RU2392717C1 - Высоковольтная воздушная линия с присоединенными шунтирующими реакторами - Google Patents

Высоковольтная воздушная линия с присоединенными шунтирующими реакторами Download PDF

Info

Publication number
RU2392717C1
RU2392717C1 RU2009109706/09A RU2009109706A RU2392717C1 RU 2392717 C1 RU2392717 C1 RU 2392717C1 RU 2009109706/09 A RU2009109706/09 A RU 2009109706/09A RU 2009109706 A RU2009109706 A RU 2009109706A RU 2392717 C1 RU2392717 C1 RU 2392717C1
Authority
RU
Russia
Prior art keywords
controlled
reactor
reactors
max
reactive power
Prior art date
Application number
RU2009109706/09A
Other languages
English (en)
Inventor
Александр Михайлович Брянцев (RU)
Александр Михайлович Брянцев
Александр Иосифович Лурье (RU)
Александр Иосифович Лурье
Original Assignee
Александр Михайлович Брянцев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Михайлович Брянцев filed Critical Александр Михайлович Брянцев
Priority to RU2009109706/09A priority Critical patent/RU2392717C1/ru
Application granted granted Critical
Publication of RU2392717C1 publication Critical patent/RU2392717C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

Использование: в области электротехники. Технический результат заключается в повышении технико-экономических параметров линии и расширении функциональных возможностей. В высоковольтной воздушной линии, содержащей неуправляемые шунтирующие реакторы, подсоединенные к шинам линии через выключатели, дополнительно введен управляемый шунтирующий реактор, например, управляемый подмагничиванием, подключенный к шинам линии. Диапазон регулирования реактивной мощности управляемого реактора определяется следующим соотношением:
qмакс≥QУРмакс≥0,9Qмакс,
0>QУРмин≤0,1Qмакс,
где QУРмакс - максимальная реактивная мощность управляемого реактора,
QУРмин - минимальная реактивная мощность управляемого реактора,
Qмакс - максимальная мощность реактора любого из неуправляемых реакторов. 1 ил.

Description

Изобретение относится к области электротехники, в частности к устройствам компенсации реактивной мощности в сетях переменного тока высокого напряжения, и может быть использовано на подстанциях воздушных линий передач с установленными на них шунтирующими реакторами.
Известны аналоги - воздушные линии передач с подстанциями на передающем и приемном концах, на которых установлены неуправляемые шунтирующие реакторы, используемые для ограничения напряжения на приемном конце в режиме малых нагрузок и на холостом ходу путем компенсации зарядной (емкостной) реактивной мощности воздушных линий передач [1]. Недостатком таких компенсированных воздушных линий передач с неуправляемыми реакторами является снижение пропускной способности передач и усложнение процессов при коммутациях из-за возможности резонансов индуктивности линии и ее емкости. Известны также воздушные линии передач с подстанцией, на которой установлен управляемый реактор, в котором этот недостаток компенсирован тем, что в режиме малых нагрузок и на холостом ходу регулируемая мощность управляемого реактора максимальна, а при нагрузке - минимальна [1]. При этом ослабление резонансных явлений достигается изменением индуктивности управляемого реактора. Недостатками такой линии является увеличение стоимости оборудования (за счет большей стоимости управляемых реакторов по сравнению с неуправляемыми) и снижение надежности работы линии (за счет возможного отключения компенсации при ревизиях, ремонте или аварийном отключении управляемого шунтирующего реактора).
Указанный недостаток устраняется в устройстве [2] - прототипе. В высоковольтной воздушной линии с несколькими присоединенными неуправляемыми шунтирующими реакторами (например, с тремя неуправляемыми реакторами) часть реакторов (например, один) подключается через выключатели. Выключатель предусмотрен для того, чтобы в режиме малой нагрузки или в режиме холостого хода для компенсации зарядной мощности линии были включены все реакторы, а при коммутациях, например, при циклах однофазного автоматического повторного включения (ОАПВ) для ликвидации однофазных коротких замыканий, один шунтирующий реактор отключался от линии. При этом нарушается полная компенсация зарядной емкостной реактивной мощности воздушной линии передач индуктивной реактивной мощностью и таким образом исключается возможность возникновения резонанса. Недостатком прототипа является существенное ограничение возможности регулирования режимов линии из-за того, что это регулирование дискретное с большими ступенями изменения индуктивности, вносимыми включениями и отключениями одного реактора.
Целью настоящего изобретения является ликвидация отмеченного недостатка прототипа и увеличение функциональных возможностей за счет расширения диапазона непрерывного плавного регулирования реактивной мощности, вносимой шунтирующими реакторами воздушных линий передач, увеличение пропускной способности линий и оборудования, стабилизация напряжения на шинах подстанций, снижение реактивных токов в линиях и оборудовании и снижение в них потерь мощности, увеличение надежности всего высоковольтного оборудования подстанций из-за ограничения коммутационных перенапряжений.
Поставленная цель достигается тем, что в высоковольтную воздушную линию, содержащую неуправляемые шунтирующие реакторы, подсоединенные к шинам линии через выключатели, дополнительно введен управляемый шунтирующий реактор, например, управляемый подмагничиванием, подключенный к шинам линии.
Диапазон регулирования реактивной мощности управляемого реактора соответствует соотношениям:
Qмакс≥QУРмакс≥0,9Qмакс,
0≤QУРмин≤0,1Qмакс,
где QУРмакс - максимальная реактивная мощность управляемого реактора,
QУРмин - минимальная реактивная мощность управляемого реактора,
Qмакс - максимальная мощность одного из неуправляемых реакторов.
Предлагаемая высоковольтная воздушная линия поясняется чертежом. На чертеже показана высоковольтная воздушная линия, содержащая подстанции и шунтирующие реакторы.
Высоковольтная воздушная линия 1 на концах имеет передающую подстанцию 2 и принимающую подстанцию 3.
Передающая подстанция 2 может быть подстанцией электростанции или транзитной подстанцией. На чертеже принимающая подстанция 3 имеет автотрансформатор 4 для питания линий передачи на нагрузку и присоединенную высоковольтную линию для передачи (транзита) электрической энергии.
На передающей подстанции 2 установлены три шунтирующих реактора: два неуправляемых шунтирующих реактора 5 и 6, соединенных с шинами подстанции через выключатели 7 и 8, и управляемый реактор 9 (например, управляемый подмагничиванием), соединенный с шинами подстанции через выключатель 10.
На принимающей подстанции 3 установлены также три шунтирующих реактора: два неуправляемых шунтирующих реактора 11 и 12, соединенных с шинами подстанции через выключатели 13 и 14, и управляемый реактор 15 (например, управляемый подмагничиванием), соединенный с шинами подстанции через выключатель 16. Имеется также и автотрансформатор 17.
В стационарных режимах малых нагрузок и холостого хода на концах линии 1 выключатели 7, 8, 10, 13, 14 и 16 включены, а мощность управляемых реакторов 9 и 15 установлена такой, что полностью компенсирует зарядную мощность линии. Это необходимо для того, чтобы избежать возможного повышения напряжения на приемной подстанции 3 по сравнению с напряжением на передающей подстанции 2. Практически обычно в режимах малых нагрузок и холостого хода используется максимальная реактивная мощность всех шести установленных на линии шунтирующих реакторов.
В режимах максимальной нагрузки реактивная мощность нагрузки частично или полностью компенсируется зарядной мощностью линии передачи. Поэтому неуправляемые шунтирующие реакторы 5, 6, 11 и 12 могут быть отключены (частично или полностью), а мощность управляемых реакторов 9 и 15 обеспечивает необходимое заданное напряжение на шинах подстанций (она устанавливается системой управления в автоматическом режиме или вручную).
В режимах промежуточной нагрузки для полноценного регулирования напряжения требуется плавное регулирование суммарной мощности шунтирующих реакторов во всем диапазоне от минимальной (в режимах максимальной нагрузки) до максимальной (в режимах малых нагрузок и холостого хода). Это может быть осуществлено с точностью не менее 10% (что практически достаточно), т.к. диапазон регулирования реактивной мощности управляемого реактора соответствует соотношениям:
Qмакс≥QУРмакс≥0,9Qмакс,
0≥QУPмин≤0,1Qмакс,
где QУРмакс - максимальная реактивная мощность управляемого реактора,
QУРмин - минимальная реактивная мощность управляемого реактора,
Qмакс - максимальная мощность одного из неуправляемых реакторов.
Выбранные соотношения мощностей обеспечивают возможность плавной регулировки вносимой в линию реактивной мощности от минимальной (0÷0,1Qмакс) до максимальной (суммарной мощности всех реакторов) при любом числе реакторов на подстанции. Например, при отключенных неуправляемых шунтирующих реакторах 5 и 6 выключателями 7 и 8 на передающей подстанции 2 плавно регулируемое изменение реактивной мощности, вносимой управляемым реактором 9, варьируется в пределах от QУРмин до QУРмакс. При подключении неуправляемого шунтирующего реактора 5 выключателем 7 диапазон регулируемой реактивной мощности расширяется на величину мощности реактора 5, т.е. до мощности двух реакторов 5 и 9. При подключении неуправляемого шунтирующего реактора 6 выключателем 8 диапазон регулируемой реактивной мощности расширяется до полной суммарной величины мощности всех трех шунтирующих реакторов 5, 6 и 9. При указанных в соотношениях мощностей коэффициентах 0,1 и 0,9 в основном возможна точная плавная регулировка реактивной мощности реакторов, и только в нескольких точках отклонение от требуемой реактивной мощности может составить не более 10%, что практически приемлемо, т.к. при этом разбаланс по собственной частоте колебаний будет не более 5% (более подробные расчетные обоснования могут быть при необходимости дополнительно предоставлены).
Аналогичное плавное регулирование вносимой компенсирующей реактивной мощности осуществляется на принимающей подстанции 3 совместной работой коммутируемых выключателей 13 и 14 неуправляемых шунтирующих реакторов 11 и 12 и системой регулирования мощности управляемого реактора 15.
В стационарных неполнофазных режимах, например, в ремонтных или послеаварийных режимах, при пофазном регулировании мощности управляемых реакторов в сочетании с коммутацией выключателей устанавливаются оптимальные для каждого режима любые сочетания мощности однофазных реакторов каждой из трех фаз сети.
При скачкообразном переходе от одного режима к другому (при подключении оборудования подстанций, коммутациях линейных выключателей, аварийных отключениях или коротких замыканиях, в режимах циклов ОАПВ) возникают нестационарные переходные режимы. При этом существует опасность резонансных процессов и биений, приводящих к коммутационным перенапряжениям и повышению напряжений, опасных для реакторов и всего высоковольтного оборудования подстанций. Основная причина этих явлений заключается в том, что режимы полной компенсации реактивной мощности линий и нагрузки, наиболее выгодные с точки зрения увеличения пропускной способности линий и оборудования, минимизации потерь напряжения, снижения реактивных токов в линиях и оборудовании и снижения потерь мощности из-за этих токов, одновременно по существу являются режимами резонанса. Поэтому при переходных процессах возникает необходимость быстрой расстройки резонанса включением или отключением реактивной мощности. В предложенной сети оптимально быстрый переход от одного к другому сочетанию мощностей неуправляемых и управляемых реакторов легко достижим, так как при совместных коммутациях выключателей реакторов и быстродействующем регулировании мощности управляемых реакторов имеется возможность изменения вводимой компенсирующей реактивной мощности во всем диапазоне от минимальной (характерной для стационарных режимов максимальной нагрузки) до максимальной (для режимов малых нагрузок и холостого хода). Необходимое быстродействие управляемых реакторов при изменении их мощности (например, реакторов, управляемых подмагничиванием) может быть обеспечено.
Предложенная высоковольтная воздушная линия с присоединенными шунтирующими реакторами, один из которых - управляемый, имеет существенно большие функциональные возможности и более высокие технико-экономические параметры, чем прототип. Основное отличие заключается в том, что в прототипе имеется возможность вводить в линию или выводить компенсирующую реактивную мощность только дискретно, большими ступенями, соответствующими мощности одного неуправляемого реактора. Возможность плавного изменения мощности во всем диапазоне от минимальной до максимальной позволяет устанавливать оптимальные режимы линии, т.е. получать оптимальное увеличение пропускной способности линий и оборудования, стабилизировать напряжение на шинах подстанций, оптимально снижать реактивные токи в линиях и оборудовании и снижать в них потери мощности, увеличивать надежность всего высоковольтного оборудования подстанций из-за действенного ограничения коммутационных перенапряжений.
ЛИТЕРАТУРА
1. Александров Г.Н., Передача электрической энергии. СПб.: Изд-во Политехнического университета, 2007. - 412 с. (Энергетика в политехническом университете). Стр.173-198.
2. Евдокунин Г.А., Дмитриев М., Гольдштейн С., Иваницкий Ю., Высоковольтные ВЛ. Коммутации и воздействия на выключатели. Новости Электротехники, №3 (51), 2008, с.64-68.

Claims (1)

  1. Высоковольтная воздушная линия, содержащая неуправляемые шунтирующие реакторы, подсоединенные к шинам линии через выключатели, отличающаяся тем, что в устройство дополнительно введен управляемый шунтирующий реактор, например, управляемый подмагничиванием, подключенный к шинам линии, при этом диапазон регулирования реактивной мощности управляемого реактора определяется следующим соотношением:
    qмакс≥QУРмакс≥0,9Qмакс,
    0>QУРмин≤0,1Qмакс,
    где QУРмакс - максимальная реактивная мощность управляемого реактора,
    QУРмин - минимальная реактивная мощность управляемого реактора,
    Qмакс - максимальная мощность реактора любого из неуправляемых реакторов.
RU2009109706/09A 2009-03-18 2009-03-18 Высоковольтная воздушная линия с присоединенными шунтирующими реакторами RU2392717C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009109706/09A RU2392717C1 (ru) 2009-03-18 2009-03-18 Высоковольтная воздушная линия с присоединенными шунтирующими реакторами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009109706/09A RU2392717C1 (ru) 2009-03-18 2009-03-18 Высоковольтная воздушная линия с присоединенными шунтирующими реакторами

Publications (1)

Publication Number Publication Date
RU2392717C1 true RU2392717C1 (ru) 2010-06-20

Family

ID=42682935

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009109706/09A RU2392717C1 (ru) 2009-03-18 2009-03-18 Высоковольтная воздушная линия с присоединенными шунтирующими реакторами

Country Status (1)

Country Link
RU (1) RU2392717C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074959A (zh) * 2010-12-30 2011-05-25 中电普瑞科技有限公司 晶闸管阀控型可控并联电抗器装置
CN102122821A (zh) * 2010-12-17 2011-07-13 中国电力科学研究院 一种抑制超、特高压空载线路合闸后工频电压升高的方法
CN114513019A (zh) * 2022-02-22 2022-05-17 张健 一种高压交流输电系统可控电抗器调节方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЕВДОКУНИН Г.А. и др. Высоковольтные ВЛ. Коммутации и воздействия на выключатели. - Новости электротехники, 2008, №3 (51), с.64-68. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122821A (zh) * 2010-12-17 2011-07-13 中国电力科学研究院 一种抑制超、特高压空载线路合闸后工频电压升高的方法
CN102122821B (zh) * 2010-12-17 2015-04-29 中国电力科学研究院 一种抑制超、特高压空载线路合闸后工频电压升高的方法
CN102074959A (zh) * 2010-12-30 2011-05-25 中电普瑞科技有限公司 晶闸管阀控型可控并联电抗器装置
CN102074959B (zh) * 2010-12-30 2015-03-25 中电普瑞科技有限公司 晶闸管阀控型可控并联电抗器装置
CN114513019A (zh) * 2022-02-22 2022-05-17 张健 一种高压交流输电系统可控电抗器调节方法及装置

Similar Documents

Publication Publication Date Title
RU2376692C1 (ru) Комбинированная установка для плавки гололеда и компенсации реактивной мощности
RU2393608C2 (ru) Устройство и способ управления потоком мощности в линии электропередачи
US9768704B2 (en) Hybrid distribution transformer having a power electronic module for controlling input power factor and output voltage
US11581739B2 (en) Power distribution on a vessel
US6400585B2 (en) Method and control system for voltage control at a converter station
US8760888B2 (en) HVDC system and method to control a voltage source converter in a HVDC system
US7839125B2 (en) Apparatus and method for optimization of power flow control between different paths of a high voltage network in dependence of a disturbance in the network
KR101152364B1 (ko) Hvdc 시스템의 무효전력 보상 설비 제어 장치 및 이를 포함하는 hvdc 시스템
KR20110035631A (ko) 정지형 무효전력 보상기 및 이의 제어 방법
US7759910B2 (en) System for transmission of electric power
RU2392717C1 (ru) Высоковольтная воздушная линия с присоединенными шунтирующими реакторами
CA2758567A1 (en) Combined dc power source and battery power converter
CN106130021B (zh) 一种t型混合柔性调谐装置
RU2478236C1 (ru) Управляемый шунтирующий реактор-трансформатор
RU2585007C1 (ru) Устройство регулирования реактивной мощности электрической сети (варианты)
RU144504U1 (ru) Устройство централизованной компенсации реактивной мощности
CN106058869B (zh) 一种π型混合柔性调谐装置
RU2282912C2 (ru) Статический компенсатор реактивной мощности
RU2561192C1 (ru) УСТРОЙСТВО ЦЕНТРАЛИЗОВАННОЙ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ В n-ФАЗНОЙ ВЫСОКОВОЛЬТНОЙ СЕТИ
RU2025018C1 (ru) Способ управления режимом электропередачи
US9257844B2 (en) Arrangement and method for reactive power compensation
Baker et al. STATCOM helps to guarantee a stable system
AU2018281528B2 (en) Power supply system and control device
RU2697259C1 (ru) Устройство для пофазной компенсации реактивной мощности
RU2374738C1 (ru) Токоограничивающее устройство электрической сети

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20110504

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20110504

Effective date: 20110726

QB4A Licence on use of patent

Free format text: SUB-LICENCE

Effective date: 20111216

QB4A Licence on use of patent

Free format text: SUB-LICENCE

Effective date: 20121211

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20130307

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20131022

Free format text: SUB-LICENCE

Effective date: 20131022

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20140410

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20131022

Effective date: 20140410

QC41 Official registration of the termination of the licence agreement or other agreements on the disposal of an exclusive right

Free format text: SUB-LICENCE FORMERLY AGREED ON 20131022

Effective date: 20140527

QC41 Official registration of the termination of the licence agreement or other agreements on the disposal of an exclusive right

Free format text: SUB-LICENCE FORMERLY AGREED ON 20121211

Effective date: 20140717

QC41 Official registration of the termination of the licence agreement or other agreements on the disposal of an exclusive right

Free format text: LICENCE FORMERLY AGREED ON 20130307

Effective date: 20150310

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20140410

Effective date: 20150318

Free format text: LICENCE FORMERLY AGREED ON 20131022

Effective date: 20150318

QC41 Official registration of the termination of the licence agreement or other agreements on the disposal of an exclusive right

Free format text: SUB-LICENCE FORMERLY AGREED ON 20111216

Effective date: 20150330

QC41 Official registration of the termination of the licence agreement or other agreements on the disposal of an exclusive right

Free format text: LICENCE FORMERLY AGREED ON 20110504

Effective date: 20150413

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180507

Effective date: 20180507

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20180507

Effective date: 20190329