RU2379586C1 - Способ и устройство для сжигания топлива в кипящем слое - Google Patents

Способ и устройство для сжигания топлива в кипящем слое Download PDF

Info

Publication number
RU2379586C1
RU2379586C1 RU2008130977/06A RU2008130977A RU2379586C1 RU 2379586 C1 RU2379586 C1 RU 2379586C1 RU 2008130977/06 A RU2008130977/06 A RU 2008130977/06A RU 2008130977 A RU2008130977 A RU 2008130977A RU 2379586 C1 RU2379586 C1 RU 2379586C1
Authority
RU
Russia
Prior art keywords
zone
afterburning
combustion
compressed air
reactor
Prior art date
Application number
RU2008130977/06A
Other languages
English (en)
Inventor
Александр Вадимович Ивлев (RU)
Александр Вадимович Ивлев
Илья Николаевич Новиков (RU)
Илья Николаевич Новиков
Original Assignee
Александр Вадимович Ивлев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Вадимович Ивлев filed Critical Александр Вадимович Ивлев
Priority to RU2008130977/06A priority Critical patent/RU2379586C1/ru
Application granted granted Critical
Publication of RU2379586C1 publication Critical patent/RU2379586C1/ru

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

Изобретение может быть использовано в промышленных и энергетических котлах для сжигания измельченного твердого топлива и горючих отходов. Устройство для сжигания топлива в кипящем слое содержит реактор, имеющий нижнюю и верхнюю зоны, устройство подачи топлива в верхнюю зону, устройство подачи первичного потока сжатого воздуха в нижнюю зону, воздухораспределительную решетку, установленную в верхней части нижней зоны реактора, камеру, расположенную под воздухораспределительной решеткой и соединенную с устройством удаления негорючих компонентов, при этом внутренняя поверхность верхней зоны выполнена в виде внутренней боковой поверхности тела вращения, соосно которой в верхнем торце реактора выполнено выходное отверстие. Верхняя зона реактора разделена на зону горения и зону дожигания, при этом внутренняя поверхность зоны горения выполнена цилиндрической и расположена зона горения между нижней зоной реактора и зоной дожигания, ограниченной верхним торцем реактора, причем зона горения и зона дожигания соединены цилиндрическим каналом, и каждая из зон имеет устройство тангенциальной подачи вторичного сжатого воздуха, соединенное одним или несколькими тангенциальными сопловыми каналами с внутренней поверхностью соответствующей зоны, при этом устройство подачи вторичного сжатого воздуха зоны горения расположено в ее верхней части, а устройство подачи вторичного сжатого воздуха зоны дожигания - в нижней части зоны дожигания, при этом устройство подачи топлива соединено с верхней частью зоны горения. Диаметр внутренней поверхности зоны дожигания в сечении размещения устройства подачи вторичного сжатого воздуха равен 0,4-0,8 диаметра внутренней поверхности зоны горения. Внутренний диаметр цилиндрического канала, соединяющего зоны горения и дожигания, равен 0,5-0,8 диаметра внутренней поверхности зоны дожигания в сечении размещения устройства тангенциальной подачи вторичного сжатого воздуха. Внутренняя поверхность зоны дожигания выполнена конической с углом раскрытия 0-12 градусов в направлении верхнего торца реактора. В устройствах тангенциальной подачи вторичного сжатого воздуха зоны горения и зоны дожигания каналы направлены в одну сторону. Изобретение позволяет повысить эффективность сжигания топлива. 2 н. и 8 з.п. ф-лы, 3 ил.

Description

Предлагаемое изобретение относится к области теплоэнергетики и может найти применение в промышленных и энергетических котлах для сжигания измельченного твердого топлива и горючих отходов.
Известен способ сжигания топлива, при котором топливо измельчают, подают в топку, в полость топки вводят воздух через колосниковую решетку и непосредственно через сопла в стенке топки, формируют по высоте топки, по меньшей мере, три зоны горения топлива, организуют в верхней части топки вихревое движение остального объема воздуха, подаваемого в топку. Воздух в верхнюю часть топки вводят по касательной к траектории вихревого движения (см. патент RU № 2272218 С1, 2006.03.20).
Недостатком известного способа является невысокая эффективность процесса сжигания топлива. Значительная неравномерность полей температур и скоростей потоков вблизи одних противоположных стенок и полей температур по высоте вблизи других стенок из-за наличия застойных зон и зон с максимальными тангенциальными скоростями приводит к снижению эффективности процессов газификации и горения топлива и дожигания продуктов газификации, что значительно снижает эффективность всего процесса сжигания топлива.
Известен также способ сжигания топлива в кипящем слое, при котором подают первичное дутье и затем вводят вторичное дутье в надслоевой объем из участков набегания потока в сторону застойных зон, тангенциально к условному телу вращения. Участки набегания потока и расположенные под ними застойные зоны в профиле надслоевого объема формируют обмуровкой и/или топочными экранами, причем часть вторичного дутья вводят отдельно и/или совместно с топливом и уносом, уловленным за топкой (см. патент RU № 2217658 С1, 2003.11.27).
Недостатком этого способа сжигания топлива также является невысокая эффективность процесса сжигания. Это вызвано тем, что на двух противоположных стенках по их высоте образуются застойные зоны и зоны с максимальными тангенциальными скоростями, что приводит к снижению эффективности процессов газификации, горения и использования вторичного дутья из-за снижения их в застойных зонах и зонах с низкими скоростями потоков.
Из известных способов сжигания топлива в кипящем слое наиболее близким заявляемому является способ, описанный в патенте US 4457289, 1984.07.03. По этому способу топливо подают в кипящий слой, а поток первичного сжатого воздуха - в нижнюю зону реактора, затем вводят в верхнюю зону реактора поток вторичного сжатого воздуха, из которого формируют сильно закрученный поток, создающий внутри, по крайней мере, одну зону противотока для возврата топлива в кипящий слой.
Недостатком этого способа является невысокая эффективность сжигания топлива, что обусловлено тем, что процессы горения и дожигания осуществляют в одной зоне. Это снижает полноту сгорания топлива на выходе из верхней зоны реактора и интенсификацию процессов возврата топлива и его газификации из-за низкого уровня осевых скоростей периферийного сильно закрученного потока. Низкий уровень осевых градиентов статического давления в периферийном и приосевом потоках не позволяет сформировать в верхней зоне реактора высокоразвитую рециркуляционную область. Кроме того, отсутствие разделения зон горения и дожигания не позволяет оптимизировать процессы горения и дожигания за счет перераспределения в них вторичного воздуха и управления величиной и направлением осевых скоростей потоков.
Известна вертикальная топка с кипящим слоем, описанная в патенте RU № 2170878 С1, 2001.07.20. Она содержит камеру сжигания и расположенную над ней камеру дожигания топлива, которая обрамлена фронтовым, задним и боковыми экранами и снабжена соплами вторичного и третичного воздуха. Фронтовой экран выполнен с аэродинамическим выступом, на котором расположены сопла вторичного воздуха, направленные в сторону ската заднего экрана. Сопла третичного воздуха расположены на заднем экране на высотной отметке, превышающей высотную отметку сопел вторичного воздуха и направлены в сторону фронтового экрана. Задний экран в зоне, расположенной между соплами третичного воздуха и камерой сжигания, выполнен со скатом в сторону камеры сжигания.
Недостатками известной вертикальной топки являются:
- невысокая эффективность сжигания топлива из-за неравномерности полей температуры и скорости потоков вблизи стенок вследствие образования застойных областей и областей с максимальными тангенциальными скоростями;
- значительные габариты камеры дожигания и увеличение времени пребывания в ней продуктов сгорания из-за уносимых из камеры сжигания частиц топлива, что в сочетании с высокой температурой продуктов сгорания в камере дожигания приведет к значительным выбросам окислов азота.
Известно также устройство для сжигания топлива в кипящем слое, описанное в SU № 836458 А, 1981.06.17. Оно содержит камеру сгорания с газораспределительной решеткой и камеру дожигания продуктов газификации, патрубок подачи вторичного воздуха и питатель топлива. На входе в камеру дожигания установлен направляющий аппарат, образованный закручивающими полыми лопатками, подключенными соответственно к патрубку вторичного воздуха и камере дожигания.
Известна топка с кипящим слоем, содержащая установленные одна над другой соответственно камеры сгорания и дожигания, первая из которых снабжена завихрителем на выходе, а вторая - тангенциальными соплами вторичного воздуха, установленными с наклоном вниз (см. SU № 1359565 А1, 1987.12.15).
Недостатками известных устройств являются:
- невысокая эффективность сжигания топлива из-за снижения интенсификации горения и сепарационных свойств потоков, которое вызвано отсутствием закрутки в процессе газификации и горения;
- значительные габариты камеры дожигания и увеличение времени пребывания в ней продуктов сгорания из-за уносимых из камеры сгорания частиц топлива, что в сочетании с высокой температурой продуктов сгорания в камере дожигания приводит к значительным выбросам окислов азота.
Из известных устройств наиболее близким заявляемому является устройство, описанное в патенте US 4457289, 1984.07.03. Оно содержит реактор, включающий нижнюю и верхнюю зоны, устройство подачи топлива в верхнюю зону, устройство подачи первичного потока сжатого воздуха в нижнюю зону, воздухораспределительную решетку, установленную в верхней части нижней зоны реактора, камеру, расположенную под воздухораспределительной решеткой и соединенную с устройством удаления негорючих компонентов. Верхняя зона реактора имеет внутреннюю цилиндрическую поверхность, соосно которой в верхнем торце реактора выполнено цилиндрическое выходное сопло.
Недостатком известного устройства также является невысокая эффективность сжигания топлива. Она обусловлена низкой эффективностью процессов газификации, горения и дожигания из-за низкой интенсификации этих процессов и низкой оптимизацией процессов горения и дожигания из-за невозможности перераспределения вторичного воздуха, из которого формируются потоки с оптимальными окружными скоростями и расходами, так как все эти процессы осуществляются в верхней неразделенной зоне реактора.
Техническая задача, которую решает предполагаемое изобретение, - это повышение эффективности сжигания топлива.
Техническая задача решается тем, что в способе сжигания топлива в кипящем слое, топливо подают в кипящий слой, а поток первичного сжатого воздуха - в нижнюю зону реактора, затем вводят в верхнюю зону реактора поток вторичного сжатого воздуха, из которого формируют сильно закрученный поток, создающий внутри, по крайней мере, одну зону противотока для возврата топлива в кипящий слой. Способ отличается тем, что в верхней зоне реактора формируют зону горения и зону дожигания, при этом поток вторичного сжатого воздуха перед подачей в верхнюю зону разделяют на два потока. Один поток вторичного сжатого воздуха подают непосредственно в зону горения, в которой он формирует периферийный, перемещающийся в направлении нижней зоны, и приосевой, перемещающийся от зоны горения к зоне дожигания, сильно закрученные потоки. Другой поток вторичного сжатого воздуха вводят в зону дожигания, в которой он формирует периферийный сильно закрученный поток, перемещающийся в направлении от зоны горения и индуцирующий приосевой сильно закрученный поток, перемещающийся в том же направлении. Между периферийным и приосевым потоками зоны горения формируют рециркуляционное горообразное течение, в котором осевые составляющие скорости периферийного и приосевого потоков зоны горения являются тангенциальными скоростями относительно оси вращения, представляющей собой окружность с центром на оси закрученных потоков. В зоне горения создают пониженное давление, эжектируя приосевой поток из зоны горения в зону дожигания, и осуществляют процесс дожигания полностью в зоне дожигания. В зону горения топливо подают с потоком вторичного сжатого воздуха. Поток вторичного сжатого воздуха на входе в зону горения формируют с безразмерной скоростью от λ=0,2 до λ=0,4, а поток вторичного сжатого воздуха на входе в зону дожигания формируют с безразмерной скоростью от λ=0,2 до λ=1,0, где λ - отношение скорости потока продуктов сгорания к местной скорости звука.
Устройство для сжигания топлива в кипящем слое содержит реактор, включающий нижнюю и верхнюю зоны, устройство подачи топлива в верхнюю зону, устройство подачи первичного потока сжатого воздуха в нижнюю зону, воздухораспределительную решетку, установленную в верхней части нижней зоны, камеру, расположенную под воздухораспределительной решеткой и соединенную с устройством удаления негорючих компонентов. Внутренняя поверхность верхней зоны реактора выполнена в виде внутренней боковой поверхности тела вращения, соосно которой в верхнем торце реактора выполнено выходное отверстие. Устройство отличается тем, что верхняя зона реактора разделена на зону горения и зону дожигания, при этом внутренняя поверхность зоны горения выполнена цилиндрической и зона горения расположена между нижней зоной и зоной дожигания, ограниченной верхним торцем реактора. Зона горения и зона дожигания соединены цилиндрическим каналом и каждая из зон имеет устройство тангенциальной подачи вторичного сжатого воздуха, соединенное одним или несколькими тангенциальными сопловыми каналами с внутренней поверхностью соответствующей зоны. Устройство подачи вторичного сжатого воздуха зоны горения расположено в верхней части зоны, а устройство подачи вторичного сжатого воздуха зоны дожигания - в ее нижней части. Устройство подачи топлива соединено с верхней частью зоны горения. Диаметр внутренней поверхности зоны дожигания в сечении размещения устройства подачи вторичного сжатого воздуха равен 0,4-0,8 диаметра внутренней поверхности зоны горения. Диаметр внутренней поверхности цилиндрического канала, соединяющего зоны горения и дожигания, равен 0,5-0,8 диаметра внутренней поверхности зоны дожигания в сечении размещения устройства тангенциальной подачи вторичного сжатого воздуха. Внутренняя поверхность зоны дожигания выполнена конической с углом раскрытия 0-12 градусов в направлении верхнего торца реактора. В устройствах тангенциальной подачи вторичного воздуха зоны горения и зоны дожигания каналы направлены в одну сторону.
Таким образом, введенные в способ и установку новые отличительные признаки в совокупности с известными признаками позволяют решить поставленную задачу.
Предлагаемое изобретение поясняется чертежами, где на фиг.1 дан продольный разрез устройства, на фиг.2 - сечение по А-А, на фиг.3 - сечение по Б-Б.
Способ осуществляют следующим образом. Поток первичного сжатого воздуха подают в нижнюю зону реактора, создавая кипящий слой. В верхней зоне реактора формируют зону горения и зону дожигания. Поток вторичного сжатого воздуха предварительно разделяют на два потока, один из которых подают непосредственно в зону горения, а другой - в зону дожигания. Поток вторичного сжатого воздуха на входе в зону горения формируют с безразмерной скоростью от λ=0,2 до λ=0,4, а на входе в зону дожигания с безразмерной скоростью от λ=0,2 до λ=1,0, где λ - отношение скорости потока продуктов сгорания к местной скорости звука. Введенный в зону горения поток вторичного сжатого воздуха формирует в ней сильно закрученные периферийный поток, перемещающийся в направлении нижней зоны, и приосевой поток, перемещающийся от зоны горения к зоне дожигания. Введенный в зону дожигания поток вторичного сжатого воздуха формирует в ней периферийный сильно закрученный поток, перемещающийся в направлении от зоны горения и индуцирующий приосевой сильно закрученный поток, перемещающийся в том же направлении. Высокий уровень окружных скоростей в зоне горения способствует формированию в ней высокого радиального градиента статического давления, который формирует в зоне горения осевой градиент статического давления. Направление осевого градиента статического давления в периферийном потоке - от нижней зоны к зоне дожигания, а в приосевом потоке - от зоны дожигания к нижней зоне. Высокий осевой градиент статического давления периферийного потока формирует высокие осевые скорости в периферийном потоке, что интенсифицирует процесс возврата в кипящий слой несгоревшего топлива и вторичного воздуха. Высокие окружные скорости периферийного сильно закрученного потока и размещение начала его формирования в верхней части зоны горения способствует концентрации несгоревшего топлива в периферийном потоке. Высокие окружные скорости приосевого сильно закрученного потока и размещение начала его формирования в нижней части зоны горения способствует сепарации несгоревшего топлива из приосевого потока в периферийный поток, начиная от нижней части зоны горения. Противоточное движение периферийного и приосевого потоков приводит к большим сдвиговым скоростям на границе их разделения, что способствует генерированию в области этой границы высокоразвитой турбулентности, превалирующей в радиальном направлении и приводящей к интенсификации процессов тепломассообмена, интенсифицирующих процессы смесеобразования и горения. Резкое сужение выходящего приосевого потока в плоскости начала формирования периферийного сильно закрученного потока и выхода приосевого потока в зону дожигания приводит к формированию высокоразвитой рециркуляционной области в верхней части зоны горения реактора. Рециркуляционная область, представляющая собой горообразную структуру потока, разделяет выходящий из зоны горения приосевой поток продуктов сгорания и несгоревших газообразных продуктов газификации от смеси вторичного сжатого воздуха и недогоревших твердых частиц топлива, сепарируемых в периферийный поток. В этой структуре потока осевые составляющие скорости периферийного и приосевого потоков зоны горения являются тангенциальными скоростями относительно оси вращения, представляющей собой окружность с центром на оси периферийного и приосевого потоков. Подаваемые в зону горения топливо и поток вторичного сжатого воздуха формируют в нижней зоне реактора с первичным потоком сжатого воздуха нижней зоны вращающийся кипящий слой топливо-воздушной смеси. Эту смесь поджигают в момент запуска способа от внешнего источника тепла, а затем процесс газификации продолжается самостоятельно. Другой поток вторичного сжатого воздуха вводят в зону дожигания, в которой он формирует периферийный сильно закрученный поток, перемещающийся от зоны горения и индуцирующий приосевой сильно закрученный поток, перемещающийся в том же направлении. В зоне дожигания периферийный поток эжектирует приосевой поток из зоны горения в зону дожигания и создает пониженное давление в зоне горения, осуществляя процесс дожигания полностью в зоне дожигания.
Таким образом, введенные в способ сжигания топлива новые отличительные признаки в совокупности с известными признаками позволяют повысить эффективность сжигания топлива за счет интенсификации процессов газификации, горения и дожигания и оптимизации процессов горения и дожигания путем перераспределения вторичного воздуха и формирования из него структуры потоков с оптимальными окружными и осевыми скоростями и расходами.
Устройство для сжигания топлива в кипящем слое содержит (см. фиг.1) реактор 1, включающий нижнюю зону 2 и верхнюю зону 3, устройство 4 пневматической подачи топлива в верхнюю зону 3, устройство 5 подачи первичного потока сжатого воздуха в нижнюю зону 2, воздухораспределительную решетку 6, установленную в верхней части нижней зоны 2 реактора 1, камеру 7, расположенную под воздухораспределительной решеткой 6 и соединенную с устройством 8 удаления негорючих компонентов. В верхнем торце 9 реактора 1 соосно внутренней поверхности верхней зоны 3 выполнено выходное отверстие 10. Верхняя зона 3 реактора 1 разделена на зону горения 11 и зону дожигания 12. Зона горения 11 расположена между нижней зоной 2 и зоной дожигания 12, которая ограничена торцем 9 реактора 1. Внутренняя поверхность зоны горения 11 выполнена цилиндрической, а внутренняя поверхность зоны дожигания 12 - конической с углом раскрытия 0-12 градусов в направлении верхнего торца реактора. Зона горения 11 и зона дожигания 12 соединены цилиндрическим каналом 13. Зона горения 11 в верхней части (см. фиг.2) содержит устройство 14 подачи вторичного сжатого воздуха, соединенное с одной стороны с ее внутренней цилиндрической поверхностью одним или несколькими тангенциальными сопловыми каналами 15, а с другой стороны - с устройством 4 пневматической подачи топлива. Зона дожигания 12 в нижней части (см. фиг.3) содержит устройство 16 подачи вторичного сжатого воздуха, соединенное с ее внутренней поверхностью одним или несколькими тангенциальными сопловыми каналами 17. Диаметр внутренней поверхности зоны дожигания 12 в сечении размещения устройства 16 подачи вторичного сжатого воздуха равен 0,4-0,8 диаметра внутренней поверхности зоны горения 11. Диаметр цилиндрического канала 13 равен 0,5-0,8 диаметра внутренней поверхности зоны дожигания 12 в сечении размещения устройства 16 тангенциальной подачи вторичного сжатого воздуха. Внутренняя поверхность зоны дожигания 12 выполнена конической с углом раскрытия 0-12 градусов в направлении верхнего торца 10 реактора. Тангенциальные сопловые каналы 15 и 17, соединяющие устройства 14 и 16 подачи вторичного сжатого воздуха с зоной горения 11 и зоной дожигания 12 соответственно, направлены в одну сторону. В нижней части реактора 1 установлено одно или несколько пусковых горелочных устройств 18, выходные сопла которых сообщаются с камерой 7 нижней зоны 2.
Устройство работает следующим образом. На режиме запуска из топлива и воздуха, поданных от внешних источников, в пусковых горелочных устройствах 19 формируется топливовоздушная смесь, которая в них поджигается и сжигается. Продукты сгорания подаются в камеру 7 и через воздухораспределительную решетку 6 в кипящий слой, разогревая его до температуры газификации. Поток первичного сжатого воздуха через устройство 5 поступает в камеру 7 нижней зоны 2. Из камеры 7 через воздухораспределительную решетку 6 воздух поступает для формирования над решеткой 6 кипящего слоя топливовоздушной смеси. Один поток вторичного сжатого воздуха через устройство 14 поступает в верхнюю часть зоны горения 11 и одновременно через устройство 4 пневматической подачи топлива сюда подается сжигаемое топливо, которое смешивается с воздухом с образованием топливовоздушной смеси, которая подается в тангенциальные сопловые каналы 15. В каналах 15 топливовоздушная смесь ускоряется и поступает в зону горения 11. Другой поток вторичного сжатого воздуха одновременно с первым подается через устройство 16 в тангенциальные сопловые каналы 17, в которых ускоряется и поступает в зону дожигания 12. Поступивший в зону горения 11 поток вторичного сжатого воздуха формирует в ней периферийный и приосевой сильно закрученные потоки, перемещающиеся от тангенциальных сопловых каналов 17 в направлении выходного отверстия 10. Противоточное движение периферийного и приосевого потоков приводит к большим сдвиговым скоростям на границе их разделения, что способствует генерированию в области этой границы высокоразвитой анизотропной турбулентности, превалирующей по радиусу вращающихся потоков. Введенный в зону дожигания 12 поток вторичного сжатого воздуха формирует в ней периферийный сильно закрученный поток, перемещающийся в направлении выходного отверстия 10 и индуцирующий приосевой закрученный поток, перемещающийся в том же направлении. Высокий уровень окружных скоростей в плоскости тангенциальных сопловых каналов 15 зоны дожигания и размещение сопловых каналов в ее нижней части вблизи цилиндрического канала 13 способствует формированию в этой плоскости высокого радиального градиента статического давления, который формирует осевой градиент статического давления, направленный от зоны горения 11 в зону дожигания 12. Наличие такого осевого градиента приводит к эжектированию периферийным потоком продуктов газификации и продуктов сгорания из приосевого потока зоны горения 11 в приосевой поток зоны дожигания 12, что способствует увеличению осевых - сдвиговых скоростей на границе разделения периферийного и приосевого потоков и снижению давления в зоне горения 11. Кроме того, завершение процессов рекомбинации, ограничение времени пребывания продуктов сгорания в зоне высокой температуры снижает выбросы окислов азота, окиси углерода и несгоревших углеводородов. Это улучшает экологические характеристики устройства.
Таким образом, введенные в устройство новые отличительные признаки в совокупности с известными признаками позволяют повысить эффективность сжигания топлива.

Claims (10)

1. Способ сжигания топлива в кипящем слое, в котором топливо подают в кипящий слой, а поток первичного сжатого воздуха - в нижнюю зону реактора, затем вводят в верхнюю зону реактора поток вторичного сжатого воздуха, из которого формируют сильно закрученный поток, создающий внутри, по крайней мере, одну зону противотока для возврата топлива в кипящий слой, отличающийся тем, что в верхней зоне реактора формируют зону горения и зону дожигания, при этом поток вторичного сжатого воздуха перед подачей в верхнюю зону разделяют на два потока, один из которых подают непосредственно в зону горения, в которой он формирует периферийный, перемещающийся в направлении нижней зоны, и приосевой, перемещающийся от зоны горения к зоне дожигания, сильно закрученные потоки, а другой поток вторичного сжатого воздуха вводят в зону дожигания, в которой он формирует периферийный сильно закрученный поток, перемещающийся в направлении от зоны горения, и индуцирующий приосевой сильно закрученный поток, перемещающийся в том же направлении, при этом между периферийным и приосевым потоками зоны горения формируют рециркуляционное торообразное течение, в котором осевые составляющие скорости периферийного и приосевого потоков зоны горения являются тангенциальными скоростями относительно оси вращения, представляющей собой окружность с центром на оси закрученных потоков.
2. Способ по п.1, отличающийся тем, что в зоне горения создают пониженное давление, эжектируя приосевой поток из зоны горения в зону дожигания, и осуществляют процесс дожигания полностью в зоне дожигания.
3. Способ по п.1, отличающийся тем, что в зону горения топливо подают с потоком вторичного сжатого воздуха.
4. Способ по п.1, отличающийся тем, что поток вторичного сжатого воздуха на входе в зону горения формируют с безразмерной скоростью от λ=0,2 до λ=0,4, где λ - отношение скорости потока продуктов сгорания к местной скорости звука.
5. Способ по п.1, отличающийся тем, что поток вторичного сжатого воздуха на входе в зону дожигания формируют с безразмерной скоростью от λ=0,2 до λ=1,0, где λ - отношение скорости потока продуктов сгорания к местной скорости звука.
6. Устройство для сжигания топлива в кипящем слое, содержащее реактор, имеющий нижнюю и верхнюю зоны, устройство подачи топлива в верхнюю зону, устройство подачи первичного потока сжатого воздуха в нижнюю зону, воздухораспределительную решетку, установленную в верхней части нижней зоны реактора, камеру, расположенную под воздухораспределительной решеткой и соединенную с устройством удаления негорючих компонентов, при этом внутренняя поверхность верхней зоны выполнена в виде внутренней боковой поверхности тела вращения, соосно с которой в верхнем торце реактора выполнено выходное отверстие, отличающееся тем, что верхняя зона реактора разделена на зону горения и зону дожигания, при этом внутренняя поверхность зоны горения выполнена цилиндрической и расположена зона горения между нижней зоной реактора и зоной дожигания, ограниченной верхним торцом реактора, причем зона горения и зона дожигания соединены цилиндрическим каналом и каждая из зон имеет устройство тангенциальной подачи вторичного сжатого воздуха, соединенное одним или несколькими тангенциальными сопловыми каналами с внутренней поверхностью соответствующей зоны, при этом устройство подачи вторичного сжатого воздуха зоны горения расположено в ее верхней части, а устройство подачи вторичного сжатого воздуха зоны дожигания - в нижней части зоны дожигания, при этом устройство подачи топлива соединено с верхней частью зоны горения.
7. Устройство по п.6, отличающееся тем, что диаметр внутренней поверхности зоны дожигания в сечении размещения устройства подачи вторичного сжатого воздуха равен 0,4-0,8 диаметра внутренней поверхности зоны горения.
8. Устройство по п.6, отличающееся тем, что внутренний диаметр цилиндрического канала, соединяющего зоны горения и дожигания, равен 0,5-0,8 диаметра внутренней поверхности зоны дожигания в сечении размещения устройства тангенциальной подачи вторичного сжатого воздуха.
9. Устройство по п.6, отличающееся тем, что внутренняя поверхность зоны дожигания выполнена конической с углом раскрытия 0-12° в направлении верхнего торца реактора.
10. Устройство по.п.6, отличающееся тем, что в устройствах тангенциальной подачи вторичного сжатого воздуха зоны горения и зоны дожигания каналы направлены в одну сторону.
RU2008130977/06A 2008-07-29 2008-07-29 Способ и устройство для сжигания топлива в кипящем слое RU2379586C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008130977/06A RU2379586C1 (ru) 2008-07-29 2008-07-29 Способ и устройство для сжигания топлива в кипящем слое

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008130977/06A RU2379586C1 (ru) 2008-07-29 2008-07-29 Способ и устройство для сжигания топлива в кипящем слое

Publications (1)

Publication Number Publication Date
RU2379586C1 true RU2379586C1 (ru) 2010-01-20

Family

ID=42120873

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008130977/06A RU2379586C1 (ru) 2008-07-29 2008-07-29 Способ и устройство для сжигания топлива в кипящем слое

Country Status (1)

Country Link
RU (1) RU2379586C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU185863U1 (ru) * 2018-06-15 2018-12-20 Марк Семенович Солонин Отопительное устройство

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU185863U1 (ru) * 2018-06-15 2018-12-20 Марк Семенович Солонин Отопительное устройство

Similar Documents

Publication Publication Date Title
US5199355A (en) Low nox short flame burner
JP2544662B2 (ja) バ―ナ―
US4443182A (en) Burner and method
CN106168378B (zh) 一种预混分级强旋流低污染液化气燃烧器
US6230635B1 (en) Device and method for combustion of fuel
AU2003212026A1 (en) Nox-reduced combustion of concentrated coal streams
CN102235666A (zh) 一种煤粉燃烧器及包括该煤粉燃烧器的煤粉锅炉
US5011400A (en) Controlled flow split steam burner assembly with sorbent injection
US9995480B2 (en) Burner
RU2647356C1 (ru) Противоточное вихревое горелочное устройство для сжигания твёрдого пылевидного топлива
RU2352864C1 (ru) Способ и устройство для сжигания топлива
RU2379586C1 (ru) Способ и устройство для сжигания топлива в кипящем слое
US5765488A (en) Cyclone furnace combustion system and method utilizing a coal burner
RU2212003C1 (ru) Способ и устройство для сжигания топлива
RU2389946C2 (ru) Способ сжигания топлива в циклонном предтопке котла и предтопок для его осуществления
RU2591070C2 (ru) Твердотопливный котел с вихревой топкой
RU2379587C1 (ru) Способ и устройство для сжигания топлива в кипящем слое
RU68652U1 (ru) Пылеугольная горелка с аэродинамическим преобразователем потока аэросмеси
RU2446350C1 (ru) Низкоэмиссионный циклонный реактор
GB1585410A (en) Burner
CN201688400U (zh) 一种煤粉燃烧器及包括该煤粉燃烧器的煤粉锅炉
RU2638500C1 (ru) Способ сжигания измельчённого твердого топлива и устройство для его осуществления
RU2391604C1 (ru) Горелочное устройство
RU131849U1 (ru) Вихревая горелка
RU2565737C1 (ru) Вихревое горелочное устройство сжигания твердого пылевидного топлива

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130730