RU2379483C1 - Комплекс для обустройства морского месторождения углеводородов - Google Patents

Комплекс для обустройства морского месторождения углеводородов Download PDF

Info

Publication number
RU2379483C1
RU2379483C1 RU2008137356/03A RU2008137356A RU2379483C1 RU 2379483 C1 RU2379483 C1 RU 2379483C1 RU 2008137356/03 A RU2008137356/03 A RU 2008137356/03A RU 2008137356 A RU2008137356 A RU 2008137356A RU 2379483 C1 RU2379483 C1 RU 2379483C1
Authority
RU
Russia
Prior art keywords
drive
combustion chamber
pump
external
complex
Prior art date
Application number
RU2008137356/03A
Other languages
English (en)
Inventor
Николай Борисович Болотин (RU)
Николай Борисович Болотин
Original Assignee
Николай Борисович Болотин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Борисович Болотин filed Critical Николай Борисович Болотин
Priority to RU2008137356/03A priority Critical patent/RU2379483C1/ru
Application granted granted Critical
Publication of RU2379483C1 publication Critical patent/RU2379483C1/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к добыче углеводородов. Обеспечивает повышение пластового давления, улучшение прогрева твердых углеводородов для их плавления и испарения и обеспечение надежности системы. Сущность изобретения: устройство содержит морскую платформу, добывающую скважину и устройство для нагнетания воды в скважину, содержащее, в свою очередь, насос с приводом, выход которого соединен с нагнетательной скважиной. Согласно изобретению после насоса по линии воды подключен теплообменник, установленный в выхлопном устройстве газотурбинного привода, содержащего, в свою очередь, двухвальный газотурбинный двигатель с внешним и внутренним валами, камерой сгорания и двигатель Стирлинга, связанный с внешним валом. Внешний и внутренний валы соединены с биротативным электрогенератором, соединенным электрической связью с приводом насоса для перекачки углеводородов. Перед двигателем Стирлинга установлена дополнительная камера сгорания, а перед теплообменником внутри выхлопного устройства - вторая дополнительная камера сгорания. 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области разработки месторождений углеводородов, находящихся в акватории, в том числе нефти и газогидратов.
Известна платформа морского бурения нефтяных и газовых скважин по патенту РФ №2166611, которая имеет буровую площадку, установленную на плавсредствах. Недостаток: низкая надежность устройства, неспособность его противостоять штормам, течению и смещению ледяного покрова.
Известна морская буровая платформа по заявке РФ на изобретение №2007129582. Морская буровая платформа содержит основание и опоры, известно изобретение по патенту РФ на изобретение №2288320. Морская платформа содержит основание и опоры с защитным блоком и источник электроэнергии, подключенный к потребителям энергии.
Известен способ добычи газа из твердых газогидратов, согласно которому в газогидратной залежи создаются неравновесные термобарические условия путем снижения давления и подвода тепла, при этом теплоподвод осуществляют введением твердого сорбента в зону залегания газогидрата для поглощения воды с удельным тепловыделением, превышающем теплоту диссоциации твердого газогидрата (см. патент RU 2159323, E21B 43/00, 1999).
Недостатком этого способа является необходимость создания наземных сооружений для подачи в зону залегания газогидрата через скважину твердого сорбента и последующей регенерации сорбента, а также малая площадь контакта сорбента в вертикальном стволе скважины с породой, содержащей газогидрат.
Из известных способов наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ разработки месторождений твердых углеводородов, включающий разбуривание залежи системой сгруппированных по площади залежи скважин с горизонтальными участками, в каждой группе которой через один ряд скважин производят закачку теплоносителя в одни продуктивные пласты, а из другого осуществляют отбор углеводородов из других продуктивных пластов, причем в смежных группах скважин попеременно чередуют продуктивные пласты, в которые производят закачку теплоносителя и из которых отбирают углеводороды, см. патент US №5016709, E21B 43/24, 1991.
Известны устройство и способ для термической разработки твердых углеводородов по патенту РФ №2231635, прототип. Техническим результатом этого изобретения является обеспечение интенсификации процессов теплопередачи между пластами и сокращения затрат на производство и закачку теплоносителя. Способ включает разбуривание залежи пересекающей пласты скважиной с системой горизонтальных боковых секций, формирование теплового поля в одном из пластов и отбор углеводородов из другого пласта. При этом бурение вышеупомянутой скважины производят с двумя горизонтальными ступенями, соответственно в верхнем продуктивном и нижнем пластах, из которых осуществляют бурение по меньшей мере двух боковых горизонтальных стволов в каждом пласте, замыкающихся друг с другом на проектной стыковочной траектории с образованием замкнутых каналов циркуляции между пластами. Герметизируют околоскважинное пространство путем установки на концах горизонтальных стволов заколонных пакеров и производят дискретную перфорацию упомянутых стволов с образованием двух секций перфорации в начале и конце каждого ствола. Затем осуществляют подачу под действием перепада давления между пластами горячей воды из нижнего пласта в верхний и принудительную подачу охлажденной воды из верхнего пласта в нижний до восстановления коллекторских свойств продуктивного пласта. После чего перекрывают участки боковых стволов между секциями перфорации внутриколонными пакерами для сообщения разобщенных секций перфорации с околоскважинными пространствами. При этом в процессе эксплуатации поддерживают непрерывную циркуляцию по образованным замкнутым каналам горячей воды из нижнего пласта и охлажденной из верхнего. Полученные продукты разложения гидратов - газ и воду направляют для разделения в сепаратор.
Эти устройство и способ позволяют повысить эффективность процесса теплового воздействия за счет реализации принципа многоуровнего воздействия на пласты и, как следствие, увеличить степень нефтеизвлечения углеводородов.
К недостаткам способа и устройства относятся большой расход теплоносителя, отсутствие мощного источника энергии, а также сложность реализации многоуровневой схемы теплового воздействия, что в итоге снижает экономичность процесса разработки, повышая удельные затраты на единицу добываемой продукции.
Задачи создания изобретения: повышение надежности работы комплекса, повышение пластового давления и улучшение прогрева твердых углеводородов для их плавления и испарения газогидратов при их наличии.
Решение указанных задач достигнуто в комплексе для обустройства морского месторождения углеводородов, содержащем морскую платформу, добывающую скважину и устройство для нагнетания воды в скважину, содержащее, в свою очередь, насос с приводом, выход которого соединен с нагнетательной скважиной, тем, что после насоса по линии воды подключен теплообменник, установленный в выхлопном устройстве газотурбинного привода, содержащего, в свою очередь, газотурбинный двигатель и двигатель Стирлинга, вал которого соединен с электрогенератором, соединенным электрической связью с приводом насоса для перекачки углеводородов, перед двигателем Стирлинга установлена дополнительная камера сгорания, а перед теплообменником внутри выхлопного устройства установлена вторая дополнительная камера сгорания. Газотурбинный двигатель содержит воздухозаборник, компрессор, камеру сгорания и турбину. К камерам сгорания (основной и дополнительным) подключена топливная система двигателя, содержащая топливный насос с приводом, регулятор расхода и отсечные клапаны.
Предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью, т.е. всеми критериями изобретения. Новизна и изобретательский уровень подтверждаются проведенными патентными исследованиями.
Сущность изобретения поясняется на фиг.1…4, где:
на фиг.1 приведен комплекс,
на фиг.2 приведен газотурбинный привод,
на фиг 3 приведен двигатель Стирлинга,
на фиг.4 приведен разрез А-А.
Морская буровая платформа 1 (фиг.1) содержит установленное на опорах 2 основание 3. Основание 3 установлено на грунте 4, ниже которого находится продуктивный пласт 5, под которым имеется водоносный пласт 6. Морская буровая платформа 6 имеет колонну добывающей скважины 7 и колонну нагнетательной скважины 8.
Колонна добывающей скважины 8 подключена к входу в сепаратор 9, первый выход из которого подключен к перекачивающему насосу 10, а второй выход - к первому входу трехходового крана 11. Ко второму входу трехходового крана 11 подсоединен водозаборный патрубок 12, а к его выходу - водяной насос 13 с приводом 14. Трубопровод подачи воды 15 через управляемый клапан 16 соединен с входом в теплообменник 17, выход которого соединен трубопроводом подачи горячей воды 18 с колонной нагнетательной скважины 8. Перекачивающий насос 10 соединен валом 19 с приводом перекачивающего насоса 20.
Комплес (фиг.1) содержит газотурбинный двигатель ГТД 21, который выполнен двухвальным и содержит внутренний вал 22 и внешний вал 23, компрессор 24, состоящий, в свою очередь, из первого и второго каскадов компрессора, соответственно 25 и 26, далее расположены камера сгорания 27, турбина 28, содержащая, в свою очередь, сопловой аппарат 29 и рабочее колесо 30. Газотурбинный двигатель содержит выхлопное устройство 31. Газотурбинный двигатель 21 содержит систему топливоподачи. Система топливоподачи содержит топливный насос 32 и привод топливного насоса 33, топливный трубопровод 34, отсечные клапаны 35, 36 и 37. Отсечной клапан 35 установлен перед камерой сгорания 27, а отсечной клапан 36 - перед дополнительной камерой сгорания 38, которая установлена перед двигателем Стирлинга 39 за турбиной 28, т.е. за ее рабочим колесом 30, отсечной клапан 37 - перед второй дополнительной камерой сгорания 40, установленной в выхлопном устройстве 31 перед теплообменником 17.
Двигатель Стирлинга 39 (фиг.1) состоит из двух частей: группы рабочих цилиндров 41 и группы расширительных цилиндров 42, которые соединены трубопроводами 43. Группу расширительных цилиндров 42 предпочтительно установить вне газового тракта ГТД 21.
На фиг.3 и 4 приведена схема одного из вариантов исполнения двигателя Стирлинга 40, который содержит группу рабочих цилиндров 41, имеющих оребрение 44 с установленным внутри каждого из них в полости «Б» рабочим поршнем 45, который шатуном 46 соединен с валом двигателя 28, и группу расширительных цилиндров 42 с установленным внутри каждого из них в полости «В» вытеснительным поршнем 47. Каждый расширительный цилиндр 42 оборудован снаружи кожухом 48, образующим полость «Г» для охлаждения расширительного цилиндра 42. Вытеснительный поршень 47 соединен шатуном 49 с внутренним валом двигателя 22. Трубопровод 43 соединяет полости «Б» и «В» для перетекания рабочего тела из рабочего цилиндра 41 в расширительный цилиндр 42. К полости «Г» подсоединены воздухозаборные патрубки 50, а выхлопные трубопроводы 51 соединяют полость «Г» с внутренней полостью «Д» выхлопного устройства 31 (фиг.2).
К внутреннему валу 22 подсоединен электрогенератор 52, который электрическими связями 53 соединен с приводом 20. Установка содержит блок управления 54, который соединен электрическими связями 53 с электрогенератором 52 и отсечными клапанами 35, 36 и 37, а также со всеми датчиками контроля (на фиг.1…4 датчики не показаны).
Топливная система двигателя, т.е. топливный трубопровод 34, подсоединена к основному трубопроводу 55, предназначенному для перекачки добываемого продукта, который содержит задвижку 56.
При работе при помощи стартера (на фиг.1…4 стартер не показан) запускается ГТД 21, при этом включается привод насоса 33, топливный насос 32 подает топливо по топливному трубопроводу 34 в камеру сгорания 27.
Топливо воспламеняется при помощи электрозапальника (на фиг.1…4 не показано). Выхлопные газы проходят через турбину 28. Рабочее колесо турбины 29, с внешним валом 23 газотурбинного двигателя 21 раскручиваются, т.е. ГТД 21 запускается.
Двигатель Стирлинга 39 запускается значительно позже из-за его инерционности. Шатуны 46 и 49 и поршни 45 и 47 двигателя Стирлинга приводятся в действие при помощи внутреннего вала 22 газотурбинного двигателя 21 от компрессора первого каскада 25, который раскручивается в режиме авторотации воздухом, проходящим через него. Механизм преобразования вращательного движения в возвратно-поступательное (этот механизм на фиг.1…4 детально не показан, но он может быть выполнен в виде коленчатого вала с шатунами) преобразует вращательное движение внутреннего вала 22 в возвратно-поступательное движение поршней 45 и 47 двигателя Стирлинга 39. Выхлопные газы нагревают через оребрение 44 рабочее тело внутри рабочих цилиндров 41. Для работы двигателя Стирлинга 39 достаточно иметь разницу температур на двух группах цилиндров: рабочих 41 и расширительных 42. Первоначально двигатель Стирлинга 39 работает принудительно и не выдает мощность, а, наоборот, ее потребляет. Примерно через 5…10 мин. по мере прогрева рабочего тела внутри рабочих цилиндров 41 двигателя Стирлинга 39 он выходит на расчетный режим работы. Медленный выход двигателя Стирлинга 39 на расчетный режим работы является одним из его недостатков, но высокий КПД, надежность и хорошие экологические свойства в сочетании с ГТД, имеющим хорошие характеристики запуска, делает предложенный привод чрезвычайно интересным по всем показателям одновременно, т.к. позволит частично утилизировать тепло в реактивном сопле и применить вместо 4…5 ступеней турбины только одну ступень.
В результате продукты сгорания раскручивают ротор, двигатель Стирлинга через внутренний вал раскручивает электрогенератор 52, который вырабатывает электроэнергию, которая электрическими связями 53 подается на привод перекачивающего насоса 20 и к другим потребителям электроэнергии. Приводится в действие насос для перекачки углеводородов 10, который повышает давление добываемого продукта (углеводородов) в основной магистрали 55. Одновременно водяной насос 13 забирает воду или из водоема, или из сепаратора 9, в зависимости от положения трехходового крана 11, и по трубопроводу подачи воды 15 через управляемый клапан 16 вода поступает в теплообменник 17, где подогревается выхлопными газами, выходящими из газотурбинного привода 21 в выхлопное устройство 31, и далее по трубопроводу подачи горячей воды 18 поступает в нагнетательную скважину 1. Давление в продуктивном пласте 5 повышается. При наличии твердых газогидратов они расплавляются и становятся пригодными для отбора в добывающих скважинах.
При отказе газотурбинного двигателя открывают отсечной клапан 36 и топливо поступает в дополнительную камеру сгорания 37. Установка продолжает работу в том же режиме. При отказе двигателя Стирлинга 39 закрывают отсечной клапан 36 и открывают отсечной клапан 37 для подачи топлива во вторую дополнительную камеру сгорания 40. Комплекс продолжает работу в том же режиме. Потребление энергии осуществляется от накопителей энергии или резервного электрогенератора (на фиг.1…4 не показано). Это значительно повышает надежность комплекса в целом.
Применение источника тепловой энергии, работающего на добываемом топливе, дает ряд преимуществ, связанных с тем, что в отдаленные районы страны трудно доставить топливо и компактный и мощный источник энергии, каким является газотурбинная установка. Кроме того, применение замкнутой схемы подогрева без расходования воды также дает преимущество, уменьшает загрязнение добываемой смеси.
Применение в качестве основного теплоносителя горячей воды, имеющей высокую температуру и большую теплоемкость, позволяет быстрее и эффективнее произвести термическую обработку продуктивного пласта, состоящего преимущественно из углеводородов в твердой фазе и льда, и не загрязняет окружающую среду, т.к. вода непрерывно циркулирует по замкнутому контуру, отделяясь в сепараторе. Кроме того, утилизация тепла в выхлопном устройстве газотурбинной установки повышает ее КПД. Обеспечивается автоматическое согласование распределения мощности, идущей на подогрев воды и привод компрессора и насоса для перекачки нефти и сепаратора.
Утилизация тепла при помощи теплообменника (регенерация), используемая традиционно, не эффективна, например, из-за больших габаритов теплообменников, их большого веса, загромождения газового тракта и необходимости дальнейшего преобразования тепловой энергии подогретого воздуха или пара в механическую энергию, например, при помощи паровой турбины. В результате использования утилизации тепла выхлопных устройств КПД установки повышается на 20%…30%.
Предложенное устройство позволяет:
- повысить надежность комплекса за счет сохранения его работоспособности при серьезном отказе в работе газотурбинного двигателя за счет применения двух дополнительных камер сгорания, установленных перед двигателем Стирлинга и перед теплообменником,
- утилизировать ранее не используемую энергию газотурбинного двигателя для подогрева воды перед ее подачей в продуктивный пласт и способствовать разложению газовых гидратов на газ и воду, при их добыче,
- поддерживать высокое пластовое давление в продуктивных пластах за счет закачки горячей воды,
- обеспечить экологичность процесса добычи углеводородов (нефти, газа или газогидратов) за счет возврата пластовой воды в продуктивный пласт (или ниже него - в водоносный пласт),
- обеспечить работу газотурбинной установки на добываемых углеводородах.

Claims (3)

1. Комплекс для обустройства морского месторождения углеводородов, содержащий морскую платформу, добывающую скважину и устройство для нагнетания воды в скважину, содержащее, в свою очередь, насос с приводом, выход которого соединен с нагнетательной скважиной, отличающийся тем, что после насоса по линии воды подключен теплообменник, установленный в выхлопном устройстве газотурбинного привода, содержащего, в свою очередь, двухвальный газотурбинный двигатель с внешним и внутренним валами, камерой сгорания и двигатель Стирлинга, связанный с внешним валом, внешний и внутренний валы соединены с биротативным электрогенератором, соединенным электрической связью с приводом насоса для перекачки углеводородов, перед двигателем Стирлинга установлена дополнительная камера сгорания, а перед теплообменником внутри выхлопного устройства - вторая дополнительная камера сгорания.
2. Комплекс для обустройства морского месторождения углеводородов по п.1, отличающийся тем, что двухвальный газотурбинный двигатель содержит воздухозаборник, компрессор и турбину.
3. Комплекс для обустройства морского месторождения углеводородов по п.2, отличающийся тем, что к камерам сгорания подключена топливная система двигателя, содержащая топливный насос с приводом, регулятор расхода и отсечные клапаны.
RU2008137356/03A 2008-09-18 2008-09-18 Комплекс для обустройства морского месторождения углеводородов RU2379483C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008137356/03A RU2379483C1 (ru) 2008-09-18 2008-09-18 Комплекс для обустройства морского месторождения углеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008137356/03A RU2379483C1 (ru) 2008-09-18 2008-09-18 Комплекс для обустройства морского месторождения углеводородов

Publications (1)

Publication Number Publication Date
RU2379483C1 true RU2379483C1 (ru) 2010-01-20

Family

ID=42120815

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008137356/03A RU2379483C1 (ru) 2008-09-18 2008-09-18 Комплекс для обустройства морского месторождения углеводородов

Country Status (1)

Country Link
RU (1) RU2379483C1 (ru)

Similar Documents

Publication Publication Date Title
US5515679A (en) Geothermal heat mining and utilization
US9482109B2 (en) Compressed gas energy storage and release system
US20110100002A1 (en) Process to obtain thermal and kinetic energy from a geothermal heat source using supercritical co2
US7975482B2 (en) Method and device for the utilization of supercritical subsurface steam in combination with supercritical thermal and hydraulic power stations
LT5472B (lt) Giluminių geoterminių rezervuarų įrengimo ir naudojimo būdas
CN102686850A (zh) 水下压缩流体能量存储系统
EA038563B1 (ru) Геотермальное энергетическое устройство
RU2381349C1 (ru) Комплекс для обустройства морского месторождения углеводородов
CN108035699A (zh) 一种利用海底地热能原位开采天然气水合物的系统及方法
RU2379482C1 (ru) Комплекс для обустройства морского месторождения углеводородов
RU2382878C1 (ru) Устройство для закачки горячей воды в скважину
RU2379483C1 (ru) Комплекс для обустройства морского месторождения углеводородов
RU2379484C1 (ru) Комплекс для обустройства морского месторождения углеводородов
RU2379481C1 (ru) Комплекс для обустройства морского месторождения углеводородов
RU2379480C1 (ru) Комплекс для обустройства морского месторождения углеводородов
RU2316648C1 (ru) Забойный парогазогенератор
RU2377393C1 (ru) Комплекс для обустройства морского месторождения углеводородов
RU2377402C1 (ru) Устройство для нагнетания воды в скважину
RU2376457C1 (ru) Морская буровая платформа
KR20230160390A (ko) 지열 에너지를 이용한 발전 장치 및 방법
AU2021100825A4 (en) A geothermal pumping station
RU2567583C1 (ru) Способ разработки вязкой нефти, устройство для его осуществления и забойный газогенератор
AU2022219961A1 (en) A geothermal pumping station
AU2021100827A4 (en) A geothermal desalination and pumping system
RU2133416C1 (ru) Способ работы комплексной энерготехнологической установки