RU2380186C2 - Installation for manufacturing of parts, system for manufacturing of parts, method for manufacturing of parts and part produced by specified method - Google Patents

Installation for manufacturing of parts, system for manufacturing of parts, method for manufacturing of parts and part produced by specified method Download PDF

Info

Publication number
RU2380186C2
RU2380186C2 RU2005107473/02A RU2005107473A RU2380186C2 RU 2380186 C2 RU2380186 C2 RU 2380186C2 RU 2005107473/02 A RU2005107473/02 A RU 2005107473/02A RU 2005107473 A RU2005107473 A RU 2005107473A RU 2380186 C2 RU2380186 C2 RU 2380186C2
Authority
RU
Russia
Prior art keywords
punch
stamping
die
press
matrix
Prior art date
Application number
RU2005107473/02A
Other languages
Russian (ru)
Other versions
RU2005107473A (en
Inventor
Майкл К. БАРНОСКИ (US)
Майкл К. БАРНОСКИ
Дэвид КОХИН (US)
Дэвид КОХИН
Дэн ХАРРИС (US)
Дэн ХАРРИС
Сангкйюн КАНГ (US)
Сангкйюн КАНГ
Энтони ЛЕВИ (US)
Энтони ЛЕВИ
Мигуел ПИНИЛЛА (US)
Мигуел ПИНИЛЛА
Фритц ПРИНЦ (US)
Фритц ПРИНЦ
Алекс ТАРАСЮК (US)
Алекс ТАРАСЮК
Original Assignee
Нанопресизион Продактс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/620,851 external-priority patent/US7343770B2/en
Application filed by Нанопресизион Продактс, Инк. filed Critical Нанопресизион Продактс, Инк.
Publication of RU2005107473A publication Critical patent/RU2005107473A/en
Application granted granted Critical
Publication of RU2380186C2 publication Critical patent/RU2380186C2/en

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Punching Or Piercing (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

FIELD: technological processes.
SUBSTANCE: inventions are related to forming systems for production of high precision parts intended for instance to connect optical fibres. Installation for manufacturing of parts comprises puncheon, die, accessory that supports die, and device for puncheon alignment. Specified device is equipped with shaft for direction of puncheon versus die. Puncheon and shaft are arranged with flat surface. Shaft has dimensions and shape that provide for location of puncheon with sliding contact of its flat surface and flat surface of shaft with absence of intermediate movable parts. In installation there is system provided for mechanical transfer of force from press to puncheon. Besides puncheon is separated from slider and is placed into shaft until force is transferred from slider. System for making of parts includes press and at least one die stamping unit. Unit comprises installation for manufacturing of parts. System may be used to manufacture parts with allowance within the limits of 1000 nanometres. These parts may be used in optoelectronics.
EFFECT: invention provides for improved efficiency of precision parts manufacturing and improvement of their quality.
29 cl, 26 dwg

Description

Область техники.The field of technology.

Данное изобретение относится к штамповочным системам и процессам, в частности к штамповочным процессам для изготовления деталей с высоким (жестким) допуском, предназначенных для различного применения, например, для соединения оптоволокон.This invention relates to stamping systems and processes, in particular to stamping processes for the manufacture of parts with high (hard) tolerance, designed for various applications, for example, for connecting optical fibers.

Уровень техники. Прецизионные элементы востребованы во многих видах деятельности, например, в области связи, основанной на использовании оптоволокна. Каналы волоконно-оптической связи представляют собой системы, которые зачастую выбирают и используют в системах защиты, а также в промышленности и коммерческом обороте вследствие их высокой эффективности и малого размера. Преимущества использования волоконной оптики, в частности, проявляются при ее применении для осуществления связи на большие расстояния, например, при использовании ее в линиях связи между городами и между континентами, вследствие более низкой стоимости компонентов для преобразования электрических сигналов в оптические и обратно в электрические (electrical-to-optical-to-electrical (Е-O-Е)), оптоволоконных репитеров и волоконно-оптических кабелей по сравнению с чисто электрическими системами, в которых используют коаксиальный медный кабель, что не требует применения Е-О-Е преобразований. Такие оптоволоконные системы дальней связи могут содержать сотни километров оптоволокна между терминалами.The level of technology. Precision elements are in demand in many activities, for example, in the field of communication based on the use of optical fiber. Fiber-optic communication channels are systems that are often selected and used in security systems, as well as in industry and commercial circulation due to their high efficiency and small size. The advantages of using fiber optics, in particular, are manifested when it is used for communication over long distances, for example, when used in communication lines between cities and between continents, due to the lower cost of components for converting electrical signals into optical and vice versa into electrical (electrical -to-optical-to-electrical (E-O-E)), fiber repeaters and fiber optic cables compared to purely electrical systems that use coaxial copper cable, which is not required t use of E-O-E transformations. Such fiber optic telecommunication systems may contain hundreds of kilometers of fiber between terminals.

Системы, предназначенные для использования на меньших расстояниях, обычно содержат лишь несколько десятков километров оптоволокна между терминалами, а системы, предназначенные для сверхмалых расстояний (very short reach, VSR), содержат всего лишь несколько десятков метров оптоволокна между терминалами. Несмотря на то, что оптоволоконные линии связи для телекоммуникаций и передачи данных в метро, общественных местах и дома являются короткими по сравнению с линиями для дальней связи, их великое множество. Количество компонентов, необходимых для размещения оптоволокна при таком использовании, велико. В таких системах, предназначенных для использования на коротких расстояниях, применение волоконной оптики в значительной степени зависит от стоимости Е-О-Е устройств (терминалов) преобразования и компоновки поддерживающих схем, а также от стоимости любых пассивных и активных оптоэлектронных устройств и оборудования, подключенных между терминалами. Поэтому для увеличения объемов применения активных и пассивных оптоэлектронных систем, подсистем и компонентов для малых и сверхмалых (VSR) расстояний их средние продажные цены должны быть снижены. Снижение средних продажных цен поможет стимулировать использование, что необходимо для обоснования инвестиций в высокоскоростные технологии производства.Systems designed for use at shorter distances typically contain only a few tens of kilometers of fiber between the terminals, and systems designed for very short reach (VSR) contain only a few tens of meters of fiber between the terminals. Despite the fact that fiber-optic communication lines for telecommunications and data transmission in the metro, public places and at home are short compared to long-distance lines, there are a great many of them. The number of components required to accommodate the optical fiber in this use is large. In such systems intended for use over short distances, the use of fiber optics largely depends on the cost of E-OE E devices (terminals) for conversion and layout of supporting circuits, as well as on the cost of any passive and active optoelectronic devices and equipment connected between terminals. Therefore, to increase the use of active and passive optoelectronic systems, subsystems and components for small and ultra-small (VSR) distances, their average selling prices should be reduced. Lowering average sales prices will help stimulate utilization, which is necessary to justify investments in high-speed manufacturing technologies.

Важным элементом, оказывающим влияние на цену как активных, так и пассивных оптоволоконных компонентов и соединенного с ними кабеля, является сам коннектор оптоволокон. Прецизионные манжеты и связанные с ними устройства для их совмещения (например, прецизионные разъемные муфты для соединения одиночных оптоволокон, прецизионные заземленные штифты для соединения множества (пучка) оптоволокон) вносят основной вклад в цену используемых в настоящее время оптоволоконных коннекторов. Выравнивающие (совмещающие) компоненты обычно необходимы для совмещения оптоволокон с активными и пассивными устройствами, а также для совмещения двух оптоволокон с целью создания разъемного соединения. Прецизионное выравнивание двух шлифованных концов оптоволокна необходимо для того, чтобы иметь уверенность в том, что полные оптические потери в месте соединения оптоволокна равны или меньше, чем заданный объем потерь оптического коннектора для системы. Для одномодового телекоммуникационного оптоволокна это обычно соотносится с допусками на совмещение (выравнивание) оптоволоконного коннектора, которые составляют менее 1000 нм. Базовая конструкция используемых в настоящее время коннекторов не менялась в течение более 20 лет, и мнение, что стоимость их слишком велика, а сборка слишком сложна, является общепринятым. Если предполагается использовать оптоволокно для связи на малых и сверхмалых (VSR) расстояниях, стоимость изготовления прецизионных оптоволоконных коннекторов должна быть снижена.An important element that affects the price of both active and passive fiber components and the cable connected to them is the fiber connector itself. Precision cuffs and related devices for combining them (for example, precision detachable couplings for connecting single optical fibers, precision grounded pins for connecting multiple (bundle) optical fibers) make the main contribution to the price of the currently used optical fiber connectors. Alignment (combining) components are usually necessary for combining optical fibers with active and passive devices, as well as for combining two optical fibers to create a detachable connection. Precise alignment of the two polished ends of the optical fiber is necessary in order to ensure that the total optical loss at the junction of the optical fiber is equal to or less than the specified amount of loss of the optical connector for the system. For single-mode telecommunication optical fiber, this is usually correlated with tolerances for alignment (alignment) of the optical fiber connector, which are less than 1000 nm. The basic design of the connectors currently in use has not changed for more than 20 years, and the view that their cost is too high and the assembly too complicated is generally accepted. If you intend to use optical fiber for communication at small and very small (VSR) distances, the cost of manufacturing precision fiber optic connectors should be reduced.

Коннекторы, используемые для соединения как параллельных, так и одиночных оптоволокон, работающие с мультигигабитными скоростями, должны быть соединены с подсистемами (субкомпонентами), изготовленными со субмикронной точностью. Изготовление деталей с такими уровнями точности является достаточно сложным, а для того, чтобы конечный продукт был экономически выгодным, он должен быть изготовлен полностью автоматизированным, очень высокоскоростным способом.Connectors used for connecting both parallel and single optical fibers operating at multi-gigabit speeds must be connected to subsystems (subcomponents) made with submicron accuracy. The manufacture of parts with such accuracy levels is quite complicated, and in order for the final product to be cost-effective, it must be manufactured in a fully automated, very high-speed way.

Процессы штамповки широко внедрены в процессы массового производства дешевых серийных деталей. Однако до сих пор процессы штамповки не были эффективными при изготовлении деталей с допусками, приемлемыми для оптоэлектронных компонентов. В действительности, в настоящее время не существует приемлемого высокоскоростного промышленного процесса, который позволил бы изготавливать оптоэлектронные компоненты с приемлемыми допусками. Патент США №4458985 на имя Balliet и др. посвящен коннектору для оптоволокна. Balliet вкратце указывает, что некоторые компоненты коннектора могут быть изготовлены способом чеканки (ковки) или штамповки (например, колонка 3, строки 20-21, 55-57). Однако Balliet не приводит описания таких способов штамповки, которое позволило бы их осуществить, не говоря уже об описании способа штамповки для изготовления деталей с допуском в пределах 1000 нм.Stamping processes are widely implemented in the mass production of cheap serial parts. However, until now, stamping processes have not been effective in the manufacture of parts with tolerances acceptable for optoelectronic components. In fact, there is currently no acceptable high-speed industrial process that would allow the manufacture of optoelectronic components with acceptable tolerances. US Pat. No. 4,458,985 to Balliet et al. Is devoted to an optical fiber connector. Balliet briefly indicates that some connector components can be made by stamping (forging) or stamping (for example, column 3, lines 20-21, 55-57). However, Balliet does not provide a description of such stamping methods that would allow them to be implemented, not to mention a description of the stamping method for manufacturing parts with a tolerance within 1000 nm.

Поэтому желательно иметь технологию производства, способную работать при очень больших скоростях и дающую возможность изготавливать детали с допусками в пределах 1000 нм, предназначенные для использования в оптоэлектронике и других областях.Therefore, it is desirable to have a production technology that can operate at very high speeds and makes it possible to produce parts with tolerances within 1000 nm, intended for use in optoelectronics and other fields.

Раскрытие изобретенияDisclosure of invention

Данное изобретение относится к штамповочной системе и способу изготовления деталей с допусками менее 1000 нм. Изобретение особенно подходит для изготовления деталей для оптоэлектроники, включая, но не ограничиваясь только ими, компоненты, системы и подсистемы, пассивные и активные компоненты. Система содержит один или последовательность штамповочных блоков для поддержания пуансона и матрицы. Штамповочные блоки имеют новую конструкцию для направления пуансона при существенном выравнивании с матрицей с жесткими допусками. Система содержит пресс для подачи достаточной силы на штамповочные блоки для осуществления конкретной операции штамповки.This invention relates to a stamping system and a method for manufacturing parts with tolerances of less than 1000 nm. The invention is particularly suitable for the manufacture of parts for optoelectronics, including, but not limited to, components, systems and subsystems, passive and active components. The system comprises one or a sequence of stamping blocks to support the punch and die. The stamping blocks have a new design for guiding the punch during substantial alignment with a die with tight tolerances. The system comprises a press for supplying sufficient force to the stamping blocks for a specific stamping operation.

С одной стороны, система согласно данному изобретению разработана с целью минимизации количества движущихся компонентов, включенных в опорную конструкцию при направлении пуансона к матрице. В одном из вариантов выполнения данного изобретения штамповочный блок вообще не содержит движущихся компонентов в опорной конструкции при направлении пуансона к матрице. Штамповочный блок содержит стационарное опорное устройство для поддержания пуансона, снабженное стволом, размер и форма которого позволяют вмещать пуансон с жесткими допусками. Движение пуансона к матрице осуществляется посредством скольжения внутри ствола.On the one hand, the system according to this invention is designed to minimize the number of moving components included in the support structure in the direction of the punch to the die. In one embodiment of the invention, the stamping unit generally does not contain moving components in the support structure when the punch is directed toward the die. The stamping unit comprises a stationary support device for supporting the punch, equipped with a barrel, the size and shape of which allows the punch to be held with tight tolerances. The movement of the punch to the matrix is carried out by sliding inside the barrel.

Согласно другому аспекту данного изобретения система содержит базовую (монтажную) плиту, имеющую элементы для совмещения, предназначенные для точного (прецизионного) совмещения последовательности штамповочных блоков по отношению друг к другу. Базовая (монтажная) плита и ее элементы для совмещения имеют жесткие допуски и субмикронную гладкость поверхности.According to another aspect of the present invention, the system comprises a base (mounting) plate having alignment elements for accurately (precision) aligning the sequence of stamping blocks with respect to each other. The base (mounting) plate and its elements for alignment have tight tolerances and submicron surface smoothness.

Согласно другому аспекту данного изобретения система содержит систему передачи для подачи силы пресса к пуансону при отсутствии структурной связи пресса с пуансоном. Система передачи также позволяет изолировать каждый штамповочный блок, так что работа на одном блоке не влияет на работу на другом блоке. В одном из вариантов выполнения изобретения система содержит комбинацию шара и гнезда, что позволяет прессу механически подавать силу к пуансону при отсутствии структурной связи пресса с пуансоном. Согласно другому варианту выполнения изобретения система содержит гидравлическую систему передачи. Рабочая жидкость гидравлической системы механически соединяет пресс с пуансоном и подает постоянную силу на пуансон при структурном отделении пресса от пуансона. Согласно еще одному варианту выполнения изобретения система содержит комбинацию шара и гнезда с гидравлическим приводом пуансона. Гидравлический привод позволяет структурно отделить пресс от пуансона, в то время как комбинация шар - гнездо способствует снижению структурной нагрузки на компоненты штамповочного блока. Структурное разъединение пресса и ультрапрецизионной инструментальной оснастки штамповочных блоков и инструментов приводит к тому, что погрешности пресса не влияют на ультрапрецизионную точность штамповочных блоков и инструментов.According to another aspect of the present invention, the system comprises a transmission system for supplying press force to the punch in the absence of structural connection of the press with the punch. The transmission system also allows you to isolate each stamping unit, so that work on one unit does not affect operation on another unit. In one embodiment of the invention, the system comprises a combination of a ball and a socket, which allows the press to mechanically apply force to the punch in the absence of structural connection between the press and the punch. According to another embodiment of the invention, the system comprises a hydraulic transmission system. The hydraulic fluid of the hydraulic system mechanically connects the press to the punch and delivers a constant force to the punch during structural separation of the press from the punch. According to another embodiment of the invention, the system comprises a combination of a ball and socket with a hydraulic drive of the punch. The hydraulic drive allows you to structurally separate the press from the punch, while the ball-socket combination helps to reduce the structural load on the components of the stamping unit. The structural separation of the press and the ultra-precision tooling of the stamping blocks and tools leads to the fact that the errors of the press do not affect the ultra-precision accuracy of the stamping blocks and tools.

Краткое описание чертежейBrief Description of the Drawings

Для более полного понимания сущности и преимуществ изобретения, а также предпочтительного способа использования далее приведено подробное описание со ссылками на сопроводительные чертежи. На всех приведенных далее чертежах сходными цифрами обозначены одинаковые или аналогичные детали.For a more complete understanding of the essence and advantages of the invention, as well as the preferred method of use, the following is a detailed description with reference to the accompanying drawings. In all of the drawings that follow, similar numbers indicate the same or similar parts.

Фиг.1 представляет собой схематичное изображение, иллюстрирующее традиционный штамповочный пресс.Figure 1 is a schematic diagram illustrating a conventional stamping press.

Фиг.2 представляет собой схематичное изображение, иллюстрирующее систему для штамповки деталей, имеющих допуск ниже 1000 нм, согласно одному из вариантов выполнения данного изобретения.FIG. 2 is a schematic diagram illustrating a system for stamping parts having a tolerance below 1000 nm according to one embodiment of the present invention.

Фиг.3а представляет собой общий вид штамповочного блока согласно одному из вариантов выполнения данного изобретения.Figa is a General view of the stamping unit according to one of the embodiments of the present invention.

Фиг.3b представляет собой изображение разреза штамповочного блока, выполненного по линии 3b-3b, показанной на Фиг.3а.Fig. 3b is a sectional view of a stamping block taken along line 3b-3b shown in Fig. 3a.

Фиг.4 представляет собой общий вид штамповочного блока согласно другому варианту выполнения данного изобретения.4 is a perspective view of a stamping unit according to another embodiment of the present invention.

Фиг.5 представляет собой вид с пространственным разделением деталей (схему сборки) штамповочного блока, показанного на Фиг.4.Figure 5 is a view with a spatial separation of parts (assembly diagram) of the stamping block shown in Figure 4.

Фиг.6а представляет собой изображение разреза штамповочного блока, показанного на Фиг.4, выполненного по линии 6а-6а.Fig. 6a is a sectional view of the stamping block shown in Fig. 4 taken along line 6a-6a.

Фиг.6b представляет собой изображение разреза штамповочного блока, выполненного по линии 6b-6b, показанной на Фиг.4.6b is a sectional view of a stamping block taken along line 6b-6b shown in FIG. 4.

Фиг.7а представляет собой упрощенное изображение системы передачи, включенной в штамповочную систему по данному изобретению.Figa is a simplified image of a transmission system included in the stamping system according to this invention.

Фиг.7b представляет собой изображение разреза, иллюстрирующее зацепление шара и гнезда в системе передачи.Fig.7b is a sectional view illustrating the engagement of the ball and socket in the transmission system.

Фиг.8а представляет собой схематичное изображение штамповочного блока, содержащего гидравлическую систему передачи в соответствии с другим вариантом выполнения данного изобретения.Fig. 8a is a schematic illustration of a stamping unit comprising a hydraulic transmission system in accordance with another embodiment of the present invention.

Фиг.8b представляет собой схематичное изображение штамповочного блока, содержащего гидравлическую систему передачи, включающую в себя комбинацию шар-гнездо, в соответствии с другим вариантом выполнения данного изобретения.Fig. 8b is a schematic illustration of a stamping unit comprising a hydraulic transmission system including a ball-socket combination in accordance with another embodiment of the present invention.

Фиг.9а представляет собой общий вид пуансона и матрицы, показанных на Фиг.4 и 5.Figa is a General view of the punch and the matrix shown in Fig.4 and 5.

Фиг.9b представляет собой изображение с пространственным разделением деталей пуансона и матрицы, показанных на Фиг.9а.Fig. 9b is an image with a spatial separation of the details of the punch and the matrix shown in Fig. 9a.

Фиг.9с представляет собой разрез матрицы, выполненный по линии 9с-9с, показанной на Фиг.9а.Fig. 9c is a cross-section of the matrix taken along line 9c-9c shown in Fig. 9a.

Фиг.10а представляет собой вид сзади конструкции для оптоэлектроники, изготовленной с помощью штамповочной системы по данному изобретению.Fig. 10a is a rear view of a structure for optoelectronics made using the stamping system of this invention.

Фиг.10b представляет собой общий вид половины манжеты, изготовленной штамповкой с использованием пуансона и матрицы, показанных на Фиг.9а.Fig. 10b is a perspective view of a half of a cuff made by stamping using the punch and die shown in Fig. 9a.

Фиг.10с представляет собой вид сзади половины манжеты, показанной на Фиг.10b.Fig. 10c is a rear view of the half cuff shown in Fig. 10b.

Фиг.11а иллюстрирует конструкцию «полосковой геометрии» для изготовления штампованной и сваренной манжеты в «двойной конфигурации».11a illustrates the design of "strip geometry" for the manufacture of stamped and welded cuffs in the "double configuration".

Фиг.11b представляет собой общий вид манжеты, полученной в конечном итоге с помощью конструкции «полосковой геометрии», приведенной на Фиг.11а.11b is a general view of the cuff ultimately obtained using the strip geometry design shown in FIG. 11a.

Фиг.12а иллюстрирует конструкцию «полосковой геометрии» для изготовления манжеты звездообразной формы, прихваченной сваркой, расположенной в штампованной разъемной муфте.Fig. 12a illustrates the strip geometry design for manufacturing a star-shaped cuff, tacked by welding, located in a stamped split sleeve.

Фиг.12b представляет собой общий вид конструкции, содержащей звездообразную манжету.12b is a perspective view of a structure comprising a star-shaped cuff.

Фиг.12с представляет собой разрез конструкции, выполненный по линии 12с-12с, показанной на Фиг.12b.12c is a sectional view of the structure taken along line 12c-12c shown in FIG. 12b.

Фиг.13 представляет собой поперечное сечение торца половины манжеты, изготовленной с помощью штамповки и формовки.13 is a cross-sectional view of the end face of a half cuff made by stamping and molding.

Фиг.14 представляет собой поперечное сечение пуансона для изготовления многожильной манжеты, использованного для штамповки половины многожильной манжеты.Fig. 14 is a cross-sectional view of a punch for manufacturing a multi-core cuff used for stamping half a multi-core cuff.

Фиг.15 представляет собой общий вид многожильной муфты, содержащей многожильную манжету.Fig is a General view of a stranded sleeve containing a stranded cuff.

Фиг.16 представляет собой вид сверху базовой (монтажной) плиты.Fig is a top view of the base (mounting) plate.

Фиг.17 представляет собой график, показывающий измеренные профильные характеристики 12-волоконного пуансона, наложенные на данные, полученные для образца штампованной детали.17 is a graph showing the measured profile characteristics of a 12-fiber punch superimposed on data obtained for a sample of a stamped part.

Фиг.18 представляет собой схематичное изображение, показывающее заполнение заготовки 304 в конфигурации открытой матрицы, спрогнозированное с помощью конечно-элементного анализа (Finite Element Analysis, FEA).FIG. 18 is a schematic view showing filling of a preform 304 in an open matrix configuration predicted by Finite Element Analysis (FEA).

Фиг.19 представляет собой фотографию, показывающую три желоба для оптоволокон штампованного образца 12-жильной манжеты.FIG. 19 is a photograph showing three optical fiber grooves of a stamped 12-core cuff sample.

Фиг.20 представляет собой график, иллюстрирующий измеренные профильные данные того же желоба для оптоволокна для трех образцов нержавеющей стали 304 и измеренные профильные данные этой части пуансона.20 is a graph illustrating measured profile data of the same optical fiber trough for three samples of 304 stainless steel and measured profile data of this portion of the punch.

Фиг.21 представляет собой график, иллюстрирующий максимальный разброс положения желоба относительно среднего положения для трех различных образцов штампованных деталей.Fig.21 is a graph illustrating the maximum variation in the position of the groove relative to the middle position for three different samples of stamped parts.

Подробное описание предпочтительных вариантов выполнения изобретенияDETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Ниже изобретение раскрыто на примерах различных вариантов его выполнения со ссылками на чертежи. Несмотря на то, что изобретение раскрыто на примерах тех вариантов его выполнения, которые являются лучшими для достижения целей изобретения, специалисты должны принимать во внимание, что, не выходя за рамки духа и сущности изобретения, в него могут быть внесены различные изменения.Below the invention is disclosed by examples of various options for its implementation with reference to the drawings. Despite the fact that the invention is disclosed by examples of those embodiments that are best for achieving the objectives of the invention, specialists should take into account that, without going beyond the spirit and essence of the invention, various changes can be made to it.

Данное изобретение относится к системе штамповки и способу изготовления деталей с допусками менее 1000 нанометров (нм). Система и способ по данному изобретению особенно подходят для изготовления деталей для оптоэлектроники, включая, но не ограничиваясь только ими, оптоэлектронные компоненты, системы и подсистемы, а также активные и пассивные компоненты. Для иллюстрации принципов данного изобретения, но не с целью его ограничения, изобретение описано на примерах вариантов выполнения, относящихся к процессам штамповки для изготовления оптоэлектронных компонентов, в частности, коннекторов для оптоволокон, таких, как манжеты и разъемные муфты.This invention relates to a stamping system and a method for manufacturing parts with tolerances of less than 1000 nanometers (nm). The system and method of this invention are particularly suitable for the manufacture of parts for optoelectronics, including, but not limited to, optoelectronic components, systems and subsystems, as well as active and passive components. To illustrate the principles of the present invention, but not for the purpose of limiting it, the invention is described by way of example embodiments related to stamping processes for manufacturing optoelectronic components, in particular optical fiber connectors such as cuffs and split sleeves.

Традиционный способ штамповкиThe traditional way of stamping

Для получения целостной картины следует начать с краткого описания традиционного способа штамповки. Штамповка представляет собой производственный процесс, при котором заготовку, такую, как металлическая полоса, сдавливают между комплектом штампа (матрицей и пуансоном), в результате чего получают изделие заданной формы или обладающее заданным рельефом поверхности. Инструментами, используемыми в процессе штамповки, являются штамповочные прессы и штампы. На Фиг.1 приведено схематичное изображение, иллюстрирующее традиционный штамповочный пресс 10. Штамповочный пресс 10 содержит бабу 20 пресса и станину 30 пресса. Баба 20 пресса подает необходимую силу для штамповки заготовки посредством перемещения компонентов штампа относительно друг друга. Стрелкой показано действие удара бабы 20 пресса, движущейся вверх и вниз относительно станины 30 пресса. Однако баба пресса может иметь другие направления удара (не показаны). Компоненты 40 штампа, расположенные между бабой 20 пресса и станиной 30 пресса, являются инструментом, используемым для изготовления штампованных деталей. Компоненты 40 штампа содержат пуансон 50, структурно связанный с бабой 20 пресса, и комплементарную матрицу 60, присоединенную к станине 30 пресса, или компоненты могут быть присоединены наоборот. Штамповочный пресс 10 может содержать накладной лист 65, прикрепленный к верхней части станины 30 пресса для присоединения матрицы 60 к станине 30. Пуансон 50 и матрица 60 выровнены относительно друг друга (соосны), так что при движении бабы 20 пресса в сторону станины 30 пресса пуансон 50 и матрица 60 действуют комплементарно для осуществления требуемой операции с заготовкой.To get a complete picture, you should start with a brief description of the traditional stamping method. Stamping is a manufacturing process in which a workpiece, such as a metal strip, is squeezed between a set of stamps (die and punch), resulting in a product of a given shape or having a given surface topography. The tools used in the stamping process are stamping presses and dies. 1 is a schematic view illustrating a conventional stamping press 10. The stamping press 10 comprises a press head 20 and a press frame 30. Baba 20 press provides the necessary force to stamp the workpiece by moving the components of the stamp relative to each other. The arrow shows the impact of the press woman 20, moving up and down relative to the bed 30 of the press. However, the press woman may have other directions of impact (not shown). The stamp components 40 located between the press head 20 and the press bed 30 are tools used to make stamped parts. The stamp components 40 comprise a punch 50 structurally coupled to the press head 20 and a complementary matrix 60 connected to the press frame 30, or the components can be connected in reverse. The stamping press 10 may include an overlay sheet 65 attached to the upper part of the press frame 30 for attaching the die 60 to the bed 30. The punch 50 and the die 60 are aligned relative to each other (coaxial), so that when the press head 20 moves toward the press bed 30, the punch 50 and the matrix 60 are complementary to carry out the desired workpiece operation.

При осуществлении операции штамповки заготовку 70 располагают между пуансоном 50 и матрицей 60. Когда пресс 10 приводят в действие, баба 20 пресса перемещает пуансон 50 по направлению к матрице 60. Перемещение пуансона направляют в сторону матрицы с помощью направляющих и втулок (не показаны) и бабы 20 пресса. Когда пуансон 50 и матрица 60 сходятся друг с другом, заготовка 70, расположенная между пуансоном 50 и матрицей 60, подвергается штамповке. С помощью конструкции штампа можно осуществлять различные операции с заготовкой, такие как резка и придание формы, например, перфорирование, вытягивание, сгибание, загибание кромки и окантовка.In the punching operation, the workpiece 70 is placed between the punch 50 and the die 60. When the press 10 is actuated, the press woman 20 moves the punch 50 toward the die 60. The punch is guided towards the die using guides and bushings (not shown) and the head 20 press. When the punch 50 and the die 60 converge with each other, the workpiece 70 located between the punch 50 and the die 60 is stamped. Using the stamp design, various work operations can be carried out, such as cutting and shaping, for example, punching, drawing, bending, folding and edging.

Несколько потенциально возможных факторов могут приводить к неточному совмещению пуансона 50 и матрицы 60. Регулировка (соосность) пресса может быть нарушена. Вследствие того, что пуансон 50 структурно связан с бабой 20 пресса, отклонение оси бабы 20 пресса также влияет на выравнивание (соосность) пуансона 50 и матрицы 60. Кроме того, со временем втулки могут подвергнуться износу, и зазор между втулками и направляющими увеличится, что приведет к неточному совмещению пуансона и матрицы.Several potential factors can lead to inaccurate alignment of the punch 50 and the die 60. The adjustment (alignment) of the press may be impaired. Due to the fact that the punch 50 is structurally connected with the press woman 20, the deviation of the axis of the press woman 20 also affects the alignment (alignment) of the punch 50 and the die 60. In addition, the sleeves may wear out and the gap between the sleeves and the guides will increase, which will lead to inaccurate alignment of the punch and die.

В патенте США №6311597 В1 описана конструкция комплексной штамповочной системы, в которой использован стриппер в качестве направляющей и гнездо матрицы в качестве направляющей втулки. Втулка штампа косвенно направляет пуансон к матрице посредством прямого направления системы, поддерживающей пуансон. Узел пуансона включает в себя пуансон, закрепленный в держателе штампа, и стриппер- направляющую с сепаратором шарикоподшипника, установленный на держателе пуансона. Гнездо матрицы направляет стриппер-направляющую, за счет чего опосредованно направляет пуансон.US Pat. No. 6,311,597 B1 describes the design of an integrated stamping system that uses a stripper as a guide and a die slot as a guide sleeve. The die sleeve indirectly directs the punch toward the die by directing the system supporting the punch. The punch assembly includes a punch fixed in the die holder and a stripper guide with a ball bearing cage mounted on the punch holder. The slot of the matrix guides the stripper guide, due to which the punch is indirectly guided.

Такая сложная конструкция имеет предрасположенность к нарушению соосности пуансона и матрицы. Дня того, чтобы пуансон был выровнен (совмещен) с матрицей, критичным является крепление пуансона соосно с держателем пуансона, а также крепление стриппера соосно с держателем пуансона. Любое нарушение соосности при сборке (монтаже) этих компонентов приведет к нарушению соосности пуансона и матрицы. В такой конструкции при направлении пуансона к матрице также используют, по крайней мере, один движущийся компонент, что может увеличить вероятность нарушения соосности. Узел пуансона движется внутри гнезда матрицы для направления пуансона к матрице. Любое незначительное внеосевое движение узла пуансона внутри гнезда матрицы приведет к нарушению соосности пуансона и матрицы. Использование в конструкции сепаратора шарикоподшипника приводит к еще большему увеличению вероятности нарушение соосности. Шарикоподшипники, просто в силу своей конструкции, создают возможность внеосевого движения стриппера внутри гнезда матрицы, что приводит к потенциальной возможности нарушения соосности пуансона и матрицы.Such a complex design is predisposed to a misalignment of the punch and the matrix. To ensure that the punch is aligned with the die, it is critical that the punch is aligned with the punch holder, and that the stripper is aligned with the punch holder. Any misalignment in the assembly (installation) of these components will lead to a misalignment of the punch and die. In such a design, at least one moving component is also used in the direction of the punch toward the die, which may increase the likelihood of misalignment. The punch assembly moves inside the die slot to direct the punch toward the die. Any slight off-axis movement of the punch assembly inside the die of the matrix will lead to a violation of the alignment of the punch and the matrix. The use of ball bearings in the design of the cage leads to an even greater increase in the probability of misalignment. Ball bearings, simply by virtue of their design, create the possibility of an off-axis movement of the stripper inside the die of the matrix, which leads to the potential for disruption of the alignment of the punch and the die.

Заданный допускPreset Tolerance

Как уже было указано выше, штамповочная система и способ по данному изобретению позволяют изготавливать детали с «шесть сигма» («six sigma») геометрическим полем допуска 1000 нм. Статистически это означает, что максимум 3.4 детали на миллион не будут соответствовать требованиям соблюдения размеров, заданным 1000 нм полем допуска. В случае нормального распределения, для того чтобы удовлетворять условиям «шесть сигма» процесса, стандартное отклонение полного цикла должно быть меньше или равно 83 нм [(1000 нм/2)/6=83 нм], при условии, что в среднем процесс остается постоянным. На практике следует сделать допуск на отклонение процесса. В том случае, когда принимают, что отклонение процесса в среднем составляет ±1.5· sigma, максимальное стандартное отклонение будет уменьшено до 67 нм [(1000 нм/2)/7.5=67 нм]. В рамках нормальной статистики, для достижения этого в многостадийном процессе с n прецизионными стадиями каждая из n стадий должна удовлетворять условию sigma/n^0,5. Таким образом, если в этом примере n равно 4, то сигма (на каждой стадии) должна быть меньше или равна 33 нм.As mentioned above, the stamping system and method according to this invention allow the manufacture of parts with six sigma with a geometric tolerance of 1000 nm. Statistically, this means that a maximum of 3.4 parts per million will not meet the dimensional requirements specified by the 1000 nm tolerance. In the case of a normal distribution, in order to satisfy the “six sigma” conditions of the process, the standard deviation of the full cycle should be less than or equal to 83 nm [(1000 nm / 2) / 6 = 83 nm], provided that on average the process remains constant . In practice, a tolerance should be made for a process deviation. In the case when it is assumed that the deviation of the process is on average ± 1.5 · sigma, the maximum standard deviation will be reduced to 67 nm [(1000 nm / 2) /7.5=67 nm]. In the framework of normal statistics, in order to achieve this in a multi-stage process with n precision stages, each of the n stages must satisfy the condition sigma / n ^ 0.5. Thus, if in this example n is 4, then the sigma (at each stage) should be less than or equal to 33 nm.

ОБЩИЕ ПРЕДСТАВЛЕНИЯ О ШТАМПОВОЧНОЙ СИСТЕМЕGENERAL INFORMATION ABOUT THE STAMPING SYSTEM

Фиг.2 представляет собой схематичное изображение, иллюстрирующее систему 100 согласно одному из вариантов выполнения данного изобретения для штамповки компонентов для оптоэлектроники (штамповочную систему), имеющих допуски менее 1000 нм. Штамповочная система 100 содержит приспособления 150 для обработки в пределах одной линии (поточной обработки) заготовок (исходного материала), штамповочный пресс 200, один или последовательность штамповочных блоков 250, и базовую (монтажную) плиту 300 для штамповочного блока.Figure 2 is a schematic diagram illustrating a system 100 according to one embodiment of the present invention for stamping components for optoelectronics (stamping system) having tolerances of less than 1000 nm. The stamping system 100 includes tools 150 for processing within a single line (in-line processing) of blanks (source material), a stamping press 200, one or a series of stamping blocks 250, and a base (mounting) plate 300 for the stamping block.

Поточная механическая обработка заготовокInline machining of workpieces

Штамповочная система 100 может содержать приспособления (устройства) 150 для поточной обработки материала 110 в заготовки, имеющие заранее заданные размеры и качество поверхности. Например, Moore Nanotechnology Systems (Системы Нанотехнологий Мура) разработали механические станки, в которых используют масляные гидростатические подшипники с жидкостным охлаждением, обладающие запрограммированным разрешением 10 нм, точностью движения 50 нм и разрешением обратной связи 8.6 нм. Такие механические станки могут быть адаптированы для поточной обработки исходного материала 110 по мере того, как его подают из разматывателя, и до того, как он поступает в штамповочные блоки 250. Такая обработка дает гарантию, что, когда исходный материал или заготовка попадает в штамповочные блоки 250, он будет зафиксирован в каждом штамповочном блоке с субмикронной прецизионной точностью, необходимой для изготовления компонентов для оптоэлектроники, имеющих допуск менее 1000 нм.The stamping system 100 may include devices (devices) 150 for in-line processing of the material 110 into blanks having predetermined dimensions and surface quality. For example, Moore Nanotechnology Systems has developed mechanical machines that use liquid-cooled oil-cooled hydrostatic bearings with a programmed resolution of 10 nm, a motion accuracy of 50 nm, and a feedback resolution of 8.6 nm. Such mechanical machines can be adapted for in-line processing of the source material 110 as it is fed from the unwinder, and before it enters the stamping blocks 250. This treatment ensures that when the source material or workpiece enters the stamping blocks 250, it will be fixed in each stamping unit with submicron precision precision necessary for the manufacture of components for optoelectronics with a tolerance of less than 1000 nm.

Штамповочный прессStamping press

Штамповочная система 100 содержит штамповочный пресс или специально приспособленный быстродействующий источник силы 200 для приведения в действие штамповочных блоков 250. Штамповочный пресс 200 может представлять собой любой традиционный штамповочный пресс, известный из уровня техники (например, гидравлический, электромеханический и пр.), который способен поддерживать и подавать на штамповочные блоки 250 необходимую силу для осуществления конкретной операции штамповки. Штамповочный пресс 200 содержит бабу 210 пресса и станину 220 пресса. Как будет более подробно показано ниже, штамповочные блоки 250 расположены между бабой 210 пресса и станиной 220 пресса. Станина 220 пресса поддерживает штамповочные блоки 250, а баба 210 пресса подает на них необходимую силу для осуществления операций штамповки. Хорошо известно, что штамповочные прессы могут осуществлять ударное воздействие со скоростью более 1000 ударов в минуту. Кроме того, штамповочная система может содержать более одного штамповочного пресса для подачи силы на штамповочные блоки.The stamping system 100 comprises a stamping press or a specially adapted high-speed power source 200 for actuating the stamping blocks 250. The stamping press 200 may be any conventional stamping press known in the art (for example, hydraulic, electromechanical, etc.) that is capable of supporting and apply the necessary force to the stamping blocks 250 for a specific stamping operation. The stamping press 200 comprises a press woman 210 and a press stand 220. As will be shown in more detail below, the stamping blocks 250 are located between the press head 210 and the press bed 220. The bed 220 of the press supports the stamping blocks 250, and the woman 210 of the press provides them with the necessary force for stamping operations. It is well known that stamping presses can carry out impact impact at a speed of more than 1000 beats per minute. In addition, the stamping system may include more than one stamping press for supplying force to the stamping blocks.

Штамповочный блок - первый вариант выполненияStamping Unit - First Embodiment

Фиг.3а представляет собой общий вид штамповочного блока 400 согласно одному из вариантов выполнения данного изобретения. Фиг.3b представляет собой изображение разреза штамповочного блока, выполненного по линии 3b-3b, показанной на Фиг.3а. Штамповочный блок 400 содержит устройство для поддержания комплекта штампа (пуансона и матрицы) и для непосредственного направления пуансона к матрице. Штамповочный блок 400 содержит стационарную плиту 410, поддерживающую пуансон, служащую опорой пуансону 420, а также плиту 440, поддерживающую матрицу, которая служит опорой для матрицы 450. Плита 410, поддерживающая пуансон, служит для выравнивания и для непосредственного направления пуансона 420 к матрице 450. Плита 410, поддерживающая пуансон, снабжена стволом 430, размер и форма которого позволяют вмещать с возможностью скольжения и направлять пуансон 420 к матрице 450. Ствол 430 позволяет пуансону 420 поступательно перемещаться и проходить сквозь плиту 410, поддерживающую пуансон, находясь в скользящем контакте со стволом 430. Ствол 430 выравнивает пуансон 420 по отношению к матрице 450, направляя пуансон 420 к заготовке 455 и матрице 450. Плита 440, поддерживающая матрицу, также способствует выравниванию матрицы 450 по отношению к пуансону 420. Матрица 450 прочно зафиксирована (выровнена) на плите 440, поддерживающей матрицу, таким образом, что, когда пуансон 420 проходит по стволу 430 по направлению к плите 440, поддерживающей матрицу, пуансон 420 комплементарно сближается с матрицей 450 для осуществления операции с заготовкой 455.Figa is a General view of the stamping unit 400 according to one of the embodiments of the present invention. Fig. 3b is a sectional view of a stamping block taken along line 3b-3b shown in Fig. 3a. The stamping unit 400 includes a device for maintaining the stamp set (punch and die) and for directing the punch to the die. The stamping unit 400 comprises a stationary plate 410 supporting the punch supporting the punch 420, as well as a plate 440 supporting the die that supports the die 450. The plate 410 supporting the punch aligns and directs the punch 420 to the die 450. The punch-supporting plate 410 is provided with a barrel 430, the size and shape of which allows the punch 420 to slide and guide the punch 420 to the die 450. The barrel 430 allows the punch 420 to move forward and pass through the plate 41 0, supporting the punch, in sliding contact with the barrel 430. The barrel 430 aligns the punch 420 with the die 450, directing the punch 420 to the workpiece 455 and the die 450. The die supporting plate 440 also helps align the die 450 with the punch 420 The matrix 450 is firmly fixed (aligned) on the matrix-supporting plate 440, such that when the punch 420 passes along the barrel 430 toward the matrix-supporting plate 440, the punch 420 complementary approaches the matrix 450 to perform an operation with blank 455.

Рабочая зона 460 между плитами 410 и 440, поддерживающими соответственно пуансон и матрицу, задана посредством введения ограничителей (разделителей) 470 между плитами 410 и 440. Рабочая зона 460 представляет собой то пространство, где осуществляются операции штамповки. Заготовку 455 помещают в рабочую зону 460, где ее штампуют для осуществления с ней нужной операции, например, для получения нужной формы детали. Рабочая зона 460 имеет достаточную площадь, чтобы вместить пуансон 420 и матрицу 450, заготовку и конечную штампованную деталь. Специалистам понятно, что размеры ограничителей (разделителей) 470 могут быть различными. В частности, толщина ограничителей 470 может меняться таким образом, чтобы обеспечить требуемые размеры рабочей зоны 460.The working area 460 between the plates 410 and 440, supporting the punch and the die, respectively, is defined by introducing stops (dividers) 470 between the plates 410 and 440. The working area 460 is the space where stamping operations are performed. The workpiece 455 is placed in the working area 460, where it is stamped to carry out the necessary operations with it, for example, to obtain the desired shape of the part. The working area 460 has a sufficient area to accommodate the punch 420 and the die 450, the workpiece and the final stamped part. Those skilled in the art will appreciate that the sizes of the delimiters 470 may vary. In particular, the thickness of the stops 470 may vary in such a way as to provide the required dimensions of the working area 460.

Штамповочный блок 400 содержит ограничитель хода 480 для обеспечения безопасной остановки бабы 210 пресса (показано на Фиг.2). Ограничитель хода 480 расположен между бабой 210 и верхней поверхностью плиты 410, поддерживающей пуансон. Когда бабу 210 приводят в движение относительно блока 400, ограничитель хода 480 входит в контакт с бабой 210 для предотвращения дальнейшего прохождения пуансона 420 в штамповочном блоке 400. Ограничитель хода 480 контролирует глубину прохождения пуансона 420 в штамповочном блоке 400. Глубину прохождения можно контролировать, изменяя толщину ограничителя хода 480. Для специалистов понятно, что ограничитель хода 480 может быть выполнен из любого материала, имеющего достаточную прочность, чтобы противостоять повторяющемуся ударному воздействию бабы 210. Более того, ограничитель хода 480 может иметь любую конфигурацию, которая позволяет контролировать глубину прохождения пуансона 420.The stamping unit 400 includes a travel stop 480 to ensure a safe stop of the press head 210 (shown in FIG. 2). A travel stop 480 is located between the headstock 210 and the upper surface of the punch supporting plate 410. When the headstock 210 is driven relative to block 400, the travel stop 480 comes into contact with the headstock 210 to prevent further passage of the punch 420 in the stamping block 400. The travel stop 480 controls the depth of passage of the punch 420 in the stamping block 400. The depth of passage can be controlled by changing the thickness stroke limiter 480. It is understood by those skilled in the art that stroke limiter 480 can be made of any material having sufficient strength to withstand the repetitive impact of the ram 210. olee of travel stop 480 may have any configuration which allows to control the depth of the passage of the punch 420.

Пуансон 420 может быть соединен с пружинами 490 или другими возвратными устройствами для возвращения пуансона 420 в исходное (открытое) положение. Когда пуансон 420 совершает движение по направлению к матрице 450, пружины 490 изгибаются. Когда сила, прикладываемая бабой 210, исчезает, пружины 490 перемещают пуансон 420 в направлении от матрицы 450.The punch 420 may be connected to springs 490 or other return devices to return the punch 420 to its original (open) position. When the punch 420 moves toward the die 450, the springs 490 are bent. When the force exerted by the woman 210 disappears, the springs 490 move the punch 420 away from the die 450.

При сборке (монтаже) штамповочного блока 400 плиту 410, поддерживающую пуансон, монтируют на плите 440, поддерживающей матрицу, с ограничителями (разделителями) 470, расположенными между плитами 410 и 440. Затем на верхнюю поверхность плиты 410, поддерживающей пуансон, устанавливают ограничитель хода 480. Для соединения компонентов штамповочного блока 400 могут быть использованы крепежные элементы, известные из уровня техники. Например, для скрепления друг с другом компонентов штамповочного блока 400 могут быть выполнены отверстия 485 для размещения в них болтов (не показаны). Будучи соединенными вместе, компоненты штамповочного блока 400 создают единую конструкцию.When assembling (mounting) the stamping block 400, the plate 410 supporting the punch is mounted on the plate 440 supporting the die with stops (dividers) 470 located between the plates 410 and 440. Then, a travel stop 480 is installed on the upper surface of the plate 410 supporting the punch Fasteners known in the art may be used to connect the components of the stamping unit 400. For example, to fasten the components of the stamping unit 400 to each other, holes 485 may be provided to accommodate bolts (not shown). When connected together, the components of the stamping unit 400 create a single structure.

Штамповочный блок - второй вариант выполненияStamping Unit - Second Embodiment

Фиг.4 представляет собой общий вид штамповочного блока 500 согласно другому варианту выполнения данного изобретения. На Фиг.5 показан штамповочный блок 500, приведенный на Фиг.4, с пространственным разделением деталей. Фиг.6а и 6b представляют собой вид в разрезе штамповочного блока 500, показанного на Фиг.4, выполненном соответственно по линиям 6а-6а и 6b-6b. Штамповочный блок 500 содержит стационарную монолитную конструкцию держателя 510 комплекта штампа, поддерживающую комплект штампа (пуансон и матрицу). Держатель 510 комплекта штампа содержит секцию 520 поддержки пуансона, предназначенную для поддержания и направления пуансона 530. Секция 520 поддержки пуансона снабжена стволом 540, размер и форма которого позволяют вмещать с возможностью скольжения и поддерживать пуансон 530. Ствол 540 показан на Фиг.6. Ствол 540 позволяет пуансону 530 поступательно перемещаться и проходить через держатель 510 комплекта штампа. Пуансон 530 скользит внутри ствола 540 в контакте с ним. Ствол 540 способствует выравниванию пуансона 530 относительно матрицы, направляя пуансон 530 к заготовке 595 (показана на Фиг.5) и матрице. Держатель 510 комплекта штампа также содержит секцию 550 поддержки матрицы для поддержания матрицы 560. Матрица 560 содержит вставки 562, 563 и 564 матрицы. Вставки 563 и 564 матрицы входят соответственно в гнезда 565 и 566. Секция 550 поддержки матрицы содержит гнездо 570 (показано на Фиг.6а и 6b) для размещения в нем матрицы 560. Гнездо 570 имеет такой размер и форму, чтобы в него прецизионно поместилась и плотно вошла матрица 560. Опорная плита 580 предназначена для закрепления матрицы 560 в гнезде 570. Когда матрица 560 входит в гнездо 570, опорную плиту 580 прикрепляют к нижней части держателя 510 комплекта штампа для закрепления матрицы 560 в гнезде 570. Матрица 560 жестко закреплена (выровнена) в секции 550 поддержки матрицы таким образом, что, когда пуансон 530 проходит через ствол 540 по направлению к матрице 560, он (пуансон) приближается к матрице 560 комплементарным образом для осуществления операции с заготовкой 595. Рабочая зона 590 задана между секциями 520 и 550 поддержки пуансона и матрицы. Рабочая зона 590 представляет собой пространство, в котором осуществляются операции штамповки. Заготовку 595 помещают в рабочую зону 590, где ее штампуют для осуществления с ней желаемой операции. Рабочая зона 590 обладает достаточной площадью, чтобы вместить пуансон 530 и матрицу 560, заготовку 595 и конечную штампованную деталь (не показана).4 is a perspective view of a stamping unit 500 according to another embodiment of the present invention. Figure 5 shows the stamping unit 500 shown in Figure 4, with a spatial separation of the parts. 6a and 6b are a cross-sectional view of the stamping unit 500 shown in FIG. 4, taken along lines 6a-6a and 6b-6b, respectively. The stamping unit 500 comprises a stationary monolithic structure of the holder 510 of the die set supporting the die set (punch and die). The holder 510 of the stamp set includes a punch support section 520 for supporting and guiding the punch 530. The punch support section 520 is provided with a barrel 540, the size and shape of which allows the punch 530 to be slidably supported and supported. The barrel 540 is shown in FIG. 6. The barrel 540 allows the punch 530 to progressively move and pass through the holder 510 of the stamp set. The punch 530 slides inside the barrel 540 in contact with it. The barrel 540 facilitates alignment of the punch 530 with respect to the die, directing the punch 530 toward the workpiece 595 (shown in FIG. 5) and the die. The die set holder 510 also includes a matrix support section 550 for supporting the matrix 560. The matrix 560 contains matrix inserts 562, 563 and 564. The matrix inserts 563 and 564 respectively enter the slots 565 and 566. The matrix support section 550 includes a slot 570 (shown in FIGS. 6a and 6b) for accommodating the matrix 560 therein. The slot 570 is sized and shaped to fit accurately and the matrix 560 is tightly inserted. The base plate 580 is designed to secure the matrix 560 in the socket 570. When the matrix 560 enters the socket 570, the base plate 580 is attached to the bottom of the die set holder 510 to secure the matrix 560 in the socket 570. The matrix 560 is rigidly fixed (aligned ) in section 550 matrix support so that when the punch 530 extends through the barrel 540 towards matrix 560, one (die) approaches the matrix 560 in a complementary manner to perform operations with the workpiece 595. The working area 590 is defined between sections 520 and 550 support the punch and die. Work area 590 is a space in which stamping operations are performed. The workpiece 595 is placed in the working area 590, where it is stamped to carry out the desired operation with it. The working area 590 has sufficient area to accommodate the punch 530 and the die 560, the workpiece 595 and the final stamped part (not shown).

Штамповочный блок 500 содержит ограничитель хода 600 для обеспечения безопасной остановки бабы 210 (показана на Фиг.2). Ограничитель хода 600 расположен между бабой 210 пресса и верхней поверхностью держателя 510 комплекта штампа. Ограничитель хода 600 контролирует глубину прохождения пуансона 530 в штамповочном блоке 500. Пуансон 530 может быть соединен с пружинами 610 или другими возвратными устройствами для возврата пуансона 530 в исходное (открытое) положение. Когда пуансон 530 совершает движение по направлению к матрице 560, пружины 610 изгибаются. Когда сила, прикладываемая бабой 210 пресса, исчезает, пружины 610 перемещают пуансон 530 в направлении от матрицы 560.The stamping unit 500 includes a travel stop 600 to ensure a safe stop of the headstock 210 (shown in FIG. 2). A travel stop 600 is located between the press head 210 and the upper surface of the die set holder 510. The stroke limiter 600 controls the depth of passage of the punch 530 in the stamping unit 500. The punch 530 can be connected to springs 610 or other return devices to return the punch 530 to its original (open) position. When the punch 530 moves towards the die 560, the springs 610 are bent. When the force exerted by the press woman 210 disappears, the springs 610 move the punch 530 away from the die 560.

Штамповочный блок 500 также содержит выталкиватель 612 для выталкивания штампованной детали 595 из матрицы 560 после осуществления операции штамповки. Выталкиватель 612 содержит подъемный механизм 614 и пружину 616 или другие возвратные устройства. Как будет более подробно показано ниже, выталкиватель 612 расположен внутри полой части вставки 562 матрицы, так что подъемный механизм 614 способен входить в контакт со штампованной деталью 595 через полую часть вставки 562 матрицы.The stamping unit 500 also includes an ejector 612 for ejecting the stamped part 595 from the die 560 after performing the stamping operation. The ejector 612 includes a lifting mechanism 614 and a spring 616 or other return devices. As will be shown in more detail below, the ejector 612 is located inside the hollow part of the matrix insert 562, so that the lifting mechanism 614 is able to come into contact with the stamped part 595 through the hollow part of the matrix insert 562.

В варианте выполнения штамповочного блока 400, показанном на Фиг.3, плиты 410 и 440, поддерживающие пуансон и матрицу, монтируют вместе для создания единой структуры для поддержания пуансона 420 и матрицы 450. В варианте выполнения штамповочного блока 500, показанном на Фиг.4, структуры для поддержания пуансона 530 и матрицы 560 выполнены монолитными. Держатель 510 комплекта штампа становится более жесткой и стабильной конструкцией, что позволяет ему более точно направлять пуансон 530 к матрице 560.In the embodiment of the stamping block 400 shown in FIG. 3, plates 410 and 440 supporting the punch and die are mounted together to create a single structure to support the punch 420 and the die 450. In the embodiment of the stamping block 500 shown in FIG. 4, structures to support the punch 530 and the matrix 560 are made monolithic. The holder 510 of the stamp set becomes a more rigid and stable design, which allows him to more accurately direct the punch 530 to the matrix 560.

Штамповочный блок - третий вариант выполненияStamping Unit - Third Embodiment

Фиг.8а представляет собой схематичное изображение штамповочного блока 800 согласно другому варианту выполнения данного изобретения. Штамповочный блок 800 содержит плиту 850, поддерживающую матрицу, для поддержания матрицы 840 и ствол 810 для поддержания и направления пуансона 860 к матрице 840. Ствол 810 имеет размер и форму, позволяющие вмещать с возможностью скольжения и поддерживать пуансон 860, который поступательно перемещается по стволу 810 по направлению к матрице 840 и от нее. Ствол 810 способствует выравниванию пуансона 860 по отношению к матрице 840, направляя пуансон 860 к матрице 840. Регулируемые механические стопорные механизмы 880 расположены на пути приложения ударного воздействия пуансона 860 для ограничения поступательного движения пуансона 860 по направлению к матрице 840. Пуансон 860 снабжен фиксатором (приспособлением для поддерживания) 830, который может входить в контакт со стопорными механизмами 880 для ограничения дальнейшего поступательного движения пуансона 860 по направлению к матрице 840. Для регулировки положения механических стопорных механизмов 880 относительно фиксатора 830 предусмотрен ограничитель 895. Ограничитель 895 может представлять собой угловой клин и может завинчиваться для микрометрической регулировки.Fig. 8a is a schematic illustration of a stamping block 800 according to another embodiment of the present invention. The stamping unit 800 comprises a plate 850 supporting a die for supporting the die 840 and a barrel 810 for supporting and guiding the punch 860 to the die 840. The barrel 810 has a size and shape that can accommodate sliding and support the punch 860, which translates along the barrel 810 towards the matrix 840 and from it. The barrel 810 facilitates alignment of the punch 860 with respect to the die 840, directing the punch 860 to the die 840. Adjustable mechanical locking mechanisms 880 are located on the impact path of the punch 860 to limit the translational movement of the punch 860 towards the die 840. The punch 860 is equipped with a lock (device to maintain) 830, which can come into contact with the locking mechanisms 880 to limit the further translational movement of the punch 860 towards the matrix 840. To adjust Proposition mechanical locking mechanisms 880 relative to latch 830 is provided limiter 895. The limiter 895 may be a wedge angle and can be screwed for the micrometric adjustment.

Система передачиTransmission system

Штамповочная система 100 содержит систему передачи 700, которая механически передает силу от пресса 200 на штамповочный блок 250 (схематично показано на Фиг.2), но структурно разделяет пресс 200 и штамповочный блок 250. Фиг.7а представляет собой упрощенное изображение системы передачи 700, входящей в штамповочную систему 100 по данному изобретению. Как уже было сказано выше, штамповочный пресс 200 способен подавать необходимую силу на штамповочный блок 250 для осуществления операций штамповки. Силу подают на штамповочный блок 250 через систему передачи 700. В одном варианте выполнения изобретения система передачи 700 представляет собой комбинацию шара и гнезда. Пуансон 710 снабжен шаром 720, а баба 210 снабжена гнездом 730 для шара. В альтернативном варианте крепежная плита (не показана), присоединяемая к бабе 210, может быть снабжена гнездом для шара. Когда баба 210 входит в контакт с пуансоном 710, шар 720 входит в контакт с гнездом 730 для шара. На Фиг.7b показан шар 720, находящийся в контакте с гнездом 730. Система передачи 700 способствует передаче силы от штамповочного пресса 200 к штамповочному блоку 250. Система передачи 700 также позволяет структурно разъединить штамповочный блок 250 и штамповочный пресс 200. Ни один из компонентов штамповочного блока 250 не присоединен напрямую или скреплен болтами с бабой 210. В результате, неточности пресса 200 не влияют на работу штамповочного блока. Традиционные штамповочные прессы в принципе не изготавливают с жесткими допусками. Более того, высокоскоростные процессы, осуществляемые с прикладыванием больших сил, имеют тенденцию приводить к возникновению вибраций и изменению размеров. При структурном разделении пресса 200 и штамповочных блоков 250, изменение размеров в прессе 200 не оказывает влияние на ультра прецизионные штамповочные блоки 250 и вставки комплекта штампа. Пресс 200 может быть просто высокоскоростным периодическим источником силы, сконструированным с относительно большими допусками и подающим силу на ультра прецизионные инструменты и матрицы штамповочных блоков 250. Специалистам в данной области техники должно быть известно, что комбинация шара и гнезда может быть скомпонована в обратном порядке, так, чтобы пуансон был снабжен гнездом, а баба пресса была снабжена шаровым шарнирным соединением.The stamping system 100 comprises a transmission system 700 that mechanically transfers force from the press 200 to the stamping unit 250 (shown schematically in FIG. 2), but structurally separates the press 200 and the stamping unit 250. FIG. 7a is a simplified view of a transmission system 700 included into the stamping system 100 according to this invention. As mentioned above, the stamping press 200 is able to supply the necessary force to the stamping unit 250 for stamping operations. Force is applied to the stamping unit 250 through a transmission system 700. In one embodiment of the invention, the transmission system 700 is a combination of a ball and socket. The punch 710 is equipped with a ball 720, and the woman 210 is equipped with a socket 730 for the ball. Alternatively, a mounting plate (not shown) attached to the headstock 210 may be provided with a ball socket. When the woman 210 comes in contact with the punch 710, the ball 720 comes into contact with the socket 730 for the ball. 7b shows a ball 720 in contact with socket 730. The transmission system 700 facilitates the transfer of force from the stamping press 200 to the stamping block 250. The transmission system 700 also allows structural separation of the stamping block 250 and the stamping press 200. None of the stamping components block 250 is not directly connected or bolted with a woman 210. As a result, inaccuracies of the press 200 do not affect the operation of the stamping block. Traditional stamping presses, in principle, are not manufactured with tight tolerances. Moreover, high-speed processes carried out with the application of large forces tend to cause vibrations and resizing. With the structural separation of the press 200 and the stamping blocks 250, resizing in the press 200 does not affect the ultra precision stamping blocks 250 and the insert of the stamp set. The press 200 may simply be a high-speed periodic power source designed with relatively large tolerances and supplying power to ultra precision tools and die blocks 250. Those skilled in the art will recognize that the ball and socket combination can be arranged in the reverse order, so so that the punch is equipped with a nest, and the press woman has been equipped with a ball joint.

Согласно Фиг.8а, на которой показан альтернативный вариант выполнения изобретения, система 100 может содержать гидравлическую систему передачи для передачи силы пресса на штамповочный блок 800. Система передачи содержит силовую плиту 820, расположенную внутри ствола 810 в его конце между бабой пресса и плитой, поддерживающей пуансон. Силовая плита 820 также способна совершать поступательное перемещение внутри ствола. Ствол 810 снабжен клапаном 870, расположенным между силовой плитой 820 и плитой 830, поддерживающей пуансон, для подачи в ствол 810 рабочей жидкости под низким давлением.8a, an alternative embodiment of the invention is shown, system 100 may include a hydraulic transmission system for transmitting press force to the stamping unit 800. The transmission system comprises a power plate 820 located inside the barrel 810 at its end between the press woman and the support plate punch. The power plate 820 is also capable of translational movement within the barrel. The barrel 810 is provided with a valve 870 located between the power plate 820 and the plate 830 supporting the punch, for supplying a low pressure working fluid to the barrel 810.

В рабочем режиме через клапан 870 в ствол 810 подают рабочую жидкость под низким давлением. Баба 210 пресса оказывает давление на силовую плиту 820 через ствол 810 до тех пор, пока силовая плита 820 не закроет клапан 870. Как только клапан 870 закрывается, давление жидкости в стволе 810 увеличивается, что приводит к возникновению силы, действующей на плиту 830, поддерживающую пуансон, так что плита 830, поддерживающая пуансон, и пуансон 860 приходят в движение. Сила, действующая на плиту 830, поддерживающую пуансон, является в основном постоянной.In operating mode, a low pressure fluid is supplied through a valve 870 to the barrel 810. The press woman 210 presses the force plate 820 through the barrel 810 until the force plate 820 closes the valve 870. As soon as the valve 870 closes, the fluid pressure in the barrel 810 increases, which causes a force to be applied to the plate 830 supporting the punch, so that the plate 830 supporting the punch, and the punch 860 are in motion. The force acting on the slab 830 supporting the punch is substantially constant.

Вектор силы является однонаправленным и ортогональным по отношению к верхней поверхности плиты, поддерживающей пуансон.The force vector is unidirectional and orthogonal with respect to the upper surface of the plate supporting the punch.

Гидравлическая система передачи может также содержать комбинацию шара и гнезда. На Фиг.8b приведено схематичное изображение гидравлической системы передачи, содержащей комбинацию шара и гнезда. Силовая плита 820 может быть снабжена шаром 920, а баба 210 может быть снабжена гнездом 930, или наоборот. Когда баба 210 входит в контакт с силовой плитой 820, шар 920 входит в контакт с гнездом 930. Использование шара 920 и гнезда 930 обеспечивает дополнительные преимущества с точки зрения минимизации структурной нагрузки на компоненты штамповочного блока. Использование гидравлического привода приводит к тому, что направление силы, приложенной к пуансону 860, не зависит от направления силы, возникающей вследствие действия бабы 210. Использование комбинации шара 920 и гнезда 930 снижает деформацию, вносимую в систему, связанную с гидравлическим механизмом, такую как силовая плита 820 и пуансон 210, путем сдвига и отклонения сил, возникающих вследствие разрегулированности (несоосности) пресса.The hydraulic transmission system may also comprise a combination of ball and socket. Fig. 8b is a schematic illustration of a hydraulic transmission system comprising a combination of ball and socket. The power plate 820 may be provided with a ball 920, and the headstock 210 may be provided with a socket 930, or vice versa. When the woman 210 comes into contact with the power plate 820, the ball 920 comes into contact with the socket 930. The use of the ball 920 and socket 930 provides additional benefits in terms of minimizing the structural load on the components of the stamping unit. Using a hydraulic drive causes the direction of the force applied to the punch 860 to be independent of the direction of the force resulting from the action of the shaft 210. Using a combination of ball 920 and socket 930 reduces the strain introduced into the system associated with the hydraulic mechanism, such as the power plate 820 and punch 210, by shifting and deviating forces arising from the misregistration (misalignment) of the press.

Система передачи способствует передаче силы от штамповочного пресса 200 к штамповочному блоку. Система передачи также позволяет структурно разъединить штамповочный блок и штамповочный пресс 200. Пружины 910, соединенные с плитой 830, поддерживающей пуансон, могут переместить плиту 830, поддерживающую пуансон, в обратном направлении, от матрицы 840.The transmission system facilitates the transfer of force from the stamping press 200 to the stamping unit. The transmission system also allows structural separation of the stamping unit and the stamping press 200. Springs 910 connected to the plate 830 supporting the punch can move the plate 830 supporting the punch in the opposite direction from the die 840.

Комплект штампаStamp set

Фиг.9а представляет собой общий вид пуансона 530 и матрицы 560, показанных на Фиг.4 и 5. Пуансон 530 и матрица 560 состоят из блоков, имеющих определенную форму поверхностей, штырей, пуансонов, кулачков, датчиков и других элементов. Эти штамповочные устройства спроектированы и изготовлены с допусками менее 500 нм, что позволяет прецизионно устанавливать пуансон 530 и матрицу 560 в штамповочных блоках 250. Пуансон 530 и матрица 560 могут быть сконструированы таким образом, чтобы они были взаимозаменяемыми для различных штамповочных блоков. На Фиг.9b приведено объемное изображение пуансона 530 и матрицы 560, показанных на Фиг.9а, с пространственным разделением деталей. Матрица 560 содержит вставки 562, 563 и 564 матрицы (вставки 563 и 564 матрицы показаны не в масштабе). Вставки 563 и 564 матрицы помещены в гнезда (пазы) 565 и 566 во вставке 562 матрицы. Фиг.9с представляет собой вид в разрезе матрицы 560, выполненном по линии 9с-9с, показанной на Фиг.9а. Матрица 560 имеет поверхность 1020 определенной формы и содержит полую часть 1030, задающую отверстие 1025 на поверхности 1020. Подъемный механизм 614 и пружина 616 расположены внутри полой части 1030. Если штампованная деталь (не показана) после завершения операции штамповки все еще соединена с матрицей 560, подъемный механизм 614 и пружина 616 способны вытолкнуть ее (деталь) в направлении от поверхности 1020. Подъемный механизм 614 способен входить в контакт со штампованной деталью через отверстие 1025.Figa is a General view of the punch 530 and the matrix 560 shown in Figures 4 and 5. The punch 530 and the matrix 560 consist of blocks having a certain shape of surfaces, pins, punches, cams, sensors and other elements. These punching devices are designed and manufactured with tolerances of less than 500 nm, which allows the precision installation of the punch 530 and the die 560 in the stamping blocks 250. The punch 530 and the die 560 can be designed so that they are interchangeable for various stamping blocks. On Fig.9b shows a three-dimensional image of the punch 530 and the matrix 560 shown in Figa, with a spatial separation of the parts. Matrix 560 contains matrix inserts 562, 563 and 564 (matrix inserts 563 and 564 are not shown to scale). The inserts 563 and 564 of the matrix are placed in the slots (slots) 565 and 566 in the insert 562 of the matrix. Fig. 9c is a sectional view of the matrix 560 taken along line 9c-9c shown in Fig. 9a. The matrix 560 has a surface 1020 of a certain shape and contains a hollow part 1030 defining an opening 1025 on the surface 1020. A lifting mechanism 614 and a spring 616 are located inside the hollow part 1030. If the stamped part (not shown) after the stamping operation is still connected to the matrix 560, the lifting mechanism 614 and the spring 616 are able to push it (the part) away from the surface 1020. The lifting mechanism 614 is able to come into contact with the stamped part through the hole 1025.

ПоследовательностьSequence

Возвращаясь к рассмотрению Фиг.2, нужно отметить, что штамповочная система 100 способна обслуживать последовательность штамповочных блоков 250. Например, на Фиг.2 показана система 100, обслуживающая три штамповочных блока 260, 261 и 262. Последовательность штамповочных блоков 250 работает так же, как и традиционный штамп последовательного действия, в котором каждый из штамповочных блоков 260, 261 и 262 выполняет отдельную штамповочную операцию. Последовательность штамповочных блоков 250 позволяет системе 100 придавать заготовке множество свойств (качеств) одновременно при каждом воздействии штамповочного пресса 200. Система 100 содержит базовую (монтажную) плиту 300, расположенную на станине 220 пресса, предназначенную для прецизионного выравнивания штамповочных блоков 250 относительно друг друга. На Фиг.16 показан вид сверху базовой (монтажной) плиты 300 согласно данному изобретению. Базовая (монтажная) плита 300 снабжена элементами 310 для совмещения для установки штамповочных блоков 250 с субмикронной точностью относительно друг друга. В одном варианте выполнения данного изобретения элементами 310 для совмещения могут быть прецизионно выполненные пазы или прорези 320 на одной из поверхностей монтажной плиты. Пазы 320 имеют прецизионные размеры и форму для совмещения с основанием штамповочных блоков 250. Базовая (монтажная) плита 300 прецизионно устанавливает штамповочные блоки 250 относительно друг друга с субмикронной точностью посредством фиксации штамповочных блоков 250 в пазах 320. В зависимости от конкретного применения можно использовать большее количество (больше одной) базовых (монтажных) плит, выровненных относительно друг друга. Базовая (монтажная) плита или, если нужно, плиты 300 и их элементы 310 для совмещения могут быть изготовлены с использованием прецизионного механического станка, такого, как, например, FV-500 производства Moore Nanotechnology Systems, который может обработать базовую (монтажную) плиту 300 таким образом, чтобы ее поверхности были плоскими и параллельными с шероховатостью поверхности 10 нм или менее.Returning to the consideration of FIG. 2, it should be noted that the stamping system 100 is capable of serving a sequence of stamping blocks 250. For example, FIG. 2 shows a system 100 serving three stamping blocks 260, 261 and 262. The sequence of stamping blocks 250 works the same as and a conventional sequential stamp in which each of the stamping blocks 260, 261 and 262 performs a separate stamping operation. The sequence of stamping blocks 250 allows the system 100 to give the workpiece many properties (qualities) at the same time each time the stamping press 200 is exposed. The system 100 comprises a base (mounting) plate 300 located on the press bed 220, designed to precisely align the stamping blocks 250 with respect to each other. On Fig shows a top view of the base (mounting) plate 300 according to this invention. The base (mounting) plate 300 is provided with elements 310 for alignment for mounting the stamping blocks 250 with submicron accuracy relative to each other. In one embodiment of the invention, the alignment elements 310 may be precision grooves or slots 320 on one of the surfaces of the mounting plate. The grooves 320 have precision dimensions and a shape for aligning with the base of the stamping blocks 250. The base (mounting) plate 300 precision sets the stamping blocks 250 relative to each other with submicron precision by fixing the stamping blocks 250 in the grooves 320. Depending on the specific application, a larger number can be used (more than one) base (mounting) plates aligned with each other. The base (mounting) plate or, if necessary, the plates 300 and their elements 310 for alignment can be made using a precision mechanical machine, such as, for example, FV-500 manufactured by Moore Nanotechnology Systems, which can process the base (mounting) plate 300 so that its surfaces are flat and parallel with a surface roughness of 10 nm or less.

Регулирование с обратной связьюFeedback regulation

Возвращаясь к рассмотрению Фиг.2, нужно отметить, что система 100 может содержать автоматический контроллер (регулятор с активной обратной связью) 350 для осуществления постоянного мониторинга и регулировки различных параметров системы 100. Например, контроллер 350 может быть разработан таким образом, чтобы контролировать и регулировать силу, подаваемую на штамповочный блок 800, показанный на Фиг.8а. Предусмотрены редукционный клапан рабочего давления 890 для контроля возникающей силы и предохранительный клапан 900 для того, чтобы свести к минимуму вероятность повреждения штамповочного блока 800. Редукционный клапан рабочего давления 890 может быть клапаном малого потока с хорошей точностью регулировки давления. Клапан 890 устанавливают на давление, необходимое для получения требуемой силы, которую можно вычислить согласно уравнению: Поверхность гидравлического привода × Давление = Сила. Предохранительный клапан 900 может быть клапаном большого расхода (потока) с запаздыванием перекрывания, и он может быть установлен на значительно более высокое давление, чем давление клапана 890. Редукционный клапан рабочего давления 890 и предохранительный клапан 900 могут быть механическими клапанами или клапанами электромеханического типа для уменьшения времени отклика. Когда пуансон 860 ударяет по заготовке, давление жидкости возрастает до давления, требуемого для осуществления штамповки, и редукционный клапан рабочего давления 890 открывается. Рабочее давление сохраняется (поддерживается). Когда плита 830, поддерживающая пуансон, ударяет по стопорным механизмам 880, давление в камере 810 возрастает с практически ничтожным смещением плиты 830, поддерживающей пуансон. Затем открывается предохранительный клапан 900 и давление падает. Баба 210 начинает движение вверх, и штамповочный блок 800 вновь возвращается в исходное положение.Returning to the consideration of Figure 2, it should be noted that the system 100 may include an automatic controller (controller with active feedback) 350 to continuously monitor and adjust various parameters of the system 100. For example, the controller 350 may be designed to monitor and regulate the force applied to the stamping unit 800 shown in Fig. 8a. A pressure reducing valve 890 is provided to control the occurring force and a pressure relief valve 900 in order to minimize the likelihood of damage to the stamping block 800. The pressure reducing valve 890 may be a low flow valve with good pressure control accuracy. Valve 890 is set to the pressure necessary to obtain the required force, which can be calculated according to the equation: The surface of the hydraulic actuator × Pressure = Force. The pressure relief valve 900 can be a high flow (lag) valve with a delayed shutoff, and it can be set to a significantly higher pressure than the pressure of the valve 890. The pressure relief valve 890 and the pressure relief valve 900 can be mechanical valves or electromechanical valves to reduce response time. When the punch 860 hits the workpiece, the fluid pressure rises to the pressure required for stamping, and the pressure reducing valve 890 opens. Working pressure is maintained (maintained). When the plate 830 supporting the punch hits the locking mechanisms 880, the pressure in the chamber 810 increases with an almost negligible displacement of the plate 830 supporting the punch. The safety valve 900 then opens and the pressure drops. Baba 210 begins to move upward, and the stamping block 800 again returns to its original position.

Контроллер (регулятор) 350 может содержать сенсоры (датчики) различных типов, хорошо известные из уровня техники, такие как механические, электрические и оптические сенсоры. Сенсоры могут входить в состав комплектов штампов, заготовки и других компонентов системы. Контроллер 350 может быть сконструирован таким образом, чтобы осуществлять контроль за допусками заготовки и регулировать параметры, такие, как выравнивание (сохранение соосности) пуансона и матрицы, выравнивание заготовки относительно комплекта штампа, скорость оказания ударного воздействия пуансона и бабы пресса, в ответ на измеренные характеристики таким образом, чтобы получить нужные характеристики допусков для готовых деталей, изготовленных с помощью штамповочной системы 100.The controller 350 may comprise various types of sensors (sensors) well known in the art, such as mechanical, electrical, and optical sensors. Sensors can be part of stamp sets, blanks and other system components. The controller 350 can be designed to control the tolerances of the workpiece and adjust parameters, such as alignment (alignment) of the punch and die, alignment of the workpiece with respect to the die set, the speed of impact of the punch and the press woman, in response to the measured characteristics so as to obtain the required tolerance characteristics for finished parts made using the stamping system 100.

Анализ конструкцийStructural Analysis

Сохранение достаточной соосности пуансона и матрицы является важным фактором при изготовлении деталей с допусками менее 1000 нм. Конструкция штамповочных блоков способствует выравниванию пуансона и матрицы за счет создания простой и в значительной степени жесткой конструкции для направления пуансона к матрице. В вариантах выполнения штамповочных блоков конструкции для направления пуансона к матрице являются стационарными, и они не содержат подвижных компонентов, вовлеченных в направление пуансона к матрице. Пуансон направляют непосредственно к матрице при помощи ствола. Посредством минимизации количества подвижных компонентов, вовлеченных в направление пуансона к матрице, число потенциальных причин нарушения соосности также сведено к минимуму. По сравнению со штамповочной системой, раскрытой в патенте США №6311597 В1, в которой используют, по крайней мере, один подвижный компонент для направления пуансона к матрице (т.е. узел пуансона, движущийся внутри гнезда матрицы), система по данному изобретению сконструирована таким образом, чтобы еще в большей степени свести к минимуму возможность потенциального нарушения соосности. Кроме того, жесткость штамповочного блока способствует выравниванию пуансона и матрицы. Конструкции, поддерживающие комплект штампа, изготовлены из высокопрочных материалов, таких как карбид вольфрама, и выполнены в виде единой конструкции (как показано на Фиг.3) или в виде монолитной конструкции (как показано на Фиг.4). Конструкция держателя пуансона разработана как устройство с субмикронными допусками (например, 150 нм) и гладкостью поверхности (например, с глубиной микронеровностей поверхности 10 нм или менее). В результате зазор между стволом и пуансоном является очень небольшим, что дает стволу возможность жестко поддерживать пуансон. Субмикронная гладкость поверхности ствола позволяет пуансону осуществлять плавное (равномерное) поступательное движение в стволе, что снижает износ пуансона и вероятность нарушения соосности.Maintaining sufficient alignment of the punch and die is an important factor in the manufacture of parts with tolerances of less than 1000 nm. The design of the stamping blocks contributes to the alignment of the punch and the die by creating a simple and largely rigid structure for guiding the punch to the die. In embodiments of the stamping blocks, the structures for guiding the punch to the die are stationary, and they do not contain moving components involved in the direction of the punch toward the die. The punch is sent directly to the matrix using the barrel. By minimizing the number of moving components involved in the direction of the punch toward the die, the number of potential causes of misalignment is also minimized. Compared to the stamping system disclosed in US Pat. No. 6,311,597 B1, which uses at least one movable component to guide the punch towards the die (i.e., the punch assembly moving inside the die of the die), the system of this invention is constructed as follows in such a way as to further minimize the possibility of potential misalignment. In addition, the rigidity of the stamping unit helps align the punch and die. Structures supporting the stamp set are made of high-strength materials, such as tungsten carbide, and are made as a single structure (as shown in FIG. 3) or as a monolithic structure (as shown in FIG. 4). The punch holder design is designed as a device with submicron tolerances (e.g., 150 nm) and surface smoothness (e.g., with a surface microroughness depth of 10 nm or less). As a result, the gap between the barrel and the punch is very small, which allows the barrel to firmly support the punch. Submicron smoothness of the barrel surface allows the punch to carry out a smooth (uniform) translational movement in the barrel, which reduces the wear of the punch and the likelihood of misalignment.

Структурное разъединение пресса и инструментальной оснастки также вносит свой вклад в возможность использования штамповочной системы для изготовления деталей, имеющих допуски менее 1000 нм. Система передачи, входящая в состав штамповочной системы, передает силу от пресса к пуансону. Система передачи, показанная на Фиг.8а и 8b, дополнительно способствует передаче силы в одном ортогональном направлении по отношению к плите, поддерживающей пуансон. Однако система передачи структурно отделена от инструментальной оснастки. В этом случае система в значительной степени исключает влияние неточного штамповочного пресса на инструментальную оснастку, поэтому пресс может иметь большие допуски.The structural separation of the press and tooling also contributes to the possibility of using a stamping system for the manufacture of parts having tolerances of less than 1000 nm. The transmission system, which is part of the stamping system, transfers power from the press to the punch. The transmission system shown in FIGS. 8a and 8b further facilitates the transmission of force in one orthogonal direction with respect to the plate supporting the punch. However, the transmission system is structurally separated from the tooling. In this case, the system largely eliminates the influence of an inaccurate stamping press on tooling, so the press can have large tolerances.

Другие особенности конструкции штамповочной системы 100 вносят свой вклад в возможность использования системы для изготовления деталей с допусками менее 1000 нм. Пуансон и матрица также имеют субмикронные допуски (например, 150 нм) и шероховатость поверхности, например, менее 10 нм. Жесткие допуски для этих компонентов системы позволяют прецизионно располагать пуансон и матрицу внутри штамповочных блоков и прецизионно выравнивать их относительно друг друга. Это позволяет прецизионно совмещать пуансон с матрицей. Кроме того, исходный материал может быть подвергнут механической обработке с жесткими допусками до помещения его в штамповочные блоки, что позволяет прецизионно размещать заготовку в штамповочных блоках в процессе осуществления операций штамповки.Other design features of the stamping system 100 contribute to the ability to use the system for the manufacture of parts with tolerances of less than 1000 nm. The punch and die also have submicron tolerances (e.g., 150 nm) and surface roughness, e.g., less than 10 nm. Tight tolerances for these components of the system allow precise positioning of the punch and die inside the stamping blocks and precisely align them relative to each other. This allows you to precisely combine the punch with the die. In addition, the source material can be machined with tight tolerances before being placed in the stamping blocks, which allows you to accurately place the workpiece in the stamping blocks during stamping operations.

Примеры деталейPart Examples

Фиг.10а представляет собой вид сзади оптоэлектронной системы 1100, изготовленной с помощью штамповочной системы 100 по данному изобретению. Система содержит множество блоков, расположенных последовательно в зависимости от особенностей конструкции и метрологических расчетов. На Фиг.10а показана манжета 1110, удерживающая конец оптоволокна 1120. Манжета 1110 состоит из двух идентичных половин 1130 манжеты, соединенных вместе. Фиг.10b представляет собой общий вид половины 1130 манжеты, изготовленной штамповкой с использованием пуансона 530 и матрицы 560, показанных на Фиг.9а. Фиг.10с представляет собой вид сзади половины 1130 манжеты, показанной на Фиг.10b. Конструкция манжеты, показанной на Фиг.10а-10с, имеет частично полукруглое торцевое сечение. Однако с помощью штамповочной системы можно также изготовить манжету с полностью круглым торцевым сечением (как показано на Фиг.11b). Пуансон 530 и матрица 560 могут быть помещены в один из множества штамповочных блоков. Две такие половины 1130 манжеты могут быть изготовлены из одной полосы исходного материала за одну стадию. Каждая половина 1130 манжеты снабжена выемками 1140 для соединения вместе (сборки) двух половин 1130 манжеты (например, посредством сварки по выемкам 1140). Каждая половина 1130 манжеты также снабжена желобом 1150 для размещения конца оптоволокна 1120. В варианте выполнения изобретения, показанном на Фиг.10а-10с, размеры манжеты составляют: диаметр поперечного сечения на конце 2.5 мм или 1.25 мм и длина 10 мм, причем манжета выполнена с желобами для выравнивания. Однако очевидно, что указанные размеры приведены лишь в качестве примера, и могут быть использованы и другие размеры. В другом блоке две половины 1130 манжеты могут быть соединены и выровнены с оптоволокном в процессе подготовки к лазерной сварке. Лазерный сварочный аппарат StarWeld 20 производства Rofin, Inc. представляет собой пример лазерного сварочного оборудования, в котором лазерный импульс направляют на деталь (ее часть), которую надо сварить. Помимо осуществления функции сварки лазерная система может быть использована для снятия покрытия с оптоволокна, а также для правильной подготовки поверхности на его конце. После того, как половины 1130 манжеты сварены вместе по выемкам 1140, манжета 1110 надежно и точно фиксирует конец оптоволокна 1120. Манжета 1110 способна удерживать оптоволокно диаметром, например, 0.125 мм.Fig. 10a is a rear view of an optoelectronic system 1100 manufactured by the stamping system 100 of the present invention. The system contains many blocks arranged in series depending on the design features and metrological calculations. 10 a shows a cuff 1110 holding the end of the optical fiber 1120. The cuff 1110 consists of two identical cuff halves 1130 connected together. Fig. 10b is a perspective view of a half 1130 cuff made by stamping using a punch 530 and a die 560 shown in Fig. 9a. Fig. 10c is a rear view of the half cuff 1130 shown in Fig. 10b. The design of the cuff shown in Figures 10a-10c has a partially semicircular end section. However, with the help of a stamping system, it is also possible to produce a cuff with a completely round end section (as shown in FIG. 11b). The punch 530 and the die 560 may be placed in one of a plurality of stamping blocks. Two such cuff halves 1130 can be made from one strip of raw material in one step. Each half of the cuff 1130 is provided with recesses 1140 for joining together (assembly) the two halves of the cuff 1130 (for example, by welding along the recesses 1140). Each half of the cuff 1130 is also provided with a groove 1150 for receiving the end of the optical fiber 1120. In the embodiment shown in FIGS. 10a-10c, the dimensions of the cuff are: a cross-sectional diameter at the end of 2.5 mm or 1.25 mm and a length of 10 mm, the cuff being made with gutters for leveling. However, it is obvious that these dimensions are given only as an example, and other sizes can be used. In another block, the two halves of the cuff 1130 can be connected and aligned with the optical fiber in preparation for laser welding. StarWeld 20 Laser Welding Machine manufactured by Rofin, Inc. is an example of laser welding equipment in which a laser pulse is directed to a part (part of it) that needs to be welded. In addition to performing the welding function, the laser system can be used to remove the coating from the optical fiber, as well as to properly prepare the surface at its end. After the cuff halves 1130 are welded together along the recesses 1140, the cuff 1110 reliably and accurately captures the end of the optical fiber 1120. The cuff 1110 is able to hold the optical fiber with a diameter of, for example, 0.125 mm.

Фиг.11а иллюстрирует конструкцию «полосковой геометрии двойной конфигурации» 1200 для изготовления штампованной и подвергнутой сварке манжеты 1210. Фиг.11b представляет собой общий вид готовой манжеты 1210. Последовательность штамповочного процесса включает в себя девять блоков, расположенных последовательно (см., например, Фиг.2), например, блоки 1212-1220, причем последовательность проходит от блока 1212 к блоку 1220. В блоках 1212-1215 заготовке придают размер и форму. В блоке 1216 формируют желоб. В блоках 1217-1220 в сформированный желоб помещают оптоволокно и две половины манжеты складывают вместе. На Фиг.11b показано оптоволокно 1225, расположенное в манжете 1210. Манжета 1210 адаптирована под разъемную выравнивающую муфту, имеющую круглое поперечное сечение (не показана). В результате выполнения штамповки получают смонтированные (соединенные) половины манжеты, полностью заполняющие круговую конструкцию разъемной выравнивающей муфты. Разъемная муфта является частью коннекторного адаптера для оптоволокна (не показан), который используют для выполнения разъемного соединения двух оптоволокон (каждое расположено внутри манжеты 1210).FIG. 11a illustrates the construction of “dual-geometry strip geometry” 1200 for manufacturing a stamped and welded sleeve 1210. FIG. 11b is a general view of a finished sleeve 1210. The stamping process includes nine blocks arranged in series (see, for example, FIG. .2), for example, blocks 1212-1220, the sequence going from block 1212 to block 1220. In blocks 1212-1215, the workpiece is given size and shape. At a block 1216, a gutter is formed. In blocks 1217-1220, optical fiber is placed in the formed trough and the two halves of the cuff are folded together. 11b shows an optical fiber 1225 located in a sleeve 1210. The sleeve 1210 is adapted for a split alignment sleeve having a circular cross-section (not shown). As a result of stamping, mounted (connected) halves of the cuff are completely filled that completely fill the circular structure of the detachable leveling sleeve. A split coupler is part of a fiber optic connector adapter (not shown) that is used to make a split connection of two optical fibers (each located inside cuff 1210).

Фиг.12а иллюстрирует конструкцию «полосковой геометрии» 1250 для изготовления манжеты 1260 звездообразной формы, прихваченной сваркой. Последовательность для выполнения операций штамповки включает в себя 10 блоков, например, блоки 1310-1319, причем последовательность проходит от блока 1310 к блоку 1319. В блоках 1310-1312 формируют заготовку и придают ей форму. В блоках 1313-1319 заготовку складывают с получением звездообразной формы. Фиг.12b представляет собой общий вид конструкции, содержащей звездообразную манжету 1260. На Фиг.12с показан разрез конструкции, выполненный по линии 12с-12с, показанной на Фиг.12b. Манжета 1260 изготовлена штамповкой с использованием способа формовки, в результате применения которого получают звездообразную манжету 1260, расположенную поверх вокруг оптоволокна 1270 и прихваченную сварным швом в точке 1280. Манжета 1260 разработана таким образом, чтобы она прецизионно размещалась внутри разъемной выравнивающей муфты 1290 с субмикронным допуском, необходимым для получения соединения оптоволокно-оптоволокно с малыми потерями. Размеры этой манжеты составляют: диаметр поперечного сечения на конце 2.5 мм или 1.25 мм и длина 10 мм с желобами выравнивания. Кроме того, манжета разработана таким образом, чтобы в нее входило оптоволокно диаметром 0.125 мм. Однако очевидно, что указанные размеры приведены лишь в качестве примера, и могут быть использованы и другие размеры. Манжета имеет три вершины 1292, 1293 и 1294, но может быть выполнена с любым количеством вершин, в том числе и только с двумя.12a illustrates a strip geometry design 1250 for manufacturing a star-shaped cuff 1260 that is welded. The sequence for performing stamping operations includes 10 blocks, for example, blocks 1310-1319, and the sequence runs from block 1310 to block 1319. In blocks 1310-1312, a blank is formed and shaped. In blocks 1313-1319, the preform is folded into a star shape. Fig. 12b is a general view of a structure comprising a star-shaped cuff 1260. Fig. 12c shows a section through the structure taken along line 12c-12c shown in Fig. 12b. The cuff 1260 is made by stamping using a molding method, as a result of which a star-shaped cuff 1260 is disposed located on top around the optical fiber 1270 and tacked at the point 1280 by a weld seam. The cuff 1260 is designed to fit precisely inside the split-leveling sleeve 1290 with submicron tolerance, necessary to obtain a low-loss fiber-optic fiber connection. The dimensions of this cuff are: a cross-sectional diameter at the end of 2.5 mm or 1.25 mm and a length of 10 mm with alignment grooves. In addition, the cuff is designed to include 0.125 mm diameter optical fiber. However, it is obvious that these dimensions are given only as an example, and other sizes can be used. The cuff has three vertices 1292, 1293 and 1294, but can be performed with any number of vertices, including only two.

Система может быть адаптирована для изготовления манжет с использованием комбинации способов штамповки и формовки. Фиг.13 представляет собой поперечное сечение торца половины 1300 манжеты, изготовленной штамповкой и формовкой. Согласно этому варианту выполнения изобретения выравнивающий желоб выполнен штамповкой, в то время как радиус половины манжеты задан с помощью формовки. Эта конструкция может быть изготовлена в одну стадию («two-up») и смонтирована (соединена) с использованием лазерной сварки. Следует отметить, что, несмотря на то, что манжета показана с частично круглым поперечным торцевым сечением, она может иметь полностью круглое поперечное торцевое сечение и может быть соединена с помощью лазерной сварки (не показано).The system can be adapted for the manufacture of cuffs using a combination of stamping and forming methods. 13 is a cross-sectional view of the end face of a half 1300 cuff made by stamping and molding. According to this embodiment of the invention, the leveling trough is stamped, while the radius of half the cuff is defined by molding. This design can be made in one stage ("two-up") and mounted (connected) using laser welding. It should be noted that, although the cuff is shown with a partially circular transverse end section, it can have a completely circular transverse end section and can be connected using laser welding (not shown).

Система 100 может быть адаптирована для изготовления многожильных манжет для одновременного соединения нескольких оптоволокон. Фиг.14 представляет собой поперечное сечение пуансона 1350 для изготовления многожильной манжеты, используемого для штамповки половины многожильной манжеты (не показана). В частном случае пуансон 1350 является пуансоном для изготовления 12-жильной манжеты. Когда половины манжеты соединяют, два больших полукруглых выступа 1360 образуют круглые желоба для направляющих элементов (штифтов), служащих для выравнивания оптоволокон при совмещении двух коннекторов. Штифты выполняют ту же функцию, что и разъемная муфта для одиночного оптоволокна. Когда половины манжеты соединяют, выступы, обозначенные от f1 до f12, образуют круглые желоба для отдельных оптоволокон. В приведенном примере - 12 оптоволокон. Допуски для выступов f1-f12, выравнивающих оптоволокна, для данного пуансона составляют ±150 нм в направлении, параллельном поверхности, и ±400 нм в направлении, перпендикулярном поверхности пуансона 1350.System 100 can be adapted for the manufacture of multicore cuffs for simultaneously connecting multiple optical fibers. FIG. 14 is a cross-sectional view of a punch 1350 for manufacturing a multi-core cuff used for stamping half a multi-core cuff (not shown). In the particular case, the punch 1350 is a punch for the manufacture of a 12-core cuff. When the cuff halves are connected, two large semicircular protrusions 1360 form round grooves for guiding elements (pins), which serve to align the optical fibers when combining two connectors. The pins perform the same function as the split coupler for a single fiber. When the cuff halves are connected, the protrusions labeled f1 to f12 form circular grooves for the individual optical fibers. In the given example - 12 optical fibers. The tolerances for the protrusions f1-f12 aligning the optical fibers for a given punch are ± 150 nm in a direction parallel to the surface and ± 400 nm in a direction perpendicular to the surface of the punch 1350.

Штамповочные инструменты могут быть изготовлены с жесткими допусками. Штамповочный блок 400, показанный на Фиг.3а, собран из компонентов, изготовленных с субмикронными допусками и гладкостью поверхностей. Было измерено, что вследствие получаемого в результате качества плит 410 и 440, поддерживающих соответственно пуансон и матрицу, а также ограничителей (разделителей) 470, плиты 410 и 440, поддерживающие пуансон и матрицу, параллельны с точностью до 16 микрорадиан. При такой степени параллельности пуансона относительно матрицы нарушение соосности составляет менее 200 нм.Punching tools can be manufactured with tight tolerances. The stamping unit 400 shown in FIG. 3a is assembled from components made with submicron tolerances and smooth surfaces. It was measured that due to the resulting quality of the plates 410 and 440 supporting the punch and die, respectively, as well as the limiters (dividers) 470, the plates 410 and 440 supporting the punch and die are parallel with an accuracy of 16 microradians. With such a degree of parallelism of the punch relative to the matrix, misalignment is less than 200 nm.

Штамповочный блок 400 вместе с 12-жильным пуансоном 1350 (показан на Фиг.14) может быть использован в открытой конфигурации штампа для штамповки половин многожильной манжеты из листовых заготовок из нержавеющей стали 304, размеры которых составляют примерно 10×10 на 1 мм. Фиг.17 представляет собой график, показывающий измеренные характеристики профиля 12-волоконного пуансона, наложенные на данные, полученные для образца 12-жильной штампованной детали. Линия А представляет собой измеренные данные профиля пуансона 1350, а линия В - измеренные данные профиля образца детали. На Фиг.18 приведено схематичное изображение, показывающее вхождение заготовки 1365 из стали 304 в конфигурацию открытого штампа, спрогнозированное с помощью конечно-элементного анализа (Finite Element Analysis, FEA). На Фиг.18 показана деформация материала 304 заготовки 1365 при штамповке многожильным пуансоном 1350, а также FEA остаточного структурного напряжения заготовки 1365. Голубой цвет на подписи к чертежу относится к нижней границе спектра остаточного напряжения, а красный цвет - к верхней границе спектра остаточного напряжения. Как показано на Фиг.17 и 18, копирование профиля поверхности пуансона 1350 на листовую заготовку 1365 из нержавеющей стали 304 направленно совпадает с результатами прогнозирования штамповки в конфигурации открытого штампа, проведенной с использованием конечно-элементного анализа (FEA). Неполное заполнение выемки гнезда направляющего элемента 1360, показанное на Фиг.18, согласуется со спрогнозированным на основании анализа открытого штампа и с наблюдаемым экспериментально. Фиг.19 представляет собой иллюстрацию, показывающую три желоба 1367, 1368 и 1369 для оптоволокон образца штампованной 12-жильной манжеты 1370. Фиг.20 представляет собой график, иллюстрирующий измеренные данные профиля того же желоба для оптоволокна для трех образцов из нержавеющей стали 304 и измеренные данные профиля этой части пуансона 1350. Линии С-Е представляют собой измеренные данные профиля трех образцов, а линия F представляет собой измеренные данные профиля пуансона. Наблюдается превосходная штамповка (профилирование) нижней части желоба частично вследствие закономерного ограничения (удерживания), создаваемого окружающим материалом. Фиг.21 представляет собой график, иллюстрирующий максимальный разброс положения желоба относительно среднего положения для трех различных образцов штампованных деталей, каждая из которых имеет 12 желобов. Как показано на Фиг.21, наблюдается превосходная воспроизводимость от детали к детали. Максимальное отклонение положения желоба от среднего составляет ±160 нм по оси х и ±190 нм по оси у, что показывает субмикронные возможности ультрапрецизионного процесса штамповки.The stamping unit 400, together with the 12-core punch 1350 (shown in FIG. 14), can be used in an open die configuration for stamping halves of a multi-core cuff of 304 stainless steel sheet blanks, the dimensions of which are approximately 10 × 10 per 1 mm. 17 is a graph showing the measured profile characteristics of a 12-fiber punch superimposed on data obtained for a sample of a 12-core stamped part. Line A is the measured profile data of the punch 1350, and line B is the measured profile data of the sample part. FIG. 18 is a schematic view showing the entry of a 304 steel preform 1365 into an open die configuration predicted by Finite Element Analysis (FEA). On Fig shows the deformation of the material 304 of the workpiece 1365 when stamping a multicore punch 1350, as well as the FEA of the residual structural stress of the workpiece 1365. The blue color on the signature to the drawing refers to the lower boundary of the spectrum of the residual voltage, and red to the upper border of the spectrum of the residual voltage. As shown in FIGS. 17 and 18, copying the surface profile of the punch 1350 onto a stainless steel sheet 1365 304 directionally coincides with the results of stamping predictions in an open die configuration made using finite element analysis (FEA). The incomplete filling of the recess of the slot of the guide element 1360, shown in Fig. 18, is consistent with that predicted based on the analysis of the open die and experimentally observed. FIG. 19 is an illustration showing the three fiber grooves 1367, 1368 and 1369 for a sample fiber of a stamped 12-core sleeve 1370. FIG. 20 is a graph illustrating measured profile data of the same fiber groove for three samples of 304 stainless steel and measured profile data of this part of the punch 1350. Lines CE represent the measured profile data of the three samples, and line F represents the measured profile data of the punch. There is an excellent stamping (profiling) of the lower part of the gutter due in part to the regular restriction (retention) created by the surrounding material. Fig.21 is a graph illustrating the maximum variation in the position of the groove relative to the middle position for three different samples of stamped parts, each of which has 12 grooves. As shown in FIG. 21, excellent reproducibility from part to part is observed. The maximum deviation of the position of the trench from the average is ± 160 nm along the x axis and ± 190 nm along the y axis, which shows the submicron capabilities of the ultra-precision stamping process.

Фиг.15 представляет собой общий вид штампованной многожильной муфты 1400. Муфта 1400 может заменить штифты, которые обычно используют для выравнивания двух многожильных коннекторов оптоволокон. Как и в случае цилиндрической муфты/манжеты, внешние размеры многожильной манжеты должны соответствовать внутренним размерам многожильной муфты 1400. Это необходимо для субмикронных допусков, чтобы обеспечить правильное выравнивание (совмещение) оптоволокон, а также минимизировать оптические потери.FIG. 15 is a perspective view of a stamped multi-core sleeve 1400. The sleeve 1400 can replace the pins that are commonly used to align two multi-core fiber connectors. As in the case of a cylindrical sleeve / cuff, the external dimensions of the multi-core sleeve must correspond to the internal dimensions of the multi-core sleeve 1400. This is necessary for submicron tolerances to ensure the correct alignment (alignment) of the optical fibers, as well as to minimize optical loss.

Специалистам в данной области техники понятно, что, несмотря на то, что изобретение раскрыто и описано на примере его предпочтительных вариантов выполнения, возможно внесение различных дополнений и изменений, касающихся формы и деталей конструкций, не выходя за рамки духа и буквы данного изобретения. Для специалистов также понятно, что система, которая содержит конструкцию, выполненную согласно сущности изобретения, также может быть использована для изготовления других деталей с субмикронными допусками. Приведенное выше описание следует воспринимать исключительно как иллюстрацию изобретения, ограниченного лишь приведенной далее Формулой изобретения.Specialists in the art will understand that, although the invention is disclosed and described by the example of its preferred embodiments, it is possible to make various additions and changes regarding the shape and details of the structures without going beyond the spirit and letter of this invention. It will also be understood by those skilled in the art that a system that includes a structure made according to the essence of the invention can also be used to manufacture other parts with submicron tolerances. The above description should be taken solely as an illustration of the invention, limited only by the following claims.

Claims (29)

1. Установка для изготовления деталей, содержащая устройство, включающее комплементарные пуансон и матрицу, приспособление, поддерживающее матрицу, устройство для направления пуансона, выполненное стационарным относительно указанного приспособления и снабженное стволом для направления пуансона относительно матрицы, причем пуансон и ствол выполнены с плоской поверхностью, ствол имеет размеры и форму, обеспечивающие размещение пуансона со скользящим контактом плоской поверхности пуансона и плоской поверхности ствола при отсутствии промежуточных подвижных деталей, и систему передачи, обеспечивающую механическую передачу усилия от пресса к пуансону, при этом пуансон отделен от ползуна и помещен в ствол до передачи усилия от ползуна.1. Installation for the manufacture of parts, comprising a device comprising a complementary punch and a matrix, a device supporting the matrix, a device for guiding the punch made stationary relative to the specified tool and provided with a barrel for guiding the punch relative to the matrix, the punch and the barrel being made with a flat surface, the barrel has a size and shape that ensures the placement of the punch with a sliding contact of the flat surface of the punch and the flat surface of the barrel in the absence KSR moving parts, and transmission system that provides a mechanical transmission of force from the press to the punch, wherein the punch is separated from the slide and placed into the barrel to force transmission from the slide. 2. Установка по п.1, отличающаяся тем, что приспособление, поддерживающее матрицу, содержит гнездо для размещения соответствующих поверхностей матрицы и пуансона в ориентации напротив друг друга.2. Installation according to claim 1, characterized in that the device supporting the matrix contains a socket for placing the respective surfaces of the matrix and the punch in an orientation opposite each other. 3. Установка по п.2, отличающаяся тем, что дополнительно содержит опорную плиту, выполненную с возможностью прикрепления к приспособлению, поддерживающему матрицу, сверху от гнезда для удерживания матрицы в упомянутом гнезде.3. Installation according to claim 2, characterized in that it further comprises a base plate made with the possibility of attachment to the device that supports the matrix, from the top of the slot for holding the matrix in said slot. 4. Установка по любому из пп.1-3, отличающаяся тем, что дополнительно содержит ограничитель, расположенный между приспособлением, поддерживающим матрицу, и направляющим устройством для пуансона с обеспечением рабочей зоны в виде пространства между приспособлением, поддерживающим матрицу, и направляющим устройством для пуансона, в котором пуансон входит в контакт с матрицей для изготовления детали.4. Installation according to any one of claims 1 to 3, characterized in that it further comprises a limiter located between the device supporting the die and the guiding device for the punch, providing a working area in the form of a space between the device supporting the die and the guiding device for the punch in which the punch comes into contact with the die for the manufacture of the part. 5. Установка по п.4, отличающаяся тем, что направляющее устройство для пуансона, приспособление, поддерживающее матрицу, и ограничитель образуют единую конструкцию.5. Installation according to claim 4, characterized in that the guide device for the punch, the device supporting the matrix, and the limiter form a single structure. 6. Установка по п.4, отличающаяся тем, что ограничитель содержит по меньшей мере две секции, поддерживающие направляющее устройство для пуансона с пуансоном между ними с исключением консольного поддерживания направляющего устройства относительно пуансона.6. Installation according to claim 4, characterized in that the limiter comprises at least two sections supporting a guiding device for the punch with a punch between them, with the exception of the console supporting the guiding device relative to the punch. 7. Установка по п.1, отличающаяся тем, что дополнительно содержит стопорный механизм, расположенный между прессом и пуансоном по направлению удара пресса для ограничения поступательного движения пуансона в стволе.7. Installation according to claim 1, characterized in that it further comprises a locking mechanism located between the press and the punch in the direction of impact of the press to limit the translational movement of the punch in the barrel. 8. Установка по п.1, отличающаяся тем, что дополнительно содержит стопорный механизм, расположенный по направлению удара пуансона для ограничения поступательного движения пуансона в стволе.8. Installation according to claim 1, characterized in that it further comprises a locking mechanism located in the direction of impact of the punch to limit the translational movement of the punch in the barrel. 9. Установка по п.8, отличающаяся тем, что пуансон содержит фиксатор, приспособленный для контакта со стопорным механизмом с обеспечением при вхождении в упомянутый контакт ограничения стопорным механизмом дальнейшего поступательного движения пуансона по направлению к матрице.9. Installation according to claim 8, characterized in that the punch comprises a latch adapted to contact with the locking mechanism to ensure that, upon entering into said contact, the locking mechanism of the further translational movement of the punch towards the die. 10. Установка по п.1, отличающаяся тем, что дополнительно содержит возвратные устройства, соединенные с пуансоном и имеющие возможность изгиба при поступательном движении пуансона по направлению к матрице под действием усилия пресса, при этом упомянутые возвратные устройства выполнены с возможностью перемещения пуансона в направлении от матрицы при прекращении действия приложенного усилия.10. Installation according to claim 1, characterized in that it further comprises a return device connected to the punch and having the ability to bend during the translational movement of the punch towards the die under the action of the pressure of the press, while said return devices are arranged to move the punch in the direction from matrices upon termination of the applied effort. 11. Система для изготовления деталей, содержащая пресс, включающий станину пресса и ползун, и по меньшей мере один штамповочный блок, поддерживаемый на станине пресса, причем каждый штамповочный блок содержит установку для изготовления деталей по п.1.11. A system for manufacturing parts, comprising a press comprising a press frame and a slider, and at least one stamping unit supported on a press frame, each stamping unit comprising an apparatus for manufacturing parts according to claim 1. 12. Система по п.11, отличающаяся тем, что система передачи содержит шар, соединенный с пуансоном или с ползуном, и гнездо, соединенное, соответственно, с ползуном или с пуансоном с обеспечением при вхождении шара в контакт с гнездом передачи упомянутыми шаром и гнездом усилия от ползуна пуансону, при этом ползун отделен от пуансона.12. The system according to claim 11, characterized in that the transmission system comprises a ball connected to a punch or a slider, and a socket, respectively connected to a slider or a punch, so that when the ball comes into contact with the transmission socket, said ball and socket forces from the slider to the punch, while the slider is separated from the punch. 13. Система по п.11 или 12, отличающаяся тем, что система передачи содержит шар, соединенный с пуансоном или с ползуном, и гнездо, соединенное, соответственно, с ползуном или с пуансоном с обеспечением при вхождении шара в контакт с гнездом передачи ползуном усилия к пуансону, при этом ползун отделен от пуансона.13. The system according to claim 11 or 12, characterized in that the transmission system comprises a ball connected to a punch or a slider, and a socket connected, respectively, to a slider or a punch to ensure that when the ball comes into contact with the transmission socket of the slider to the punch, while the slider is separated from the punch. 14. Система по п.11, отличающаяся тем, что система передачи содержит силовую плиту, соединенную с прессом и расположенную внутри ствола между пуансоном и прессом с возможностью поступательного движения по стволу по направлению к пуансону и от пуансона, и клапан для подачи в ствол рабочей жидкости под низким давлением, при этом силовая плита имеет возможность движения по направлению к пуансону с обеспечением действия на пуансон постоянной однонаправленной ортогональной силы для движения пуансона в сторону матрицы.14. The system according to claim 11, characterized in that the transmission system comprises a power plate connected to the press and located inside the barrel between the punch and the press with the possibility of translational movement along the barrel towards the punch and from the punch, and a valve for supplying the working barrel fluid under low pressure, while the power plate has the ability to move towards the punch with the action on the punch of a constant unidirectional orthogonal force to move the punch towards the matrix. 15. Система по п.14, отличающаяся тем, что клапан расположен между силовой плитой и пуансоном, при этом силовая плита имеет возможность закрывания клапана при вхождении в контакт с ним в процессе движения ее в сторону пуансона.15. The system according to 14, characterized in that the valve is located between the power plate and the punch, while the power plate has the ability to close the valve when it comes into contact with it in the process of moving it towards the punch. 16. Система по п.15, отличающаяся тем, что дополнительно содержит соединенный со стволом редукционный клапан рабочего давления для регулировки силы давления на пуансон для изготовления детали.16. The system according to clause 15, characterized in that it further comprises a working pressure reducing valve connected to the barrel to adjust the pressure force on the punch for the manufacture of the part. 17. Система по п.16, отличающаяся тем, что дополнительно содержит соединенный со стволом предохранительный клапан для регулировки максимальной силы давления на пуансон.17. The system according to clause 16, characterized in that it further comprises a safety valve connected to the barrel to adjust the maximum pressure force on the punch. 18. Система по п.14, отличающаяся тем, что дополнительно содержит ограничитель хода, расположенный между пуансоном и приспособлением, поддерживающим матрицу, и имеющий возможность предотвращения поступательного движения пуансона по направлению к приспособлению, поддерживающему матрицу, при контакте держателя пуансона с ограничителем хода.18. The system according to 14, characterized in that it further comprises a travel stop located between the punch and the die supporting device, and having the ability to prevent the translational movement of the punch towards the die supporting device when the punch holder contacts the travel stop. 19. Система по п.18, отличающаяся тем, что дополнительно содержит ограничитель, расположенный между приспособлением, поддерживающим матрицу, и ограничителем хода для фиксации положения ограничителя хода относительно приспособления, поддерживающего матрицу.19. The system according to p. 18, characterized in that it further comprises a limiter located between the device supporting the matrix and the stroke limiter for fixing the position of the limiter relative to the device supporting the matrix. 20. Система по п.14, отличающаяся тем, что система передачи дополнительно содержит шар, присоединенный к силовой плите, и гнездо, соединенное с ползуном, с обеспечением при вхождении шара в гнездо передачи усилия силовой плите ползуном, который не связан с силовой плитой.20. The system according to 14, characterized in that the transmission system further comprises a ball attached to the power plate, and a socket connected to the slider, ensuring that when the ball enters the socket of the transmission of force power plate with a slider that is not connected to the power plate. 21. Система по п.11, отличающаяся тем, что дополнительно содержит средства для поточной обработки заготовки до ее поступления в штамповочный блок.21. The system according to claim 11, characterized in that it further comprises means for in-line processing of the workpiece before it enters the stamping unit. 22. Система по п.11, отличающаяся тем, что дополнительно содержит базовую плиту, снабженную элементами для совмещения, приспособленными для размещения штамповочных блоков и выравнивания их относительно друг друга.22. The system according to claim 11, characterized in that it further comprises a base plate equipped with alignment elements adapted to accommodate the stamping blocks and align them relative to each other. 23. Система по п.22, отличающаяся тем, что элементы для совмещения включают желоба, выполненные на поверхности базовой плиты.23. The system according to item 22, wherein the elements for combining include gutters made on the surface of the base plate. 24. Система для изготовления деталей, имеющих допуски в пределах 1000 нанометров, содержащая систему для изготовления деталей по п.11, базовую плиту, включающую элементы для совмещения, приспособленные для размещения штамповочных блоков и выравнивания их относительно друг друга, и средства для поточной обработки заготовки до ее помещения в штамповочный блок.24. A system for manufacturing parts having tolerances within 1000 nanometers, comprising a system for manufacturing parts according to claim 11, a base plate including elements for alignment, adapted to accommodate the stamping blocks and align them relative to each other, and means for thread processing the workpiece before it is placed in the stamping unit. 25. Способ изготовления деталей, имеющих допуск в пределах 1000 нанометров, отличающийся тем, что детали изготавливают штамповкой в штамповочной системе.25. A method of manufacturing parts having a tolerance within 1000 nanometers, characterized in that the parts are made by stamping in a stamping system. 26. Способ по п.25, отличающийся тем, что в качестве штамповочной системы используют систему для изготовления деталей по п.11.26. The method according A.25, characterized in that as a stamping system using the system for manufacturing parts according to claim 11. 27. Деталь, полученная способом по п.26.27. The item obtained by the method according to p. 28. Деталь по п.27, отличающаяся тем, что она является деталью для оптоэлектроники.28. A component as claimed in claim 27, wherein it is a component for optoelectronics. 29. Деталь по п.28, отличающаяся тем, что деталь для оптоэлектроники имеет форму и размеры, обеспечивающие удерживание оптоволокна. 29. The item according to p. 28, characterized in that the part for optoelectronics has a shape and dimensions that ensure the retention of the optical fiber.
RU2005107473/02A 2002-08-16 2003-08-18 Installation for manufacturing of parts, system for manufacturing of parts, method for manufacturing of parts and part produced by specified method RU2380186C2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US40392402P 2002-08-16 2002-08-16
US40392502P 2002-08-16 2002-08-16
US60/403,924 2002-08-16
US60/403,925 2002-08-16
US60/403,926 2002-08-16
US10/620,851 2003-07-15
US10/620,851 US7343770B2 (en) 2002-08-16 2003-07-15 Stamping system for manufacturing high tolerance parts

Publications (2)

Publication Number Publication Date
RU2005107473A RU2005107473A (en) 2007-02-20
RU2380186C2 true RU2380186C2 (en) 2010-01-27

Family

ID=36712728

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2005107473/02A RU2380186C2 (en) 2002-08-16 2003-08-18 Installation for manufacturing of parts, system for manufacturing of parts, method for manufacturing of parts and part produced by specified method
RU2005107472/28A RU2389049C2 (en) 2002-08-16 2003-08-18 High-precision optoelectronic components

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2005107472/28A RU2389049C2 (en) 2002-08-16 2003-08-18 High-precision optoelectronic components

Country Status (1)

Country Link
RU (2) RU2380186C2 (en)

Also Published As

Publication number Publication date
RU2389049C2 (en) 2010-05-10
RU2005107472A (en) 2006-06-10
RU2005107473A (en) 2007-02-20

Similar Documents

Publication Publication Date Title
CN100586673C (en) Stamping system for manufacturing high-precision tolerance parts
US6408728B1 (en) Punching apparatus for stamping and method for producing the same
CN103109217A (en) Method and apparatus for aligning optical transports in a ferrule
US9583905B2 (en) Quick release feed guide and tool support for terminal applicator
US7311449B2 (en) High precision optoelectronic components
RU2380186C2 (en) Installation for manufacturing of parts, system for manufacturing of parts, method for manufacturing of parts and part produced by specified method
US5330409A (en) Cassette changing apparatus for index-feeding machining systems
KR100337302B1 (en) Hole forming jig for press cast
US5477608A (en) Apparatus for connecting a wire to a contact element
US4866976A (en) Apparatus for the metal working of components
US6556760B1 (en) Optical fiber ribbon separation tool
JP7027008B2 (en) Wire manufacturing method with terminals and terminal crimping equipment
WO2013114470A1 (en) Multi-step heading machine
RU1814960C (en) Apparatus for forcing stepped shafts
SU1228946A1 (en) Device for compressing pipes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180819