RU2387783C1 - Винтовой забойный двигатель - Google Patents

Винтовой забойный двигатель Download PDF

Info

Publication number
RU2387783C1
RU2387783C1 RU2009100579/03A RU2009100579A RU2387783C1 RU 2387783 C1 RU2387783 C1 RU 2387783C1 RU 2009100579/03 A RU2009100579/03 A RU 2009100579/03A RU 2009100579 A RU2009100579 A RU 2009100579A RU 2387783 C1 RU2387783 C1 RU 2387783C1
Authority
RU
Russia
Prior art keywords
torsion
rotor
working
stator
screw motor
Prior art date
Application number
RU2009100579/03A
Other languages
English (en)
Inventor
Михаил Григорьевич Бобров (RU)
Михаил Григорьевич Бобров
Марина Генриховна Муратова (RU)
Марина Генриховна Муратова
Сергей Германович Трапезников (RU)
Сергей Германович Трапезников
Original Assignee
Общество С Ограниченной Ответственностью "Вниибт-Буровой Инструмент"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Вниибт-Буровой Инструмент" filed Critical Общество С Ограниченной Ответственностью "Вниибт-Буровой Инструмент"
Priority to RU2009100579/03A priority Critical patent/RU2387783C1/ru
Application granted granted Critical
Publication of RU2387783C1 publication Critical patent/RU2387783C1/ru

Links

Images

Landscapes

  • Hydraulic Motors (AREA)

Abstract

Изобретение относится к области буровой техники (инструмента), в частности к винтовым забойным двигателям (ВЗД) для бурения нефтяных и газовых скважин. ВЗД содержит секцию рабочих органов: статор и эксцентрично расположенный внутри него ротор, шпиндельную секцию и внутренний соединительный узел в виде S-образно изогнутого торсиона, размещенного ниже ротора или внутри него. Торсион имеет рабочую длину L и диаметр d, заданные соотношениями:
Figure 00000004
Figure 00000006
где ω=2π·Z·n, Z - число зубьев ротора; Е - модуль упругости, МПа, ρ - удельный вес, кг/м3; G - осевая сила, Н; n - частота вращения, с-1; a, b - безразмерные параметры-координаты, задающиеся из внутренней части области устойчивости торсиона, ограниченной линиями: a=-3b+19, a=0, a=b; а=-b+4. Обеспечивает повышение ресурса и надежности ВЗД. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области буровой техники (инструмента), в частности к винтовым забойным двигателям для бурения нефтяных и газовых скважин.
Известен винтовой забойный двигатель (ВЗД), содержащий секцию рабочих органов, включающую статор и эксцентрично расположенный внутри него ротор, шпиндельную секцию и внутренний соединительный узел, выполненный в виде карданного вала зубчатого или пальцевого типа или шарнирного устройства (Балденко Д.Ф. и др. Винтовые забойные двигатели: Справочное пособие. М.: Недра, 1999, с.68-71).
Недостатками известного винтового забойного двигателя с перечисленными соединительными узлами являются многодетальность, сложность изготовления и сборки, что, в свою очередь, отражается на недостаточно высоких ресурсе и надежности двигателя.
Известен ВЗД, включающий секцию рабочих органов, шпиндельную секцию и внутренний соединительный узел, выполненный в виде торсиона, соединенного с сопряженными деталями шлицевым, или резьбовым, или конусным соединениями (Балденко Д.Ф. и др. Винтовые забойные двигатели: Справочное пособие. М.: Недра, 1999).
Применение в известном винтовом забойном двигателе торсиона (гибкого вала) с шлицевым, или резьбовым, или конусным соединениями значительно упростило конструкцию винтового забойного двигателя, улучшило условия передачи крутящего момента, способствовало небольшому увеличению долговечности.
Однако, исходя из конструктивных особенностей и принципа работы винтового забойного двигателя, остро стоит проблема уменьшения влияния действующего на ротор перекашивающего момента, создаваемого гидравлическими силами, из-за которого происходит искажение геометрии зацепления рабочих органов, а значит, увеличение объемных утечек и механических потерь.
Указанный недостаток частично устраняет винтовой забойный двигатель (а.с. СССР №784397), содержащий секцию рабочих органов, шпиндельную секцию и торсион, соединенный с ротором выше рабочей зоны ротора и статора в отличие от обычной схемы установки торсиона ниже ротора.
Но и такое конструктивное решение, как в а.с. №784397, не решает основные проблемы нагрузочной способности двигателя от возникающих при его работе сил в комплексе: осевой силы, крутящего момента и отрицательных сил (перекашивающего момента, перерезывающей силы). Анализ математических расчетов на прочность, устойчивость и экспериментальных исследований показывает, что данная проблема зависит от правильного выбора геометрических размеров рабочей длины L и диаметра d торсиона.
Известен ВЗД (а.с. СССР №926208), который является наиболее близким по технической сущности к заявляемому изобретению и выбран в качестве прототипа. ВЗД содержит секцию рабочих органов, включающую статор и расположенный внутри него ротор, шпиндельную секцию и торсион, причем рабочая длина L и диаметр d торсиона связаны соотношением L/d=10-60.
Недостатки прототипа заключаются в том, что указанное соотношение L/d=10-60 имеет очень широкий диапазон при определении диаметра d и длины L торсиона и не учитывает энергетические показатели назначения для конкретного ВЗД и величины действующих в нем сил, что приводит к снижению прочности, устойчивости, повышению отрицательных нагрузок, действующих со стороны торсиона на сопряженные детали, и в связи с этим к снижению надежности и ресурса двигателя.
Технической задачей предлагаемого изобретения является повышение ресурса и надежности двигателя, стабилизации рабочих технических характеристик ВЗД за счет оптимизации геометрических размеров торсиона.
Технический результат предлагаемого изобретения достигается тем, что в винтовом забойном двигателе, содержащем секцию рабочих органов, включающую статор и эксцентрично расположенный внутри него ротор, шпиндельную секцию и внутренний соединительный узел, соединяющий обе секции, согласно изобретению внутренний соединительный узел в виде S-образно изогнутого торсиона, размещенного ниже ротора или внутри него, имеет рабочую длину L и диаметр d, заданные соотношениями:
Figure 00000001
Figure 00000002
где ω=2π·Z·n,
Z - число зубьев ротора;
Е - модуль упругости, МПа;
ρ - удельный вес, кг/м3;
G - осевая сила, Н;
n - частота вращения, с-1;
a, b - безразмерные параметры-координаты, задающиеся из внутренней части области устойчивости торсиона, ограниченной линиями: а=-3b+19; а=0; a=b; а=-b+4.
Кроме того, согласно изобретению торсион винтового забойного двигателя изготовлен из титана или титановых сплавов.
Предлагаемое изобретение в отличие от прототипа позволяет определить геометрические размеры торсиона (рабочую длину L и диаметр d) для конкретного двигателя с учетом показателей назначения (частоты вращения, осевой гидравлической силы, зависящих от расхода бурового раствора, габарита двигателя и кинематического отношения в рабочей паре ротор-статор) и механических свойств материала (модуля упругости, удельного веса) через безразмерные параметры-координаты а и b области устойчивости, что приводит к повышению ресурса и надежности двигателя.
Выполнение торсиона с геометрическими размерами (L, d), определенными с учетом показателей назначения и механических свойств материала через безразмерные параметры-координаты а и b из внутренней части области устойчивости торсиона, ограниченной линиями а=-3b+19; а=0; а=b, а=-b+4, позволяет уменьшить отрицательное воздействие нагрузок, действующих со стороны торсиона на сопрягаемые детали и узлы двигателя, и улучшить работу двигателя.
Выполнение ВЗД с торсионом из титана или титановых сплавов имеет преимущества: такой торсион более легкий, гибкий и упругий, с меньшей жесткостью на изгиб по сравнению со стальным торсионом при одинаковых геометрических размерах, что приводит к уменьшению воздействия отрицательных сил, стабилизации контакта зацепления в рабочей паре, уменьшению износа основных деталей, узлов и объемных утечек, увеличению ресурса, повышению надежности и в итоге всех технико-экономических показателей бурения.
Значения предельных величин прочности у стали и титана практически равные, но значения модуля упругости (2·105 МПа) и удельного веса (4,5 г/см3) титана в два раза меньше, чем у стали. Следовательно, при работе ВЗД с торсионом из титана (титановых сплавов) так же кратно снизится отрицательное влияние изгибающего момента и перерезывающей силы, износ деталей двигателя. Таким образом, винтовой забойный двигатель будет работать более стабильно, длительно, сохраняя технические показатели назначения в рабочем режиме.
Изобретение поясняется иллюстрациями.
На фиг.1 показан винтовой забойный двигатель (частичный разрез) с торсионом, установленным ниже ротора.
На фиг.2 показан винтовой забойный двигатель с торсионом, расположенным внутри ротора.
На фиг.3 изображена область устойчивости торсиона, где a, b - безразмерные параметры-координаты.
Винтовой забойный двигатель (фиг.1 и 2) содержит секцию рабочих органов 1, шпиндельную секцию 2 и торсион 3. Секция рабочих органов 1 включает статор 4 и расположенный внутри него ротор 5. Статор 4 выполнен в виде стального корпуса 6 с привулканизированной внутри него резиновой обкладкой 7, имеющей винтовые зубья левого направления. Стальной ротор 5 имеет наружные винтовые зубья также левого направления, число которых на единицу меньше, чем у статора 4. Ось ротора О2 смещена относительно оси статора O1 на величину эксцентриситета е, равную половине высоты зуба. Торсион 3 является внутренним соединительным узлом деталей винтового забойного двигателя и выполнен металлическим - из стали или титана (титановых сплавов). Торсион 3 устанавливают ниже ротора 5 (фиг.1) или внутри него (фиг.2).
Винтовой забойный двигатель работает следующим образом.
Зубья ротора 5 и статора 4, находясь в непрерывном контакте, образуют замыкающиеся на длине шага статора 4 единичные камеры. Буровой раствор, поступающий в двигатель от насосов, проходит к долоту при провороте ротора 5 двигателя внутри обкладки 7 статора 4, который обкатывается по зубьям статора 4 под действием неуравновешенных гидравлических сил. При этом ротор 5 совершает планетарное движение: геометрически ось О2 ротора 5 вращается относительно оси O1 статора 4 против часовой стрелки (переносное движение), а сам ротор 5 поворачивается по часовой стрелке (абсолютное движение). За счет разности в числах зубьев ротора 5 и статора 4 переносное движение редуцируется в абсолютное с передаточным числом, равным числу зубьев ротора 5, что обеспечивает пониженную частоту вращения и высокий момент силы на выходном валу двигателя.
Шпиндельная секция 2 служит для восприятия гидравлических нагрузок, возникающих в секции рабочих органов 1, реакции забоя и радиальных нагрузок от долота при бурении.
Торсион 3 преобразует планетарное движение ротора 5 в соосное вращение выходного вала двигателя и служит для передачи крутящего момента и осевой гидравлической нагрузки, возникающих в рабочих органах, на выходной вал шпинделя.
При этом торсион 3 должен выдерживать сложное напряженно-деформируемое состояние от передаваемых сил и возникающих отрицательных сил из-за непостоянной ориентации ротора при работе двигателя и оказывать минимальные отрицательные воздействия на сопряженные с ним детали для уменьшения износа и предотвращения поломки.
Для выполнения предъявляемых к торсиону требований в предлагаемом изобретении геометрические размеры (рабочая длина L и диаметр d) торсиона определяются через безразмерные параметры-координаты из внутренней части области устойчивости торсиона.
Область устойчивости торсиона получена теоретическим путем из математических расчетов, в которых принималось, что во время работы двигателя торсион обращается вокруг основной оси двигателя с частотой, равной частоте обращения ротора. Обращение торсиона рассматривается как изгибные колебания, описываемые дифференциальным уравнением в частных производных, решение которого проводится с учетом схемы соединения ротора с валом шпинделя (для вертикального бурения и отклонителя) и условий закрепления концов торсиона и его первоначальной S-изогнутости - соединение не соосных деталей (граничные условия для расчетов на устойчивость).
После решения дифференциального уравнения относительно амплитуды колебаний и проведения необходимых преобразований получаем трансцендентное уравнение для определения устойчивости торсиона:
Figure 00000003
где а, b - безразмерные параметры-координаты.
Решение трансцендентного уравнения относительно а и b получено численным методом и графически изображено на фиг.3 в виде кривой I (KF). Для инженерных расчетов допустимо кривую I аппроксимировать в прямую линию II а=-3b+19. Линия III (OF) a=0, ограничивающая область устойчивости, соответствует работе ВЗД в тормозном режиме, когда осевая сила G максимальна, частота вращения выходного вала n практически равна нулю. Линия IV (ОК) получена из расчетов, которые показали, что эту пограничную прямую можно минимизировать как a=b, что соответствует зоне рабочего режима винтового забойного двигателя от холостого хода до режима максимального КПД. Исходя из предназначения торсиона и требований, предъявляемых к нему, базы данных многочисленных расчетов на устойчивость торсиона и напряженно-деформируемого состояния сопрягаемых с ним деталей, анализа стендовых характеристик двигателя была получена линия V (DN) a=-b+4, которая разграничивает общую область устойчивости OKF на зоны ODN и DKFN.
Установлено, что торсион с рабочей длиной L и диаметром d, рассчитанными через безразмерные параметры-координаты а и b из внутренней части области ODN, устойчив, обладает высоким запасом прочности, но при этом имеет повышенную жесткость на изгиб. В винтовом забойном двигателе при работе с таким торсионом будут возникать большие по величине отрицательные силы: перекашивающий момент и перерезывающая сила, следствием действия которых будет повышенный износ в рабочей паре, ухудшение энергетических показателей назначения, стабильности его работы, заниженный ресурс.
Анализ испытаний двигателей и математические расчеты показали, что торсион с рабочей длиной L и диаметром d, определенными через безразмерные параметры-координаты, взятые из внутренней части области устойчивости DKFN, является устойчивым, имеет достаточный запас прочности и оказывает минимальные отрицательные воздействия на сопрягаемые с ним детали.
Например, винтовой забойный двигатель Д 1-105, содержащий секцию рабочих органов с кинематическим отношением zp/zc, равным 5/6, (zp и zc - числа зубьев ротора и статора соответственно), секцию шпиндельную и торсион, расположенный внутри ротора (фиг.2), у которого рабочая длина торсиона L и диаметр d определены по предлагаемому изобретению.
В расчете геометрических размеров торсиона (L, d) винтового забойного двигателя Д 1-105 по предлагаемому изобретению учтены следующие исходные данные:
- расход бурового раствора Q=10, л/с;
- осевая сила G=45,9, кН, частота вращения вала n=3,8, с-1 (режим максимальной мощности);
- свойства материала (сталь): модуль упругости Е=2·105, МПа, удельный вес ρ=7,85, кг/м3;
- безразмерные параметры-координаты из области устойчивости DKFN:a=2, b=3,2.
В итоге получены значения:
L=1540 мм и d=36,5 мм.
С учетом конструкторских возможностей винтового забойного двигателя были приняты значения геометрических размеров торсиона винтового забойного двигателя Д1-105 рабочая длина L=1520 мм, диаметр d=36 мм.
Винтовой забойный двигатель Д1-105 востребован на буровых предприятиях, очень стабилен в работе, обладает высокой надежностью, вырабатывает полный ресурс 600 часов без замены торсиона.
Таким образом, торсион с геометрическими размерами (рабочей длиной L и диаметром d), определенными по соотношениям, приведенным в предлагаемом изобретении, выдерживает сложное напряженно-деформируемое состояние от передаваемых сил и возникающих отрицательных сил из-за непостоянной ориентации ротора при работе винтового забойного двигателя и, кроме того, оказывает минимальные отрицательные воздействия на сопряженные с ним детали для уменьшения износа и их поломки, что повышает ресурс и надежность ВЗД.

Claims (2)

1. Винтовой забойный двигатель, содержащий секцию рабочих органов, включающую статор и эксцентрично расположенный внутри него ротор, шпиндельную секцию и внутренний соединительный узел, соединяющий обе секции, отличающийся тем, что внутренний соединительный узел в виде S-образно изогнутого торсиона, размещенного ниже ротора или внутри него, имеет рабочую длину L и диаметр d, заданные соотношениями:
Figure 00000004

Figure 00000005

где ω=2π·Z·n,
Z - число зубьев ротора;
Е - модуль упругости, МПа;
ρ - удельный вес, кг/м3;
G - осевая сила, Н;
n - частота вращения, с-1;
a, b - безразмерные параметры-координаты, задающиеся из внутренней части области устойчивости торсиона, ограниченной линиями: а=-3b+19; а=0; a=b; a=-b+A.
2. Винтовой забойный двигатель по п.1, отличающийся тем, что торсион винтового забойного двигателя изготовлен из титана или титановых сплавов.
RU2009100579/03A 2009-01-11 2009-01-11 Винтовой забойный двигатель RU2387783C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009100579/03A RU2387783C1 (ru) 2009-01-11 2009-01-11 Винтовой забойный двигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009100579/03A RU2387783C1 (ru) 2009-01-11 2009-01-11 Винтовой забойный двигатель

Publications (1)

Publication Number Publication Date
RU2387783C1 true RU2387783C1 (ru) 2010-04-27

Family

ID=42672638

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009100579/03A RU2387783C1 (ru) 2009-01-11 2009-01-11 Винтовой забойный двигатель

Country Status (1)

Country Link
RU (1) RU2387783C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197188U1 (ru) * 2019-08-12 2020-04-09 Открытое акционерное общество Научно-производственное объединение "Буровая техника" Винтовой забойный двигатель

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197188U1 (ru) * 2019-08-12 2020-04-09 Открытое акционерное общество Научно-производственное объединение "Буровая техника" Винтовой забойный двигатель

Similar Documents

Publication Publication Date Title
RU2283442C1 (ru) Статор винтовой героторной гидромашины
RU2629315C2 (ru) Подшипник ротора для забойного двигателя с перемещающейся полостью
CN102913165B (zh) 钻井井下涡轮驱动随钻振动器
NO871171L (no) Skruemaskin.
RU172421U1 (ru) Ударно-вращательное устройство для бурильной колонны
CN205422537U (zh) 涡轮动力式双作用水力振荡减阻钻具
RU2387783C1 (ru) Винтовой забойный двигатель
RU2373364C2 (ru) Статор винтовой героторной гидромашины
RU2362880C1 (ru) Статор винтовой героторной гидромашины
RU2295023C1 (ru) Турбовинтовой забойный двигатель
RU2304688C2 (ru) Героторный гидравлический двигатель или насос
RU2260106C1 (ru) Устройство для бурения скважин
RU2283416C1 (ru) Статор винтовой героторной гидромашины
RU2524238C2 (ru) Винтовой забойный двигатель
CN101892980B (zh) 曲拐型曲轴传动单螺杆泵
RU83803U1 (ru) Винтовая героторная гидравлическая машина
RU2361997C1 (ru) Статор винтовой героторной гидромашины
RU104629U1 (ru) Статор винтового забойного двигателя
RU2365726C1 (ru) Винтовой забойный двигатель
EP3499038A1 (en) Stator and rotor profile for improved power section performance and reliability
RU2285822C1 (ru) Статор винтовой героторной гидромашины
RU2285823C1 (ru) Статор винтовой героторной гидромашины
RU67617U1 (ru) Рабочая секция забойного гидравлического двигателя
RU2334073C2 (ru) Забойный двигатель
RU71698U1 (ru) Героторный механизм винтового забойного двигателя

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190112