を製造する方法
Li et al. Carbon quantum dots as ROS-generator and-scavenger: A comprehensive review
Sviridov et al. Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications
Xu et al. Bio-inspired metal ions regulate the structure evolution of self-assembled peptide-based nanoparticles
Li et al. Biomimetic mineralization based on self-assembling peptides
US20110033954A1 (en) Biofunctionalized quantum dots for biological imaging
Qin et al. Green synthesis of biocompatible trypsin-conjugated Ag nanocomposite with antibacterial activity
Wang et al. Eggshell derived Se-doped HA nanorods for enhanced antitumor effect and curcumin delivery
Manne et al. Pterocarpus marsupium Roxb. heartwood extract synthesized chitosan nanoparticles and its biomedical applications
Miao et al. Recent advances in the biomedical applications of black phosphorus quantum dots
Muthulakshmi et al. Green synthesis of ionic liquid assisted ytterbium oxide nanoparticles by Couroupita guianensis abul leaves extract for biological applications
Tao et al. Optical property modulation of Fmoc group by pH-dependent self-assembly
CA2996378A1 (fr) Particule comprenant au moins une nanoparticule d'oxyde de fer ferrimagnetique ou ferromagnetique associee a au moins un compose pour une utilisation medicale ou cosmetique
Isık et al. Green synthesis of zinc oxide nanostructures
Rabiee et al. Natural resources for sustainable synthesis of nanomaterials with anticancer applications: A move toward green nanomedicine
Duong et al. Singlet oxygen production by fluorescence resonance energy transfer (FRET) from green and orange CdSe/ZnS QDs to protoporphyrin IX (PpIX)
Ehsani et al. Green fabrication of ZnO/magnetite-based nanocomposite-using Salvia officinalis extract with antibacterial properties enhanced infected full-thickness wound
Thakkar et al. Antisolvent precipitative immobilization of micro and nanostructured griseofulvin on laboratory cultured diatom frustules for enhanced aqueous dissolution
Zhang et al. Water induced protonation of amine-terminated micelles for direct syntheses of ZnO quantum dots and their cytotoxicity towards cancer
RU2395268C2 (ru) Способ получения лекарственного средства
Aminzare et al. Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications
Sulaiman et al. Synthesis, Characterization, and Biomedical Applications of Zinc Oxide Nanoparticles
CN111166882B (zh) 酞菁-rgd多肽-氧化石墨烯复合纳米材料及其制备方法与应用

Legal Events

Date Code Title Description
FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20100201