RU2386983C1 - Детектор нейтронов - Google Patents

Детектор нейтронов Download PDF

Info

Publication number
RU2386983C1
RU2386983C1 RU2009103188/28A RU2009103188A RU2386983C1 RU 2386983 C1 RU2386983 C1 RU 2386983C1 RU 2009103188/28 A RU2009103188/28 A RU 2009103188/28A RU 2009103188 A RU2009103188 A RU 2009103188A RU 2386983 C1 RU2386983 C1 RU 2386983C1
Authority
RU
Russia
Prior art keywords
layer
diamond
substrate
detector
stream
Prior art date
Application number
RU2009103188/28A
Other languages
English (en)
Inventor
Александр Анатольевич Васенков (RU)
Александр Анатольевич Васенков
Эдуард Анатольевич Ильичев (RU)
Эдуард Анатольевич Ильичев
Игорь Константинович Кочержинский (RU)
Игорь Константинович Кочержинский
Эдуард Алексеевич Полторацкий (RU)
Эдуард Алексеевич Полторацкий
Геннадий Сергеевич Рычков (RU)
Геннадий Сергеевич Рычков
Валерий Герасимович Гнеденко (RU)
Валерий Герасимович Гнеденко
Станислав Николаевич Федоренко (RU)
Станислав Николаевич Федоренко
Original Assignee
ФГУП "Научно-исследовательский институт физических проблем им. Ф.В. Лукина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ФГУП "Научно-исследовательский институт физических проблем им. Ф.В. Лукина" filed Critical ФГУП "Научно-исследовательский институт физических проблем им. Ф.В. Лукина"
Priority to RU2009103188/28A priority Critical patent/RU2386983C1/ru
Application granted granted Critical
Publication of RU2386983C1 publication Critical patent/RU2386983C1/ru

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к твердотельным детекторам нейтронов. В твердотельный интегральный однокристальный детектор нейтронов, содержащий полупроводниковую подложку с омическим контактом к ее тыльной стороне и расположенные последовательно друг на друге на ее лицевой стороне следующие слои: изотипный подложке полупроводниковый слой, полупроводниковый высокоомный слой, полупроводниковый слой противоположного подложке типа проводимости и расположенный на последнем контактный слой, причем два последних слоя выполнены в виде гальванически не связанных областей, дополнительно вводят микроструктурированный слой из алмаза С*(В), легированный бором до вырождения, расположенный на упомянутом выше контактном слое, и второй контактный слой, расположенный на лицевой стороне упомянутого алмазного микроструктурированного слоя. Однокристальная интегральная конструкция позволяет провести в алмазной пленке, легированной бором до вырождения, преобразование потока нейтронов в поток α-частиц и преобразование последних в поток вторичных электронов, а затем - уже в высокоомном приемно-преобразовательном слое Si p-i-n детекторной структуры - в неравновесные электронно-дырочные пары с последующим их считыванием в виде тока во внешнюю цепь. 3 ил.

Description

Изобретение относится к твердотельным детекторам ионизирующих излучений.
Твердотельные детекторы являются элементной базой диагностических систем физики высоких энергий, геологоразведки и атомных производств, связанных с обогащением радиоактивных руд.
Известны детекторы ионизирующих излучений, принцип действия которых основан на ионизации рабочего газа и пропорциональном преобразовании энергии кванта (частицы) в ток упомянутых ионов [1].
Основным достоинством таких детекторов является высокая стойкость к дозовым радиационным нагрузкам. К их недостаткам относится неудовлетворительное пространственное разрешение, что препятствует их использованию в системах позиционирования пучка и распознавания плоских изображений.
Известен детектор барьерного типа [2]. Он представляет собой дискретный либо многоэлементный детектор, выполненный на барьерной кремниевой p-i-n структуре, наличие внутренних полей в которой обеспечивает возможность устранения рекомбинационных каналов внутри i-слоя и практически обеспечивает 100% разделение информативных неравновесных носителей, со считыванием их в виде тока во внешнюю цепь. Пороговая чувствительность таких детекторов ограничивается токами утечек обратно смещенного р-i перехода и уровнем собственных шумов (в частности, уровнем генерационно-рекомбинационного шума). Кроме того, исполнение такого детектора в виде многоэлементной конструкции позволяет существенно повысить при диагностике пространственное разрешение (до 10 мкм), что дает возможность активно использовать Si p-i-n детекторы для детектирования протяженных объектов, в частности для задач, связанных с позиционированием пучка, с медицинской диагностикой, и для дефектоскопии.
Однако, в ряде задач, в частности при решении задач, связанных с регистрацией потока нейтронов, пороговой чувствительности и этих детекторов оказывается недостаточно. Связано это с крайне малыми сечениями взаимодействия нейтронов с полупроводниковыми материалами.
В качестве прототипа настоящего изобретения предлагается использовать детектор нейтронов [3], представляющий гибридную конструкцию из собственного детектора на основе кремниевой p-i-n структуры и расположенного в непосредственной близости от него слоя, преобразующего нейтроны в α-частицы (например, литий либо изотоп бора-10). Собственно детектор представляет собой подложку с омическим контактом к ее тыльной стороне, несущую многослойную структуру, из последовательно расположенных друг на друге слоев: изотипного подложке полупроводникового слоя, высокоомного полупроводникового слоя, полупроводникового слоя противоположного подложке типа проводимости с выполненным к нему контактным слоем, при этом последние два слоя выполнены в виде гальванически не связанных областей. Преобразовательный слой расположен в непосредственной близости с контактным слоем собственно детекторной части устройства и выполнен из изотопов лития (6Li) либо изотопов бора (10В) на прозрачной для потока нейтронов подложке. Таким образом, прототип представляет собой единое устройство с функцией детектора нейтронов, выполненное посредством гибридного соединения собственно детектора - расположенной на подложке кремниевой (Si) p-i-n структуры, и расположенного на прозрачной для нейтронов подложке слоя из изотопов лития (6Li), либо изотопов бора (10В). Указанное устройство выполняет функцию детектора нейтронов, благодаря высокому значению сечения взаимодействия изотопов лития либо бора с нейтронами, и рождения в процессе такого взаимодействия α-частиц, которые поглощаются i-слоем кремниевой p-i-n структуры, отдавая свою кинетическую энергию процессам рождения неравновесных электронно-дырочных пар. Неравновесные пары разделяются полем обратного смещенного p-i перехода и считываются в виде информационного тока во внешнюю цепь детектора.
Толщины и уровни легирования (уровни концентраций доминирующих равновесных носителей) указанных кремниевых слоев устройства - прототипа задают исходя из условий конкретных решаемых задач (типа и энергии детектируемых излучений) и лежат обычно в следующих диапазонах: несущая подложка толщиной 300…700 мкм легирована донорами до концентраций 1017…1019 см3, n-слой толщиной 0,5…10,0 мкм с уровнем легирования донорной примесью ~1017…1019 см3; i-слой (приемно-преобразовательный слой) толщиной от 5 мкм до 500 мкм, при уровне загрязнения фоновой примесью не выше 1013 см-3; р-слой толщиной от 0,1 мкм до 0,5 мкм при легировании примесью акцепторного типа до уровня ~1017…1019 см3.
Данный детектор (прототип) эффективно регистрирует потоки нейтронов, однако в силу гибридной сборки обладает недостаточным пространственным разрешением. Кроме того, процесс выделения нужного изотопа бора трудоемок, его нанесение на подложку реализуется при высоких температурах, сам процесс не относится к групповым микроэлектронным технологиям и технология его нанесения не интегрируется в микроэлектронные технологии. Все это приводит, как правило, к удорожанию устройства, снижает его пространственное разрешение и препятствует изготовлению интегральной однокристальной схемы регистрации нейтронов.
Целью настоящего изобретения является разработка эффективного детектора нейтронов с повышенным пространственным разрешением, выполненного в виде интегрального однокристального устройства с помощью групповых микроэлектронных технологий.
Предлагается детектор нейтронов (см. фиг.1), содержащий полупроводниковую подложку 1 с омическим контактом 2 к ее тыльной стороне, и последовательно расположенные на лицевой стороне подложки друг на друге: изотипный подложке полупроводниковый слой 3, расположенный на нем полупроводниковый высокоомный слой 4, расположенный на последнем полупроводниковый слой 5 противоположного подложке типа проводимости, и расположенный на этом слое контактный слой 6, причем последние два слоя 5 и 6 выполнены в виде гальванически не связанных областей (отделены, например, посредством травления мез, воздушными зазорами 7), дополнительно снабженный микроструктурированным (например, выполненным в виде сетки с ячейками микронного либо субмикронного размера) слоем 8 из алмаза С*(В), расположенным на упомянутом выше контактном слое 6 и легированным бором до вырождения (р+-тип), и вторым контактным слоем 9, расположенным на лицевой стороне слоя 8. Для уменьшения потерь контактный слой 6 может быть выполнен в виде сетки из, например, молибдена, сформированной в одном литографическом процессе при формировании сетчатого рисунка из нанокристаллических зародышей для роста алмазного С*(В) слоя 8. Для возможности эффективного встраивания предлагаемого детектора в электронные измерительные системы на пассивных участках конструкции упомянутые воздушные промежутки заполнены твердотельным диэлектриком (поз.10).
На фиг.1-3 представлены: схематическое изображение общего вида предлагаемого детектора (фиг.1) и его проекций в направлениях АА (фиг.2) и ВВ (фиг.3). На указанных чертежах введены следующие обозначения:
1 - полупроводниковая подложка, 2 - омический контакт к тыльной стороне подложки, 3 - изотипный подложке полупроводниковый слой, 4 - высокоомный полупроводниковый слой, 5 - полупроводниковый слой противоположного подложке типа проводимости, 6 - контактный слой, 7 - изолирующие промежутки (разделяющие слои 5 и 6, а значит, при последующем формировании структуры, слои 8 и 9, на гальванически не связанные области), 8 - микроструктурированный слой из легированного бором до вырождения алмаза, С*(В), 9 - второй контактный слой, 10 - межэлектродная изоляция.
Для уменьшения потерь ионизирующих излучений при вводе в структуру второй контактный слой 9, на активном участке структуры, может быть выполнен в форме «кольца» (см. фиг.1 и 2). На пассивном участке детекторной структуры (на фиг.1 это область электродов 9 сплошной формы) в межэлектродную область (область воздушных зазоров) вводится твердотельный диэлектрик (например, плазмохимический оксид кремния). Это позволяет планиризовать пассивную часть структуры, с целью обеспечения возможности эффективного подключения детектора к внешним устройствам либо посредством специализированного электрического разъема (контакты которого контактируют с электродами 9 детектора), либо посредством зондовой разварки контактных площадок, сформированных на пассивной планиризованной части структуры детектора (п.10) и имеющих гальваническую связь с контактами 9.
Достигается положительный эффект (высокое пространственное разрешение при высокой чувствительности к потоку нейтронов) посредством изготовления интегральной однокристальной схемы в виде многослойной гетероструктуры, позволяющей производить преобразование потока нейтронов в поток α-частиц, с последующим усилением и преобразованием последних во вторичные электроны, их эффективного вывода в поры микроструктурированного алмаза (в силу отрицательного электронного сродства алмаза) и последующего ввода в высокоомный приемно-преобразовательный слой Si p-i-n детекторной структуры, с последующим рождением в этом слое по ионизационному механизму неравновесных электронно-дырочных пар и их считыванием в виде тока во внешнюю цепь.
Действительно, микроструктурированный слой алмаза, легированный бором до вырождения, будет вести себя как преобразователь потока нейтронов в поток α-частиц (содержит 18% изотопов 10В). При этом рожденные α-частицы, взаимодействуя с матрицей слоя С*(В), будут генерировать вторичные электроны. При этом согласно [4] генерация вторичных электронов из С*(В) сопровождается умножением числа частиц в соотношении N=E/ε, где ε - энергия образования по ионизационному механизму электронно-дырочной пары. Так, при энергии первичной частицы ~1 кэВ (разность потенциалов на электродах 9 и 6 будет порядка 200 В) одной частицей в микроструктурированной алмазной пленке будет рождено ~100 вторичных электронов, что с лихвой перекроет потери при преобразовании потока нейтронов. Частичная потеря (в ~5 раз) эффективности преобразования за счет использования не изотопов 10В, а смеси изотопов бора (18% 10В и 80% 11B) при легировании до вырождения микроструктурированного слоя алмаза С*(В), компенсируется внутренним умножением δ-электронов в слое С*(В). Вторичные электроны, родившиеся в алмазной сетчатообразной (микроструктурированной) пленке, в случае если расстояние между порами (ячейками) сетки не превышает диффузионной длины электрона в алмазе, с вероятностью близкой к единице покинут пленку, выйдя в ее поры. Ускоряясь в С*(В) слое при движении к р-слою и при столкновении размножаясь, вторичные электроны проходят в i-слой обратно смещенной p-i-n структуры и возбуждают в нем электронно-дырочные пары, ток которых и будет зарегистрирован во внешней цепи.
При этом пространственное разрешение предлагаемого детектора относительно прототипа будет улучшено, в силу реализации интегральной однокристальной конструкции. Многоэлементный вариант предлагаемой конструкции, обеспеченный упомянутым выше разделением части слоев гетероструктуры воздушными промежутками на локальные области, позволяет детектировать плоские изображения в потоках нейтронов.
Работа заявляемого детектора нейтронов осуществляется следующим образом. Поток нейтронов взаимодействует с ионами решетки объема микроструктурированного алмазного слоя С*(В) 8 и порождает α-частицы; последние взаимодействуют с объемом алмазного слоя и порождают вторичные (δ-) электроны, с их выходом, в частности и из-за отрицательного электронного сродства, в поры микроструктурированного алмазного слоя, последующим их ускорением в направлении р-слоя кремниевой p-i-n структуры и с их внедрением в ее i-слой. В i-слое p-i-n структуры происходит преобразование потока вторичных электронов в неравновесные электронно-дырочные пары, заряд которых в поле обратного смещения р-i перехода p-i-n структуры и будет считан во внешнюю цепь в виде информационного тока. Таким образом, можно осуществить эффективную регистрацию тепловых нейтронов, особенно малых их потоков. Толщина вновь введенного микроструктурированного слоя 8 из легированного до вырождения алмаза, С*(В), определяется условиями конкретной задачи. Назначение контактных слоев 6 и 9 - обеспечить возможность задания на умножительной части структуры разности потенциалов, создающей ускоряющее поле в порах слоя С*(В), а в i-слое p-i-n структуры - поле, разделяющее неравновесные электроны и дырки.
Минимальный размер локальной области многоэлементного детектора связан с диффузным размывом изображения, и в силу малости времени пролета (~10-9 с) и незначительности градиента концентрации неравновесных носителей он не превышает 2…5 мкм, что делает детектор актуальным при регистрации с высоким пространственным разрешением плоских изображений в потоках нейтронов. С учетом пространственного разнесения элементов разрешение изображения в плоскости пластины будет зависеть от толщины приемного (высокоомного полупроводникового) слоя 4, а значит будет варьироваться в зависимости от энергетических характеристик регистрируемого потока нейтронов.
Заметим, альтернативным материалом структуры собственно детектора может быть арсенид галлия, теллурид кадмия и др. Это позволит, помимо указанных преимуществ, реализовать большую, чем в случае кремния (на полтора-два порядка), стойкость приборов к дозовым радиационным нагрузкам.
Изготовить предлагаемую Si p-i-n/C*(В) гетероструктуру возможно с использованием групповых процессов микроэлектронных технологий, плазмохимического травления и плазмостимулированного газофазного метода (PECVD) роста по заданному рисунку на выбранной p-i-n структуре поликристаллических алмазных легированных бором до вырождения пленок.
Для этого на контактный электрод 6 к верхнему слою детекторной p-i-n структуры наносится слой зародышей из нанокристаллитов алмаза и под слоем маски (например, наноразмерной толщины слоя из ванадия и субмикронной толщины слоя алюминия) с помощью фотолитографии и плазмохимического травления формируется требуемый рисунок из упомянутых зародышей и разделительные промежутки в контактном слое и в р-слое, затем снимают маску из алюминия и с помощью PECVD метода выращивают [5] микроструктурированный алмазный слой, легированный бором до вырождения и требуемой толщины, затем под острым углом (для предотвращения шунтирования умножительных алмазных областей) напыляют верхний контактный электрод к алмазному слою.
Источники информации
1. Прайс В. // Регистрация ядерного излучения. Изд. «Издательство иностранной литературы», Москва 1960.
Беллини Дж., Фоа А., Джоржи М. // Успехи физических наук. 1984, т.142. С.476-503.
2. J.C.Bourgoin, N. de Angelis, K.Smith, R.Bates, C.Whitehill, A.Meikle. // Nuclear Instruments and Methods in Physics Research A458 (2001) 344-347.
3. Гулый В.Г., Глыбин Ю.Н., Майнаков В.Д., Щевченко А.П. О результатах разработки кремниевых детекторов тепловых нейтронов. // Ядерные измерительно-информационные технологии 99. Труды научно-инженерного центра, 1999, с.151-152, изд. Москва (прототип).
4. В.Б.Берестецкий, Е.М. Лившиц, Л.П. Питаевский. // Релятивистская квантовая теория, ч.1. Изд. «Наука», Москва 1968.
5. Dvorkin V.V., Dzbanovsky, Suetin V.N., Poltoratcky E.A., Rychkov G.S., Ilichev E.A., Gavrilov S.A. Secondary electron emission from CYD diamond films. // Diamond and Related Materials, 12 (2003), p.2208-2218.

Claims (1)

  1. Детектор нейтронов, содержащий полупроводниковую подложку с омическим контактом к ее тыльной стороне и последовательно расположенные на лицевой стороне подложки друг на друге: изотипный подложке полупроводниковый слой, высокоомный полупроводниковый слой, полупроводниковый слой противоположного подложке типа проводимости и расположенный на этом слое контактный слой, причем последние два слоя выполнены в виде гальванически не связанных областей, отличающийся тем, что он дополнен микроструктурированным слоем из алмаза, расположенным на упомянутом контактном слое и легированным бором до вырождения, на лицевой стороне которого расположен второй контактный слой.
RU2009103188/28A 2009-01-30 2009-01-30 Детектор нейтронов RU2386983C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009103188/28A RU2386983C1 (ru) 2009-01-30 2009-01-30 Детектор нейтронов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009103188/28A RU2386983C1 (ru) 2009-01-30 2009-01-30 Детектор нейтронов

Publications (1)

Publication Number Publication Date
RU2386983C1 true RU2386983C1 (ru) 2010-04-20

Family

ID=46275323

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009103188/28A RU2386983C1 (ru) 2009-01-30 2009-01-30 Детектор нейтронов

Country Status (1)

Country Link
RU (1) RU2386983C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532647C1 (ru) * 2013-06-28 2014-11-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Детектор быстрых нейтронов
RU2565829C1 (ru) * 2014-05-13 2015-10-20 ООО "Производственно-технологический центр "УралАлмазИнвест" Алмазный детектор тепловых нейтронов
RU2643228C1 (ru) * 2015-12-29 2018-01-31 Тсинхуа Юниверсити Конвертер медленных нейтронов и детектор медленных нейтронов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532647C1 (ru) * 2013-06-28 2014-11-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Детектор быстрых нейтронов
RU2565829C1 (ru) * 2014-05-13 2015-10-20 ООО "Производственно-технологический центр "УралАлмазИнвест" Алмазный детектор тепловых нейтронов
RU2643228C1 (ru) * 2015-12-29 2018-01-31 Тсинхуа Юниверсити Конвертер медленных нейтронов и детектор медленных нейтронов
US10126440B2 (en) 2015-12-29 2018-11-13 Tsinghua University Slow neutron conversion body and slow neutron detector

Similar Documents

Publication Publication Date Title
US7902513B2 (en) Neutron detector with gamma ray isolation
US8816287B2 (en) Structures for radiation detection and energy conversion using quantum dots
US8604441B2 (en) Layered semiconductor neutron detectors
US9645262B2 (en) Capacitance reduction for pillar structured devices
US20060255282A1 (en) Semiconductor materials matrix for neutron detection
Nikolic et al. 6: 1 aspect ratio silicon pillar based thermal neutron detector filled with 10 B
Da Vià et al. Radiation sensors with 3D electrodes
US20110049379A1 (en) Neutron detectors made of inorganic materials and their method of fabrication
US7973286B2 (en) Detector having a thin film of boron nitride (BN) such as cubic BN and method, systems and array utilizing same
US9671507B2 (en) Solid-state neutron detector device
RU2386983C1 (ru) Детектор нейтронов
Ochs et al. Design and performance considerations for dual-sided microstructured semiconductor neutron detectors
RU2386982C1 (ru) Детектор ионизирующих излучений
Serry et al. Nanostructured graphene–Schottky junction low-bias radiation sensors
Amirmazlaghani et al. Betavoltaic battery based on reduced-Graphene-Oxide/Si heterojunction
Smith et al. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications
US20190187307A1 (en) High efficiency 3d nanostructured neutron detectors
McNeil et al. Perforated diode fabrication for neutron detection
Heuser et al. Electron beam irradiation of gallium nitride-on-silicon betavoltaics fabricated with a triple mesa etch
US10797195B2 (en) Ionizing radiation sensor based on float-zone silicon with p-type conductivity
Nikolic et al. Future of semiconductor based thermal neutron detectors
JPS6135384A (ja) 中性子検出装置
Laramore et al. Simulation of charge carrier transport in pixelated micro-structured semiconductor neutron detectors
JPH0447993B2 (ru)
RU2821300C2 (ru) Алмазный детектор тепловых нейтронов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160131