RU2371729C1 - Датчик тока и напряжения - Google Patents

Датчик тока и напряжения Download PDF

Info

Publication number
RU2371729C1
RU2371729C1 RU2008125026/28A RU2008125026A RU2371729C1 RU 2371729 C1 RU2371729 C1 RU 2371729C1 RU 2008125026/28 A RU2008125026/28 A RU 2008125026/28A RU 2008125026 A RU2008125026 A RU 2008125026A RU 2371729 C1 RU2371729 C1 RU 2371729C1
Authority
RU
Russia
Prior art keywords
voltage
current
capacitive
transmission line
resistive
Prior art date
Application number
RU2008125026/28A
Other languages
English (en)
Inventor
Анатолий Яковлевич Картелев (RU)
Анатолий Яковлевич Картелев
Александр Александрович Сидоров (RU)
Александр Александрович Сидоров
Александр Николаевич Павлов (RU)
Александр Николаевич Павлов
Original Assignee
Анатолий Яковлевич Картелев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анатолий Яковлевич Картелев filed Critical Анатолий Яковлевич Картелев
Priority to RU2008125026/28A priority Critical patent/RU2371729C1/ru
Application granted granted Critical
Publication of RU2371729C1 publication Critical patent/RU2371729C1/ru

Links

Images

Abstract

Изобретение относится к электротехнике и предназначено для одновременного измерения напряжения и тока в высоковольтных коаксиальных формирующих и передающих линиях. Технический результат - расширение информационных возможностей и повышение точности определения энергии и мощности, выделяемых в нелинейных нагрузках. В датчике тока (индуктивном поясе Роговского), выполненном в виде тороидальной катушки, намотанной на изоляционном каркасе, размещенной в кольцевой проточке на одном из рабочих электродов высоковольтной установки или линии передачи, прикрытой металлической крышкой и соединенной с рабочим электродом одним своим выводом напрямую, а другим выводом - через резистивную нагрузку, новым является то, что металлическая крышка изолирована от рабочего электрода и соединена с рабочим электродом через емкостную нагрузку. Кроме того, резистивная и емкостная нагрузки размещены за пределами рабочего электрода высоковольтной установки или обратного проводника линии передачи в отдельных дополнительных экранах; резистивная и емкостная нагрузки подключены через общий кабель к одному регистратору. 4 з.п. ф-лы, 7 ил.

Description

Изобретение относится к электротехнике и предназначено для одновременного измерения тока и напряжения в высоковольтных коаксиальных формирующих и передающих линиях.
Задача измерения величины мощности, выделяющейся в высоковольтных электроразрядных установках в соответствии с формулой P=U·I, часто затруднена или не находит решения из-за невозможности одновременного измерения тока и напряжения в разрядной цепи, а точнее в исследуемой нагрузке.
Известны датчики напряжения и тока, представляющие собой самостоятельные (автономные) конструкции. Так, в статье (C.A.Ekdahl. Датчики напряжения и тока для эксперимента с Z-пинчем большой плотности.// Rev. Sci. Instrum., 51 (1980), №12, с.1645-1648) описаны емкостный датчик напряжения и датчик тока с индуктивным шунтом.
Емкостный датчик напряжения представляет собой (см. фиг.2 вышеуказанной статьи) цилиндрический зондовый электрод, имеющий емкостную связь с центральным проводником формирующей линии и гальваническую связь с осциллографом. Зондовый электрод (или электрод связи) выполнен в виде металлического стакана диаметром 1,6 см и длиной 2,3 см. Для установки и герметизации зондового электрода в наружный проводник формирующей линии вварен специальный фланец с отверстием по центру. Зондовый электрод установлен в этом отверстии так, что дно электрода связи находится заподлицо с внутренней поверхностью наружного проводника формирующей линии. Боковая поверхность электрода связи изолирована от наружного проводника формирующей линии и корпуса фланца при помощи тефлоновой изоляционной втулки. В дно зондового электрода впаян одним концом резистор, второй конец которого подпаян к центральному штырю радиочастотного коаксиального разъема, закрепленному на фланце. При вышеуказанных размерах зондового электрода его емкость относительно внутреннего высоковольтного проводника формирующей линии оказалось равной 2,2 пФ, а относительно наружного заземленного проводника формирующей линии - 8 пФ.
Вследствие малой емкости зондового электрода относительно земли выходной сигнал с емкостного датчика пропорционален производной напряжения на формирующей линии. От коаксиального разъема выходной сигнал с емкостного датчика передавался коаксиальным кабелем в экранированное помещение и там интегрировался пассивным интегратором с постоянной времени RC≥5 мкс. Благодаря использованию интегратора электромагнитные помехи, идущие по коаксиальному кабелю, интенсивно ослаблялись, а результирующий сигнал становился пропорциональным напряжению на формирующей линии. При использовании пятимикросекундных интеграторов и пятидесятиомного передающего кабеля расчетная чувствительность емкостного датчика составила 22 мВ/кВ.
Датчик тока с индуктивным шунтом представляет собой (см. фиг.4 статьи) кольцевую канавку, проточенную в одном из фланцев обратного токопровода коаксиальной формирующей линии. Фланцы в месте канавки разделены воздушным зазором. Жила измерительного кабеля напрямую или через резистор соединена с внутренней поверхностью одного фланца, а оплетка измерительного кабеля подключена к наружной поверхности второго фланца через корпус кабельного разъема. Другими словами, измерительный кабель подключен к малому по размерам (сечение 0,8 × 0,8 см) и, соответственно, тороидальному и малоиндуктивному витку с током.
Недостатки использования известных емкостного датчика напряжения и датчика тока с индуктивным шунтом:
- амплитудная, фазовая и временная погрешности измерении напряжения и тока и, соответственно, неточность определения мощности, выделяемой в нагрузке, так как емкостный датчик напряжения и датчик тока с индуктивным шунтом устанавливаются в различных частях устройства для термоядерного синтеза: емкостный датчик устанавливался в водяной формирующей линии; датчик тока - в разрядной камере; выходные сигналы от них к осциллографам передавались по различным кабелям;
- необходимость применения третьего устройства для синхронного запуска осциллографов и приема сигналов от емкостного датчика напряжения и датчика тока с индуктивным шунтом.
Этими же недостатками страдают и отечественные системы для измерения напряжения и тока в импульсных высоковольтных системах. Так, при создании и исследовании мощного импульсного рентгеновского источника (см. статью В.А.Филатов, А.М.Гафаров, В.М.Корепанов, Н.Д.Антонов, А.В.Плотникова. Малогабаритный источник рентгеновского излучения - Рапид-М. Труды VII Забабахинских научных чтений, Изд-во РФЯЦ-ВНИИТФ, г.Снежинск, 2003 г.) для измерения тока диода и напряжения на проходном изоляторе были применены два типа делителей напряжения: омические и емкостные делители напряжения, а также индуктивные пояса Роговского.
Делители напряжения и индуктивные пояса из-за их различной конструкции располагались в различных местах установки Рапид-М и подключались к различным измерительным устройствам: делители напряжения устанавливались за включающим разрядником конденсаторной батареи и напротив проходного изолятора; индуктивные пояса Роговского - на входе в вакуумную разрядную камеру. Напряжение на самом диоде (после плазменных размыкателей) не измерялось, и поэтому мощность, выделяемую в диоде, определить не удалось. Кроме того, выходные сигналы с делителей напряжения и поясов Роговского были сдвинуты по времени друг относительно друга, а на кабельных измерительных линиях наблюдались дополнительные помехи в виде выравнивающих токов.
Наиболее близким к заявляемому изобретению является датчик тока в виде индуктивного пояса Роговского (см. статью Вассерман С.Б. Работа пояса Роговского при измерении токов импульсных пучков наносекундной длительности. // Приборы и техника эксперимента, 1972, №2, с.99-103, рис.2), представляющий собой тороидальную катушку индуктивности на изоляционном каркасе, размещенную в металлическом экране - в кольцевой проточке на аноде ускорителя и охватывающую ток - пучок электронов. От электростатических наводок тороидальная катушка индуктивности закрыта Г-образной металлической крышкой, гальванически соединенной с экраном - анодом на одной стороне проточки и образующей воздушный (изоляционный) лабиринт в экране на другой стороне проточки. Один вывод катушки индуктивности соединен с экраном, а второй вывод катушки индуктивности - с центральным штырем радиочастотного разъема, закрепленного на экране. Нагрузкой пояса служит дисковый резистор УНУ-Ш-0,25, встроенный в разъем. От разъема отходит измерительный кабель, связанный с осциллографом ОК-19М. При равномерной намотке катушки индуктивности и выборе постоянной времени пояса τn=L/(R+r)>>τи, где L - индуктивность пояса; r и R - активное сопротивление обмотки пояса и внешней резистивной нагрузки соответственно; τи - длительность измеряемого импульса тока, ток в обмотке пояса и нагрузке обратно пропорционален числу витков катушки индуктивности i2=i1/w, где w - число витков обмотки пояса; i1 - ток пучка электронов.
Недостатки прототипа - ограниченные информационные возможности (измерение только параметров тока и импульсного магнитного поля в ускорителе).
Задача изобретения - повышение точности интерпретации и понимания физических процессов в системах с нелинейной нагрузкой (в термоядерных установках, ускорителях заряженных частиц, электрогидравлических установках и т.п.), где между током и напряжением нет очевидной и определенной зависимости.
Технический результат предлагаемого изобретения - расширение информационных возможностей датчика за счет дополнительного измерения напряжения; повышение точности определения мощности, генерируемой и выделяемой в высоковольтных коаксиальных формирующих и передающих линиях путем снижения амплитудной, временной и фазовой погрешностей измерения составляющих этой мощности, а также упрощение и удешевление конструкции измерительного устройства.
Технический результат достигается тем, что в известном датчике тока (поясе Роговского), выполненном в виде тороидальной катушки, намотанной на изоляционном каркасе, размещенной в кольцевой проточке на одном из рабочих электродов высоковольтной установки или линии передачи, прикрытой металлической крышкой и соединенной с рабочим электродом одним выводом напрямую, а другим выводом - через резистивную нагрузку, новым является то, что металлическая крышка изолирована от рабочего электрода и соединена с рабочим электродом через емкостную нагрузку.
Кроме того, резистивная и емкостная нагрузки размещены за пределами рабочего электрода высоковольтной установки или линии передачи в отдельных дополнительных экранах; резистивная и емкостная нагрузки подключены через общий кабель к одному регистратору.
Изоляция металлической крышки от одного из электродов высоковольтной установки или обратного проводника линии передачи и соединение ее с электродом установки или обратным проводником линии передачи через емкостную нагрузку обеспечивает:
- свободное прохождение через твердотельный (в виде эпоксидной смолы) или пленочный изолятор между крышкой и рабочим электродом установки измеряемого магнитного поля к тороидальной катушке индуктивности и нормальную работу индуктивного датчика тока (пояса Роговского);
- превращение металлической крышки в электрод связи, емкостно связанный одновременно с высоковольтным и заземленным электродами высоковольтной установки. С учетом внешней емкостной нагрузки металлическая крышка становится одним из электродов емкостного делителя. Напряжение на крышке и емкостной нагрузке при этом становится равным V2=V1(C1/CH), где V1 - напряжение на высоковольтном электроде; C1 - емкость между высоковольтным электродом и металлической крышкой; Сн - емкость внешней нагрузки. Это напряжение ослаблено примерно в 103-104 раз, и его можно без опасений передать дальше по измерительному кабелю и измерить осциллографом и по нему судить о том, как ведет себя высокое напряжение в электрофизической установке;
- пространственное совмещение активных элементов индуктивного датчика тока и емкостного датчика напряжения (они находятся в одной точке линии передачи или на одном электроде высоковольтной установки) и ликвидацию временной погрешности в измерениях мощности (за счет отсутствия разности времен пробега электромагнитной волны от датчика напряжения к датчику тока) и амплитудной погрешности (за счет отсутствия разности напряжений между отдельными частями - точками высоковольтной установки);
- возможность изготовления датчика тока и напряжения в виде одной цельной конструкции - специального коаксиального переходника, который может быть встроен (врезан) в любую точку формирующей линии, или фрагмента рабочего электрода высоковольтной установки. Тем самым уменьшается вдвое число врезок в заземленный проводник линии передачи, и уменьшаются затраты на изготовление и эксплуатацию комбинированного датчика напряжения и тока;
- ликвидацию на кабельных измерительных линиях дополнительных помех в виде выравнивающих токов (разъемы от магнитного и емкостного датчиков расположены рядом и под одним электрическим потенциалом) и обеспечение безопасности использования современных двухлучевых цифровых осциллографов.
Расположение резистивной и емкостной нагрузок за пределами рабочего электрода (рабочего объема) высоковольтной установки или обратного заземленного проводника линии передачи и в отдельных экранах обеспечивает:
- повышение помехоустойчивости электрического и магнитного каналов измерений, так как мощное импульсное магнитное поле, создаваемое током в высоковольтной установке или в передающей линии, не пронизывает низковольтные и чувствительные к помехам цепи резистивной и емкостной нагрузок датчиков напряжения и тока;
- возможность регулирования (за счет изменения параметров резистивной и емкостной нагрузок, расположенных в отдельных экранах) постоянной времени и чувствительности электрического и магнитного каналов измерений без внедрения собственно в передающую линию или рабочий объем высоковольтной установки, часто отвакуумированных или заполненных жидким диэлектриком.
Подключение резистивной и емкостной нагрузок к одному регистратору, например двухлучевому осциллографу, через идентичные или один общий измерительный кабель уменьшает временную погрешность измерений, так как автоматически результаты измерений напряжения и тока накладываются на одну временную шкалу, а также исключает необходимость во внешней синхронизации (канал U осциллографа может запускать канал I и наоборот).
На фиг.1 и 2 приведена конструкция (поперечный и продольный разрезы) предлагаемого датчика тока и напряжения.
На фиг.3 приведена фотография датчика тока и напряжения, спроектированного и изготовленного авторами согласно изобретению для целей измерения тока, напряжения и мощности, выделяемой в нелинейной нагрузке скважинных электрогидравлических аппаратов.
На фиг.4 приведены осциллограммы напряжения (положительный прямоугольный импульс амплитудой 9,736 В) и тока (отрицательный треугольный импульс амплитудой - 28,144 В), полученные с помощью предлагаемого датчика тока и напряжения фиг.3 при исследованиях электрических разрядов в пресной воде.
На фиг.5 приведены осциллограммы напряжения (положительный экспоненциальный импульс амплитудой 9,588 В) и тока (отрицательный экспоненциальный импульс амплитудой - 14,894 В), полученные с помощью предлагаемого датчика тока и напряжения фиг.3 при исследованиях электрических разрядов в минерализованной скважинной жидкости.
На фиг.5 и 6 приведены осциллограммы энергии, вводимой в канал разряда в воде, и активного сопротивления канала разряда в воде, рассчитанные на основе осциллограммы фиг.4.
Предлагаемый датчик тока и напряжения представляет собой специальный измерительный модуль, выполненный (см. фиг.1 и 2) в виде фрагмента высоковольтной коаксиальной линии передачи, и содержит внутренний высоковольтный проводник 1, наружный заземленный проводник 2 и промежуточный высоковольтный изолятор 3 в виде элегаза, твердой или жидкой изоляции.
В наружном заземленном проводнике 2 сделана кольцевая проточка, в которую уложена тороидальная катушка индуктивности 4 из медного изолированного проводника. Тороидальная катушка индуктивности 4 намотана на изоляционном каркасе 5. Продольные оси проточки и катушки индуктивности повторяют конфигурацию магнитной силовой линии. Один конец катушки 4 соединен с заземленным наружным проводником 2 напрямую, другой конец катушки 4 присоединен к центральному штырю первого коаксиального высокочастотного разъема 6, установленного на наружном заземленном проводнике 2 линии передачи.
Над тороидальной катушкой индуктивности 4 заподлицо с заземленным наружным проводником 2 или несколько выше него расположена крышка-электрод связи 7, выполненная в виде металлического кольца. Крышка-электрод связи 7 изолирована от катушки индуктивности 4 и заземленного проводника 2 линии передачи с помощью пленочной или эпоксидной изоляции 8. Крышка-электрод связи 7 соединена проводником с центральным штырем второго коаксиального высокочастотного разъема 9, установленного на наружном заземленном проводнике 2 линии передачи.
Первый 6 и второй 9 коаксиальные разъемы установлены рядом друг с другом.
Резистивная 10 и емкостная 11 нагрузки расположены за пределами наружного заземленного проводника 2 линии передачи в отдельных цилиндрических экранах 12 и 13. На торцах дополнительных экранов 12 и 13 установлены коаксиальные радиочастотные разъемы 14 и 15, 16 и 17. Для повышения теплоемкости и уменьшения индуктивности резистивная 10 и емкостная 11 нагрузки выполнены из нескольких параллельно соединенных резисторов и конденсаторов, расположенных симметрично вокруг оси экранов. Величины резистивной 10 и емкостной 11 нагрузок выбраны из соотношений (L4/R10)≥10τи и C11Rосц≥10τи, где τи - длительность импульса тока или напряжения соответственно; L4 - индуктивность многовитковой спирали; Rосц - входное сопротивление осциллографа. Входные 14 и 16 разъемы на экранах нагрузок соединяются напрямую или короткими переходниками с разъемами 6 и 9 на наружном заземленном проводнике 2 линии передачи. От выходных разъемов 15 и 17, т.е. от резистивной 10 и емкостной 11 нагрузок, отходят коаксиальные кабели, служащие для передачи выходного сигнала с комбинированного датчика к регистратору. Кабели выполняются одинаковой длины. В качестве регистратора используется двухканальный осциллограф, предпочтительно с автономным (аккумуляторным) питанием. Учитывая отсутствие выравнивающих токов и аккумуляторное питание, осциллограф может быть установлен прямо на обратный проводник коаксиальной линии. Для повышения безопасности работ, например, в случае с плазменными камерами, заполненными тритием, или плазменными камерами, запитываемыми от взрывомагнитных генераторов, могут быть применены длинные измерительные кабели, а дополнительные экраны (коробочки) с резистивной и емкостной нагрузками могут быть установлены на концах кабелей (закреплены прямо на входах осциллографа).
В примере конкретного выполнения спроектированный и изготовленный авторами (см. фотографию фиг.3) датчик тока и напряжения выполнен как фрагмент коаксиальной линии передачи диаметром 102 мм и напряжением 30 кВ и установлен между коммутатором и электроразрядной камерой скважинного электрогидравлического аппарата «ЭРА-5» рабочим напряжением 30 кВ и энергоемкостью от 1 до 5 кДж. Корпус датчика тока и напряжения и тока содержит два металлических полуфланца, соединенных болтами. На противоположных концах корпуса датчика выполнены присоединительные резьбы М95, обеспечивающие присоединение его к корпусам коммутатора и электроразрядной камеры, выполняющим функцию обратного проводника коаксиальной линии передачи. Центральный высоковольтный проводник датчика имеет диаметр, позволяющий ему входить в контакт с цангами коммутатора и электроразрядной камеры аппарата. Центральный высоковольтный проводник отделен то наружного заземленного проводника промежуточным капролоновым изолятором. В одном из полуфланцев датчика выполнена кольцевая проточка, в которую установлена тороидальная катушка индуктивности. Над тороидальной катушкой индуктивности расположен кольцевой электрод, емкостно связанный с центральным высоковольтным проводником датчика и изолированный от него и корпуса датчика. Выводы от тороидальной катушки и электрода связи выполнены двумя коаксиальными кабелями длиной 4 м, заканчивающимися высокочастотными разъемами. Кабели от тороидальной катушки индуктивности и электрода связи подключены соответственно к резистивной и емкостной нагрузкам, расположенным в отдельных экранах и соединенным с двухлучевым цифровым осциллографом (на фото не показан). Величины резистивной и емкостной нагрузок датчика составляют 1 Ом и 40 нФ соответственно. Чувствительность датчика тока и напряжения составляет по току 1,96 В/кА и по напряжению 0,33 В/кВ. Датчик тока и напряжения имеет высоту (длину по оси) 200 мм и диаметр в районе расположения тороидальной катушки индуктивности 180 мм.
Предлагаемый датчик тока и напряжения работает следующим образом. При подаче на внутренний высоковольтный проводник линии передачи импульса напряжения амплитудой U между высоковольтным проводником 1 и электродом связи 7 произойдет перераспределение напряжений, как в стандартном емкостном делителе (электрод связи 7 и высоковольтный проводник 1 образуют цилиндрический конденсатор, а обратный заземленный проводник 2 играет роль охранного кольца). Соответственно, на электроде связи 7 и внешней емкостной нагрузке 11 появится импульс напряжения величиной U7=U11=U·(C17/C11), где С17 - емкость электрода связи 7 относительно высоковольтного электрода 1; С11 - емкость нагрузки 11 (емкость электрода связи 7 относительно заземленного проводника 2 роли не играет, так как она мала по сравнению с емкостью внешней нагрузки 11). Магнитная составляющая электромагнитной волны, распространяющейся в линии передачи (или магнитное поле разрядного тока), индуцирует в тороидальной катушке 4 напряжение, величина которого пропорциональна скорости нарастания магнитного поля dB/dt. Благодаря большим числу витков и индуктивности тороидальная катушка 4 работает в режиме интегратора. Соответственно, на резистивной нагрузке 10 появляется напряжение U10=(i/w)·R10, где i - ток в линии передачи; w - число витков тороидальной катушки индуктивности 4; R10 - сопротивление внешней резистивной нагрузки 10.
Авторы опробовали предлагаемый датчик тока и напряжения по фиг.3 в составе скважинного электрогидравлического аппарата «ЭРА-5» при исследованиях электрических разрядов в различных химреагентах и смесях, использующихся в технологиях повышения нефтеотдачи пластов (пресная и минерализованная вода, водонефтяные эмульсии и углеводородные растворители). Благодаря возможности одновременного измерения тока и напряжения в электроразрядной камере аппарата (см. фиг.4-7) получены данные по запаздыванию электрического пробоя и предразрядным потерям энергии, по активному сопротивлению канала разряда, энергии и мощности, выделяемой в канале разряда. Полученная дополнительная информация позволила рассчитать бризантный эффект электрического разряда в воде и давление на стенке обсадной колонны нефтяной скважины.
Таким образом, авторами показано и доказано, что в одном устройстве (в одной точке передающей линии или на одном из ее электродов высоковольтной установки) возможны:
- совмещение двух различных по конструкции и физике работы датчиков тока и напряжения;
- синхронное измерение без систематических амплитудной и временной погрешностей напряжения и тока в передающей линии или высоковольтной установке;
- получение дополнительных и точных данных об импедансе нелинейной во времени нагрузки Z(t)=U(t)/I(t) и мощности, выделяемой в этой нагрузке P(t)=U(t)·I(t).

Claims (5)

1. Датчик тока, выполненный в виде тороидальной катушки индуктивности, намотанной на изоляционном каркасе, размещенной в кольцевой проточке на одном из рабочих электродов высоковольтной установки или линии передачи, прикрытой металлической крышкой и соединенной с рабочим электродом одним своим выводом напрямую, а другим выводом - через резистивную нагрузку, отличающийся тем, что металлическая крышка изолирована от рабочего электрода и соединена с рабочим электродом через емкостную нагрузку.
2. Датчик тока по п.1, отличающийся тем, что резистивная и емкостная нагрузки расположены за пределами рабочего электрода высоковольтной установки или заземленного проводника линии передачи в отдельных экранах.
3. Датчик тока по п.2, отличающийся тем, что резистивная и емкостная нагрузки и дополнительные экраны выполнены с возможностью отсоединения от рабочего электрода высоковольтной установки или заземленного проводника линии передачи.
4. Датчик тока по п.1, отличающийся тем, что резистивная и емкостная нагрузки подключены к одному регистратору двумя кабелями одинаковой марки и длины или одним дифференциальным кабелем.
5. Датчик тока по п.1, отличающийся тем, что он выполнен в виде отдельного измерительного модуля, установленного между коммутатором и нагрузкой высоковольтной установки или в рассечку линии передачи.
RU2008125026/28A 2008-06-23 2008-06-23 Датчик тока и напряжения RU2371729C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008125026/28A RU2371729C1 (ru) 2008-06-23 2008-06-23 Датчик тока и напряжения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008125026/28A RU2371729C1 (ru) 2008-06-23 2008-06-23 Датчик тока и напряжения

Publications (1)

Publication Number Publication Date
RU2371729C1 true RU2371729C1 (ru) 2009-10-27

Family

ID=41353242

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008125026/28A RU2371729C1 (ru) 2008-06-23 2008-06-23 Датчик тока и напряжения

Country Status (1)

Country Link
RU (1) RU2371729C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615597C2 (ru) * 2012-05-21 2017-04-05 Шнейдер Электрик Эндюстри Сас Комбинированный датчик тока и способ установки упомянутого датчика
RU2797293C1 (ru) * 2022-08-01 2023-06-01 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Устройство измерения тока, напряжения в передающей линии

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ВАССЕРМАН С.Б. РАБОТА ПОЯСА РОГОВСКОГО ПРИ ИЗМЕРЕНИИ ТОКОВ ИМПУЛЬСНЫХ ПУЧКОВ НАНОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ // ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА, 1972, №2, С.99-103, РИС.2. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615597C2 (ru) * 2012-05-21 2017-04-05 Шнейдер Электрик Эндюстри Сас Комбинированный датчик тока и способ установки упомянутого датчика
RU2797293C1 (ru) * 2022-08-01 2023-06-01 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Устройство измерения тока, напряжения в передающей линии

Similar Documents

Publication Publication Date Title
Boggs et al. Fundamental limitations in the measurement of corona and partial discharge
EP1102998B1 (en) Closely-coupled multiple-winding magnetic induction-type sensor
US3396339A (en) Capacitive voltage sensing device including coaxially disposed conductive tubes and electrical discharge inhibition means
CN105428007B (zh) 一种多组电容屏绝缘芯体的组合电器
Metwally Comparative measurement of surge arrester residual voltages by D-dot probes and dividers
Zeidi et al. Partial discharge detection with on-chip spiral inductor as a loop antenna
CN110275125B (zh) 一种校准冲击电流测量装置动态特性的系统和方法
Yu et al. Study on shielded Rogowski coil with return line for measurement of nanosecond-range current pulse
RU2371729C1 (ru) Датчик тока и напряжения
Ren et al. Partial discharges in void defect of gas insulated switchgear insulator under standard aperiodic and oscillating switching impulses
Lim et al. Nanosecond high-voltage pulse generator using a spiral Blumlein PFL for electromagnetic interference test
HU180696B (en) Equipment for measuring the voltage of inner a.c. conductor of earthed metal clad high-voltage switch filled with insulating material
Wang et al. Capacitive sensor for fast pulsed voltage monitor in transmission line
Van Der Wielen et al. Sensors for on-line PD detection in MV power cables and their locations in substations
Möller et al. Development of a test bench to investigate the breakdown voltage of insulation oil in a frequency range between 1 kHz and 10 kHz
Wang et al. Capacitive voltage sensor array for detecting transient voltage distribution in transformer windings
Pecastaing et al. Design and performance of high voltage pulse generators for ultra-wideband applications
Burow et al. Can ferrite materials or resonant arrangements reduce the amplitudes of VFTO in GIS
Hobejogi et al. Coaxial capacitive voltage divider with high division ratio for high voltage pulses with very fast rise times
Rahim et al. Partial Discharge Detection using Developed Low-cost High Frequency Current Transformer
Kawaguchi et al. Partial-discharge measurement on high-voltage power transformers
Gerasimov Wide-range inductive sensors of currents with nanosecond rise times for measuring parameters of high-current pulses
Zhao et al. Two compact coaxial cable connectors with self-integrating sensors to measure nanosecond pulse signals
US20240038512A1 (en) Measurement Apparatus for Alternating Currents and Voltages of Physical Plasmas, Particularly of Cold Plasmas at Atmospheric Pressure, and Plasma Generator Comprising Such a Measurement Apparatus
Zhao et al. A novel screw-based probe to measure pulse forming line voltage in tesla-type generators

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100624