RU2366977C1 - Спектрометр-дозиметр - Google Patents

Спектрометр-дозиметр Download PDF

Info

Publication number
RU2366977C1
RU2366977C1 RU2008109434/28A RU2008109434A RU2366977C1 RU 2366977 C1 RU2366977 C1 RU 2366977C1 RU 2008109434/28 A RU2008109434/28 A RU 2008109434/28A RU 2008109434 A RU2008109434 A RU 2008109434A RU 2366977 C1 RU2366977 C1 RU 2366977C1
Authority
RU
Russia
Prior art keywords
analog
outputs
input
output
inputs
Prior art date
Application number
RU2008109434/28A
Other languages
English (en)
Inventor
Николай Михайлович Сафьянников (RU)
Николай Михайлович Сафьянников
Ака Атаназ Кутуан (RU)
Ака Атаназ Кутуан
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" filed Critical Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)"
Priority to RU2008109434/28A priority Critical patent/RU2366977C1/ru
Application granted granted Critical
Publication of RU2366977C1 publication Critical patent/RU2366977C1/ru

Links

Abstract

Изобретение относится к ядерной физике, дозиметрии, биофизике, радиационной медицине, химии, экологии и может быть использовано для детектирования газов в разных отраслях промышленности. Техническим результатом являются расширенные функциональные возможности устройства при сохранении полной автоматизации измерений. Сущность предлагаемого изобретения состоит в создании устройства для одновременного автоматического измерения и анализа потоков, спектров, доз альфа-, бета-, гамма-излучения веществ, а также типов и концентраций галоидсодержащих газов в атмосфере за счет организации параллельной работы двух блоков детекторов при совмещении процессов автоматизации измерений и анализа результатов с их оперативной передачей. 1 ил.

Description

Предлагаемое изобретение относится к ядерной физике, дозиметрии, биофизике, радиационной медицине, химии, экологии и может быть использовано для детектирования газов в разных отраслях промышленности.
Известно многофункциональное устройство для детектирования утечки газов [пат. Россия №2280862, МПК8 G01N 27/68]. Оно содержит корпус с расположенным внутри него катодом, анодом и входным отверстием для детектируемого газа, средства для измерения тока разряда и высоковольтный источник питания, создающий напряжение, необходимое для поддержания коронного разряда между анодом и катодом, а катод выполнен из n игл, где n≥2, установленных симметрично относительно корпуса, на которые подано напряжение от высоковольтного источника питания, превышающее напряжение зажигания коронного разряда в детектируемом газе на острие n игл, при этом иглы катода выполнены с дополнительными внутренними каналами для подачи газа, соединенными с дополнительным устройством принудительной прокачки детектора газом.
Кроме детектирования наличия галоидсодержащего газа в атмосфере газовый детектор может использоваться в приборах для оценки типа этого газа и для измерение его концентрации.
Недостатки аналога заключаются в том, что отсутствуют измерение радиоактивности и автоматизация измерений.
Из числа аналогов наиболее близким по технической сущности к предлагаемому является устройство [пат. Россия №2029316, МПК8 G01T 1/24, G01T 1/16, G01T 1/02], которое и выбрано по качестве прототипа. Прототип, в отличие от аналога, выполняет измерение радиоактивности, и эти измерения полностью автоматизированы.
Технический результат в прототипе достигается определением радиоактивности при помощи трех расположенных друг под другом полупроводниковых детекторов альфа-, бета- и гамма-излучения разной толщины и из определенного материала, в том числе применением специального (третьего) детектора гамма-излучения толщиной несколько миллиметров, что позволяет существенно расширить динамический диапазон регистрируемых энергий гамма-излучения более точным определением суммарной дозы и полностью автоматизировать измерения.
Прототип содержит блок детекторов, состоящий из трех полупроводниковых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя (АЦП), оперативное запоминающее устройство (ОЗУ), блок интерфейса, блок управления и однокристальную электронно-вычислительную машину (ЭВМ), связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства и блока интерфейса, а первый, второй и третий выходы блока детекторов соединены с первыми входами соответственно первого, второго и третьего блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого, второго и третьего аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей, первые вход и выход блока управления и вторые выходы трех блоков аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей и блока управления подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы трех блоков аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления, вторые вход и выход однокристальной электронно-вычислительной машины, второй вход оперативного запоминающего устройства и вторые вход и выход блока интерфейса, имеющего также внешние вход и выход. Кроме того, прототип содержит индикатор и блок клавиатуры, первый выход которого подсоединен к общей шине, а вход и второй выход - ко второй шине управления, причем входы индикатора соединены соответственно первый - с общей шиной, а второй - со второй шиной управления.
Прототип работает следующим образом.
При регистрации альфа-, бета- или гамма-излучения электрический импульс с соответствующего полупроводникового детектора поступает на блок, в котором происходит усиление и формирование сигнала для последующего преобразования в АЦП, а также формирование запускающего и идентифицирующего импульса для блока управления. Код амплитуды после преобразования фиксируется во внутреннем регистре АЦП и в соответствующем программном цикле записывается в ОЗУ. Идентификационный код детектора, в котором зарегистрировано излучение, формируется блоком управления и считывается ЭВМ одновременно с кодом амплитуды. Преобразования в трех каналах происходят независимо с разбиением регистрируемого диапазона энергий на 63 уровня, что позволяет производить анализ регистрируемых альфа-, бета- и гамма-излучений по их спектральному, энергетическому и изотопному составу, используя при этом программно-реализованные метод ΔЕ-Е, логику совпадений - антисовпадений, а также определять дозу как суммарную, так и по каждому виду излучений.
Работой спектрометра-дозиметра управляет ЭВМ в соответствии с заданным режимом. Режим задается оператором в интерактивном режиме при помощи блока клавиатуры и интерфейсного блока. Управляющие сигналы от ЭВМ к периферийным устройствам передаются по шине управления. Быстродействие системы достигается за счет программно-аппаратной реализации цикла записи данных, выставляемых АЦП в ОЗУ. Аппаратную поддержку цикла записи осуществляет блок управления, используя для этого первую и вторую шины управления. Интерфейсный блок обеспечивает побайтный параллельный или последовательный обмен между спектрометром-дозиметром и ЭВМ любого типа, а также запись и чтение с кассетного магнитофона любого типа.
В соответствии с заданной программой измерений ЭВМ осуществляет управление работой спектрометра-дозиметра и производит накопление информации в ОЗУ. По завершении накопления и обработки данные отображаются на индикаторе или записываются на магнитофон, либо считываются ЭВМ для более детального анализа. Применение ЭВМ с набором подпрограмм, хранящимся в резидентном постоянном запоминающем устройстве, позволяет оперативно управлять прибором, изменять алгоритм обработки данных, а также использовать спектрометр-идентификатор-дозиметр совместно с ЭВМ любого типа.
Недостатком прототипа является функциональная ограниченность, связанная с невозможностью детектирования газов и отсутствием автоматического анализа результатов измерений с их оперативной передачей.
Задачей, на решение которой направленно заявляемое изобретение, является расширение функциональных возможностей за счет параллельного детектирования газов при совмещении процессов автоматизации измерений и анализа результатов с их оперативной передачей.
Техническим результатом являются расширенные функциональные возможности устройства при сохранении полной автоматизации измерений.
Поставленная задача решается тем, что в спектрометр-дозиметр, содержащий блок детекторов, состоящий из трех полупроводниковых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, оперативное запоминающее устройство, блок интерфейса, блок управления и однокристальную электронно-вычислительную машину, связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства и блока интерфейса, а первый, второй и третий выходы блока детекторов соединены с первыми входами соответственно первого, второго и третьего блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого, второго и третьего аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей, первые вход и выход блока управления и вторые выходы трех блоков аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей и блока управления подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы трех блоков аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления, вторые вход и выход однокристальной электронно-вычислительной машины, второй вход оперативного запоминающего устройства и вторые вход и выход блока интерфейса, имеющего также внешние вход и выход, введены второй блок детекторов, состоящий из трех газовых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, транслятор протоколов, приемопередатчик инфракрасного излучения и карманный персональный компьютер со встроенным мобильным сотовым телефоном, связанный беспроводным каналом с приемопередатчиком инфракрасного излучения, вход и выход которого соединены с первыми входом и выходом транслятора протоколов, а вторые вход и выход этого транслятора соединены с внешними входом и выходом блока интерфейса, причем первый, второй и третий выходы второго блока детекторов соединены с первыми входами соответственно четвертого, пятого и шестого блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно четвертого, пятого и шестого аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей и вторые выходы четвертого, пятого и шестого блоков аналоговых измерений подключены к первой шине управления, вторые выходы четвертого, пятого и шестого аналого-цифровых преобразователей подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы четвертого, пятого и шестого блоков аналоговых измерений связаны со второй шиной управления.
Сущность предлагаемого изобретения состоит в создании устройства для одновременного автоматического измерения и анализа потоков, спектров, доз альфа-, бета-, гамма-излучения веществ, а также типов и концентраций галоидсодержащих газов в атмосфере за счет организации параллельной работы двух блоков детекторов при совмещении процессов автоматизации измерений и анализа результатов с их оперативной передачей.
Сущность предлагаемого изобретения поясняется чертежом, где изображена функциональная схема предлагаемого устройства.
Спектрометр-дозиметр, содержащий блок 1 детекторов, состоящий из трех полупроводниковых детекторов, три блока 2, 3, 4 аналоговых измерений, три аналого-цифровых преобразователя 5, 6, 7, оперативное запоминающее устройство 8, блок 9 интерфейса, блок управления 10 и однокристальную электронно-вычислительную машину 11, связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства 8 и блока интерфейса 9, а первый, второй и третий выходы блока 1 детекторов соединены с первыми входами соответственно первого 2, второго 3 и третьего 4 блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого 5, второго 6 и третьего 7 аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей 5, 6, 7, первые вход и выход блока 10 управления и вторые выходы трех блоков 2, 3, 4 аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей 5, 6, 7 и блока управления 10 подсоединены к общей шине однокристальной электронно-вычислительной машины 11, а вторые входы трех блоков 2, 3, 4 аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления 10, вторые вход и выход однокристальной электронно-вычислительной машины 11, второй вход оперативного запоминающего устройства 8 и вторые вход и выход блока интерфейса 9, имеющего также внешние вход и выход. Кроме того, в устройство введены второй блок 12 детекторов, состоящий из трех газовых детекторов, три блока 13, 14, 15 аналоговых измерений, три аналого-цифровых преобразователя 16, 17, 18, транслятор 19 протоколов, приемопередатчик 20 инфракрасного излучения и карманный персональный компьютер 21 со встроенным мобильным сотовым телефоном, связанный беспроводным каналом с приемопередатчиком 20 инфракрасного излучения, вход и выход которого соединены с первыми входом и выходом транслятора 19 протоколов, а вторые вход и выход этого транслятора 19 соединены с внешними входом и выходом блока 9 интерфейса, причем первый, второй и третий выходы второго блока 12 детекторов соединены с первыми входами соответственно четвертого 13, пятого 14 и шестого 15 блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно четвертого 16, пятого 17 и шестого 18 аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей 16, 17, 18 и вторые выходы четвертого 13, пятого 14 и шестого 15 блоков аналоговых измерений подключены к первой шине управления, вторые выходы четвертого 16, пятого 17 и шестого 18 аналого-цифровых преобразователей подсоединены к общей шине однокристальной электронно-вычислительной машины 11, а вторые входы четвертого 13, пятого 14 и шестого 15 блоков аналоговых измерений связаны со второй шиной управления.
Устройство работает следующим образом.
Пусть в начальный момент времени оператором в интерактивном режиме при помощи карманного персонального компьютера 21 со встроенным мобильным сотовым телефоном задается режим работы спектрометра-дозиметра. По беспроводному каналу связи информация о режиме работы принимается приемопередатчиком 20 инфракрасного излучения и передается в транслятор 19 протоколов, в результате чего через общую шину задается режим работы однокристальной электронно-вычислительной машины 11, которая управляет работой спектрометра-дозиметра. Управляющие сигналы от электронно-вычислительной машины 11 к периферийным устройствам передаются по второй шине управления.
При регистрации альфа-, бета- или гамма-излучения электрический импульс с соответствующего полупроводникового детектора блока 1 поступает на соответствующий блок 2, 3 или 4 аналоговых измерений, а при регистрации галоидсодержащего газа электический сигнал с соответствующего полупроводникового детектора блока 12 поступает на соответствующий блок 13, 14 или 15 аналоговых измерений. В блоках аналоговый измерений 2, 3, 4, 13, 14, 15 происходит усиление и формирование сигналов для последующего преобразования в соответствующих аналого-цифровых преобразователях 5, 6, 7, 16, 17, 18, а также формирование запускающих и идентифицирующих импульсов для блока управления 10.
Код амплитуды после преобразования фиксируется во внутренних регистрах аналого-цифровых преобразователей 5, 6, 7, 16, 17, 18 и в соответствующем программном цикле записывается в оперативное запоминающее устройство 8. Идентификационный код детектора, в котором зарегистрирован сигнал, формируется блоком управления 10 и считывается однокристальной электронно-вычислительной машиной 11 одновременно с кодом амплитуды.
Быстродействие системы достигается за счет программно-аппаратной реализации цикла записи данных, выставляемых аналого-цифровыми преобразователями 5, 6, 7, 16, 17, 18 в оперативное запоминающее устройство 8. Аппаратную поддержку цикла записи осуществляет блок управления 10, используя для этого первую и вторую шины управления. Интерфейсный блок 9 обеспечивает побайтный параллельный или последовательный обмен информацией через транслятор 19 и приемопередатчик 20 с карманным персональным компьютером 21, встроенный мобильный сотовый телефон которого дает возможность записи и чтения информации с различных источников.
В соответствии с заданной компьютером 21 программой измерений электронно-вычислительная машина 11 осуществляет управление работой спектрометра-дозиметра и производит накопление информации в оперативном запоминающем устройстве 8. По завершении накопления и обработки данные пересылаются через блок 9 интерфейса, транслятор 19 и приемопередатчик 20 в компьютер 21, где они анализируются и отображаются на экране, а также могут быть переданы для дальнейшего более детального анализа. Применение электронно-вычислительной машины 11 с набором подпрограмм, хранящимся в карманном персональном компьютере 21 со встроенным мобильным сотовым телефоном, обеспечивающим доступ к различным источникам информации, позволяет оперативно управлять прибором, изменять алгоритм обработки данных, а также использовать спектрометр-идентификатор-дозиметр в различных информационно-измерительных системах.
В основу работы устройства положен принцип поочередной перекрестной обработки входной информации и синхронной параллельной обработки выходной информации, благодаря чему функции автоматизации измерений реализуются одним, а функции анализа результатов - другим вычислительным средством, имеющим эффективную связь с внешними системами.
Преобразования во всех шести каналах происходят независимо. В первых трех каналах выполняется разбиение регистрируемого диапазона энергий на 63 уровня, что позволяет производить анализ регистрируемых альфа-, бета- и гамма-излучений по их спектральному, энергетическому и изотопному составу, используя при этом программно-реализованные метод ΔЕ-Е, логику совпадений-антисовпадений, а также определять дозу как суммарную, так и по каждому виду излучений. В других трех каналах выполняются режимы детектирования наличия, оценки типа и измерения изменений концентрации галоидсодержащего газа в атмосфере, используя при этом программно-реализованные алгоритмы управления и анализа при восходящем и неизменном напряжении. Все результаты анализа могут быть представлены в карманном персональном компьютере в нужном виде и переданы с помощью встроенного мобильного сотового телефона в нужное место.
Таким образом, предложенное устройство обладает расширенными функциональными возможностями при сохранении полной автоматизации измерений.

Claims (1)

  1. Спектрометр-дозиметр, содержащий блок детекторов, состоящий из трех полупроводниковых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, оперативное запоминающее устройство, блок интерфейса, блок управления и однокристальную электронно-вычислительную машину, связанную первым входом и выходом с общей шиной, к которой подсоединены совмещенные входы-выходы оперативного запоминающего устройства и блока интерфейса, а первый, второй и третий выходы блока детекторов соединены с первыми входами соответственно первого, второго и третьего блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно первого, второго и третьего аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей, первые вход и выход блока управления и вторые выходы трех блоков аналоговых измерений подключены к первой шине управления, вторые выходы трех аналого-цифровых преобразователей и блока управления подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы трех блоков аналоговых измерений связаны со второй шиной управления, к которой подсоединены третий выход и второй вход блока управления, вторые вход и выход однокристальной электронно-вычислительной машины, второй вход оперативного запоминающего устройства и вторые вход и выход блока интерфейса, имеющего также внешние вход и выход, отличающийся тем, что в устройство введены второй блок детекторов, состоящий из трех газовых детекторов, три блока аналоговых измерений, три аналого-цифровых преобразователя, транслятор протоколов, приемопередатчик инфракрасного излучения и карманный персональный компьютер со встроенным мобильным сотовым телефоном, связанный беспроводным каналом с приемопередатчиком инфракрасного излучения, вход и выход которого соединены с первыми входом и выходом транслятора протоколов, а вторые вход и выход этого транслятора соединены с внешними входом и выходом блока интерфейса, причем' первый, второй и третий выходы второго блока детекторов соединены с первыми входами соответственно четвертого, пятого и шестого блоков аналоговых измерений, первые выходы которых связаны с первыми входами соответственно четвертого, пятого и шестого аналого-цифровых преобразователей, а вторые входы и первые выходы этих преобразователей и вторые выходы четвертого, пятого и шестого блоков аналоговых измерений подключены к первой шине управления, вторые выходы четвертого, пятого и шестого аналого-цифровых преобразователей подсоединены к общей шине однокристальной электронно-вычислительной машины, а вторые входы четвертого, пятого и шестого блоков аналоговых измерений связаны со второй шиной управления.
RU2008109434/28A 2008-03-11 2008-03-11 Спектрометр-дозиметр RU2366977C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008109434/28A RU2366977C1 (ru) 2008-03-11 2008-03-11 Спектрометр-дозиметр

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008109434/28A RU2366977C1 (ru) 2008-03-11 2008-03-11 Спектрометр-дозиметр

Publications (1)

Publication Number Publication Date
RU2366977C1 true RU2366977C1 (ru) 2009-09-10

Family

ID=41166716

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008109434/28A RU2366977C1 (ru) 2008-03-11 2008-03-11 Спектрометр-дозиметр

Country Status (1)

Country Link
RU (1) RU2366977C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085428A1 (ru) * 2011-12-05 2013-06-13 Popov Vladimir Yurevich Спектрометр для обнаружения радионуклидов ксенона
RU2617129C1 (ru) * 2015-10-29 2017-04-21 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет им. М.К.Аммосова" Спектрометр заряженных частиц
CN112485820A (zh) * 2020-11-19 2021-03-12 中国核动力研究设计院 适用于辐射监测系统的智能化多通道处理显示单元

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085428A1 (ru) * 2011-12-05 2013-06-13 Popov Vladimir Yurevich Спектрометр для обнаружения радионуклидов ксенона
RU2569411C2 (ru) * 2011-12-05 2015-11-27 Владимир Юрьевич Попов Спектрометр для обнаружения радионуклидов ксенона
RU2617129C1 (ru) * 2015-10-29 2017-04-21 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет им. М.К.Аммосова" Спектрометр заряженных частиц
RU2617129C9 (ru) * 2015-10-29 2017-07-07 Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет им. М.К.Аммосова" Спектрометр заряженных частиц
CN112485820A (zh) * 2020-11-19 2021-03-12 中国核动力研究设计院 适用于辐射监测系统的智能化多通道处理显示单元
CN112485820B (zh) * 2020-11-19 2023-04-07 中国核动力研究设计院 适用于辐射监测系统的智能化多通道处理显示单元

Similar Documents

Publication Publication Date Title
CN103837558B (zh) 一种基于pgnaa技术的水溶液中多元素成分及含量检测装置及检测方法
CN103605149B (zh) 一种刻度氙气样品HPGe探测效率的装置及方法
RU2366977C1 (ru) Спектрометр-дозиметр
JP2013210317A (ja) 放射性物質の測定方法およびそのための測定装置
Bureš et al. Multiparameter Multichannel Analyser System for Characterisation of Mixed Neutron–Gamma Field in the Experimental Reactor Lr-O
CN104777505A (zh) 内嵌式移动侦测装置
CN204705719U (zh) 一种便携式放射性污染测量仪
US9664802B1 (en) Simplified radiation spectrum analyzer
KR101197002B1 (ko) 핵물질 혼재 시료에서 핵물질별 정량분석을 하기 위한 비파괴측정장치와 통합 분석시스템을 갖춘 핵물질 통합 측정 시스템
CN109581472B (zh) Czt谱仪特征能量峰道址范围选择和确定方法
CN110727011B (zh) 基于固态点源模拟短寿命气态源的符合探测效率刻度方法
CN103424767A (zh) 一种测定U-Pu混合物中235U和239Pu含量的方法
KR101657577B1 (ko) 방사능 오염 유무 확인을 위한 총 감마방사능 측정장치 및 방법
CN113484895A (zh) 一种用于高氡本底的α表面污染检测仪及检测方法
Leadbeater et al. A high speed PC-based data acquisition and control system for positron imaging
RU2029316C1 (ru) Спектрометр-дозиметр
US5550382A (en) Process and apparatus for compacting informations to be stored and processing said compacted informations
RU172413U1 (ru) Устройство неразрушающего дистанционного контроля делящихся материалов
Kalinnikov et al. Investigation of LYSO and GSO crystals and simulation of the calorimeter for COMET experiment
CN111579571A (zh) 一种基于峰形拟合的逐步逼近刻度γ能谱高能区的方法
Jiang et al. Geant4 simulation of multi-sphere spectrometer response function and the detection of 241 Am–Be neutron spectrum
Ember et al. Coincidence measurement setup for PGAA and nuclear structure studies
TWI600916B (zh) 放射線能譜分析儀簡化裝置
Akimoto et al. A dual-parameter multichannel analyzer using a personal computer
Sani et al. Application of Computers in Experiments Design, Building and Evaluation of a New Generation of Multichannel Analyzers Implemented in Xilinx ZYNQ-7020

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20100728