RU2366015C1 - Способ изготовления рентгеновской преломляющей линзы с минимизированным поглощением, имеющей профиль вращения - Google Patents

Способ изготовления рентгеновской преломляющей линзы с минимизированным поглощением, имеющей профиль вращения Download PDF

Info

Publication number
RU2366015C1
RU2366015C1 RU2008111077/28A RU2008111077A RU2366015C1 RU 2366015 C1 RU2366015 C1 RU 2366015C1 RU 2008111077/28 A RU2008111077/28 A RU 2008111077/28A RU 2008111077 A RU2008111077 A RU 2008111077A RU 2366015 C1 RU2366015 C1 RU 2366015C1
Authority
RU
Russia
Prior art keywords
lens
lenses
matrix
base
radius
Prior art date
Application number
RU2008111077/28A
Other languages
English (en)
Inventor
Виталий Васильевич Аристов (RU)
Виталий Васильевич Аристов
Леонид Григорьевич Шабельников (RU)
Леонид Григорьевич Шабельников
Original Assignee
Учреждение Институт проблем технологии микроэлектроники и особочистых материалов Российской Академии Наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Институт проблем технологии микроэлектроники и особочистых материалов Российской Академии Наук filed Critical Учреждение Институт проблем технологии микроэлектроники и особочистых материалов Российской Академии Наук
Priority to RU2008111077/28A priority Critical patent/RU2366015C1/ru
Application granted granted Critical
Publication of RU2366015C1 publication Critical patent/RU2366015C1/ru

Links

Images

Abstract

Использование: для изготовления рентгеновских преломляющих линз. Сущность заключается в том, что изготавливают матрицу линзы из материала, способного к фотополимеризации, формированием одной или нескольких линз с требуемым фокусным расстоянием, учитывая число и геометрические характеристики этих линз, характеристики материала данных линз и материала оправки, а также динамический режим, на котором осуществляется формирование матрицы линзы, при этом с помощью полученной матрицы образуют одно или несколько оснований для линз, для чего вносят материал, не имеющий адгезии к материалу матрицы, в матрице переводят материал основания в твердую фазу, отделяют полученное основание от матрицы, размещают его в ванне с жидким фотополимером на поршне с прецизионным ходом линейного смещения, затем проводят фотополимеризацию через набор масок с кольцевыми просветами и радиальными щелями, где внутренний радиус кольцевого просвета определяется как
Figure 00000018
и внешний радиус как

Description

Предлагаемое изобретение относится к области рентгенотехники, в частности при изготовлении рентгеновских преломляющих линз, в том числе с памятью формы, и может быть использовано в биомедицинских приложениях для рентгеновских микроскопов, аппаратов диагностики и лучевой терапии, для аппаратуры неразрушающего контроля и локального исследования материалов методами рентгеновской флуоресцентной спектрометрии, структурного анализа, микроскопии и микротомографии, в радио-телевидении и системах дальней связи как основной элемент дальних линий связи.
Известен способ изготовления рентгеновских преломляющих линз с минимизированным поглощением из кремния, состоящих из параболических сегментов, расположенных на общей плоскости (V.Aristov, M.Grigoriev, S.Kuznetsov, L.Shabelnikov, V.Yunkin, Т.Weitkamp, С.Rau, I.Snigireva, A.Snigirev, M.Hoffmann, E.Voges, "X-ray refractive planar lens with minimized absorption", Applied Physics Letters, vol.77, No.25, (2000) p.4068, Aristov V.V., Grigoriev M.V., Kuznetsov S.M., Shabel′nikov L.G., Yunkin V.A., M.Hoffmann, E.Voges. "X-ray focusing by planar parabolic lenses made of silicon". Optics Communications, vol.177 (2000) p.33-38). Согласно данному способу требуемый рисунок сегментов создают методами прецизионной фотолитографии, формируют маску для травления и затем проводят плазмохимическое травление кремния на глубину до 100 мкм. Полученные линзы имеют высокие значения интегрального пропускания до 90%.
Недостатком данного способа является то, что изготовленная линза обеспечивает только сбор излучения в фокальное пятно линейчатой формы, размер которого вдоль линии пятна определяется глубиной травления. К другим недостаткам способа следует отнести отклонение стенок вытравливаемых сегментов от нормали к плоскости их расположения, а также искажения вершин сегментов, возникающие из-за изменений условий травления по глубине, что существенно ухудшает фокусирующие свойства линз.
Известен способ изготовления рентгеновских преломляющих линз с киноформным профилем (L.Shabel′nikov, V.Nazmov, F.Pantenburg, J.Mohr, V.Saile, V.Yunkin, S.Kouznetsov, V.Pindyurin, I.Snigireva, A.Snigirev, "X-ray lens with kinoform refractive profile created by x-ray lithography". Procs SPIE Design and Microfabrication of Novel X-Ray Optics Editor(s): Mancini, Derrick Volume: 4783 (2002) p.176-185). Согласно данному способу требуемый рисунок сегментов создают методами прецизионной фотолитографии, формируют маску для облучения и затем проводят облучение слоя полимера, облученные участки материала удаляют в растворителе. Полученные линзы также имеют высокие значения интегрального пропускания до 75-80%.
Недостатком данного способа является то, что изготовленная линза также обеспечивает только сбор излучения в фокальное пятно линейчатой формы, измерение которого вдоль линии пятна определяется толщиной слоя полимера. В числе других недостатков данного способа следует считать очень высокие требования к точности и качеству масок для облучения, сложность и дороговизну осуществления способа, который в настоящее время может быть реализован только на уникальных источниках синхротронного излучения.
Наиболее близким техническим решением, принятым за прототип, является способ изготовления рентгеновской параболической линзы с профилем вращения, обеспечивающей сбор излучения в точечное фокальное пятно (Л.Г.Шабельников «Способ изготовления рентгеновских преломляющих линз с профилем вращения» патент RU №2297 681, МКИ G21K 1/06, опуб. 27.04.2005 г). Согласно данному способу, для изготовления линзы с требуемым фокусным расстоянием F формируют одну или несколько линз с фокусным расстоянием, определяемым по соотношению
Figure 00000001
, где N - число линз, a F0=Rc/2δ, где Rc - радиус кривизны параболического профиля, δ - декремент показателя преломления материала линзы, относящегося к классу рентгеновских преломляющих материалов, для чего вносят необходимое количество материала линзы
Figure 00000002
, где ρ - плотность материала линзы, R - радиус линзы, в жидком состоянии в оправку цилиндрической формы с тем же внутренним радиусом, материал которой обеспечивает для данной жидкости угол смачивания, определяемый условием
Figure 00000003
, помещают оправку на центрифугу, проводят вращение оправки с материалом линзы до достижения
Figure 00000004
однородности при угловой частоте вращения
Figure 00000005
, где η - вязкость материала линзы в жидком состоянии, Re - число Рейнольдса, затем переводят материал линзы в твердое состояние в процессе вращения, прекращают вращение и проводят сборку линзы в держатель.
Способ допускает изготовление линз с минимизированным поглощением, для чего используют оправку ступенчатой формы, содержащую по крайней мере две плоскопараллельные выемки для формирования ребер жесткости в получаемых линзах, причем высота ступенек равна четному числу длин сдвига фазы
Figure 00000006
, где λ - длина волны излучения.
Недостатком способа прототипа является то, что в изготовленных линзах возникают систематические искажения формы преломляющего профиля вблизи вершин ступеней, что существенно ухудшает фокусирующие свойства линз. Кроме того, для изготовления оправки ступенчатой формы необходимо привлекать методы механической обработки на станках с числовым программным управлением, что значительно усложняет и удорожает реализацию способа.
Предложенное изобретение решает задачу улучшения фокусирующих свойств линз с профилем вращения, обладающих совершенным преломляющим профилем и способных фокусировать излучение в пятно с минимальным предельным размером, при одновременном снижении затрат на изготовление.
Поставленная задача достигается способом изготовления рентгеновской параболической линзы с минимизированным поглощением, имеющей профиль вращения, включающем изготовление матрицы линзы из материала, способного к фотополимеризации, формированием одной или нескольких линз с требуемым фокусным расстоянием F, определяемым по соотношению
Figure 00000007
, где N число линз, а F0=Rc/2δ, где Rс - радиус кривизны параболического профиля, δ - декремент показателя преломления материала линзы путем внесения необходимого количества материала линзы
Figure 00000008
, где ρ - плотность материала линзы, R - радиус линзы, в жидком состоянии в оправку цилиндрической формы с тем же внутренним радиусом, материал которой обеспечивает для данной жидкости угол смачивания, определяемый условием
Figure 00000009
, помещением оправки на центрифугу и вращением ее с материалом линзы до достижения однородности при угловой частоте вращения
Figure 00000010
, где η - вязкость материала линзы в жидком состоянии, Re - число Рейнольдса, затем переводом материала линзы в твердое состояние в процессе вращения при воздействии потока излучения от источника света и прекращения вращения. Новизна предлагаемого способа заключается в том, что с помощью полученной матрицы образуют одно или несколько оснований для линз, для чего вносят материал, не имеющий адгезии к материалу матрицы, в количестве M0=kM, где k<1 - коэффициент, определяемый из условий смачивания, в матрицу, переводят материал основания в твердую фазу, отделяют полученное основание от матрицы, размещают его в ванне с жидким фотополимером на поршне с прецизионным ходом линейного смещения, затем проводят фотополимеризацию через набор масок с кольцевыми просветами и радиальными щелями, где внутренний радиус кольцевого просвета определяется как
Figure 00000011
и внешний радиус как
Figure 00000012
, где m - четное число, сдвигают основание на величину, равную четному числу длин сдвига фазы L=mλ/δ, операции экспонирования через последующие маски и сдвига повторяют до получения заданного числа сегментов, отделяют линзу от основания и проводят сборку линзы в держатель.
Перевод материала основания линзы в твердое состояние можно осуществлять несколькими способами:
за счет протекания реакции полимеризации материала, в частности в присутствии катализатора;
за счет протекания реакции фотополимеризации, для чего в качестве материала основания линзы берут материал, способный к фотополимеризации, а его полимеризацию проводят при воздействии потока излучения от источника света, спектр излучения которого является оптимальным для перевода фотополимера в твердую фазу;
используя в качестве материала основания раствор его в органическом растворителе с последующим его испарением.
Для получения составных наборов из единичных линз, вставляемых друг в друга, используют маски, в которых граничный размер радиальной щели R' изменяется по параболическому закону, соответствующему форме основания линзы согласно условию
Figure 00000013
, где Н - требуемая величина зазора между соседними линзами в наборе.
Для одновременного получения нескольких линз по предлагаемому способу в ванне с жидким фотополимером размещают требуемое число оснований, а экспонирование фотополимера от источника света проводят через набор кольцевых масок с радиальными щелями, имеющих число кольцевых просветов, соответствующих числу оснований и центрированных на их вершины.
Осуществление перечисленных операций позволяет получать линзы с минимизированным поглощением в виде набора кольцевых параболических сегментов, опирающихся на ребра жесткости. Способ предусматривает как последовательное формирование отдельных линз, так и параллельное при групповой обработке нескольких оснований.
Технический эффект, получаемый при решении поставленной задачи, заключается в создании линз с минимизированным поглощением с улучшенными фокусирующими характеристиками при полном исключении операций прецизионной механической обработки, что существенно снижает затраты на реализацию данного способа и конечную стоимость получаемых линз.
На фиг.1-4 представлены этапы осуществления способа изготовления рентгеновских преломляющих линз с минимизированным поглощением.
На фиг.1 представлено формирование матрицы для параболического основания из жидкости на центрифуге последующим переводом материала матрицы в твердую фазу.
На фиг.2 представлена заливка матрицы материалом основания с последующим переводом его в твердую фазу.
На фиг.3 представлено размещение основания (набора из нескольких оснований) в ванне с жидким фотополимером на поршне с прецизионным ходом.
На фиг.4 представлено получение сегментов линзы, где
1 - источник света (УФ-лампа);
2 - маска с кольцевьми просветами;
3 - сегмент линзы;
4 - жидкий фотополимер в ванне.
Приведенные примеры подтверждают, но не исчерпывают получение линз предлагаемым способом.
Пример 1. Для изготовления единичной линзы на первом этапе (фиг.1) осуществления способа проводят формирование матрицы для параболического основания. В оправку из кварца вносят в жидком виде глицидилметакрилат с добавками камфарохинона (1:10) общей массой М=18,7 мг в качестве материала основания. Затем при освещении от источника в виде светополимеризационной лампы OPTILIGHT LD III проводят вращение при частоте 6000 об/мин в течении 5 минут. На втором этапе (фиг.2) полученную матрицу заливают легкоплавким сплавом, предварительно расплавленным в отдельном термостате. В качестве него используют сплав Вуда следующего состава: олово - 12,5%; свинец - 25%; висмут - 50%; кадмий - 12,5%, масса заливаемой навески сплава М0=170 г. На третьем этапе (фиг.3) полученное основание размещают в ванне для полимеризации на площадке поршня, имеющего вертикальный ход, запас которого превышает требуемую общую длину изготовляемой линзы, так что вершина параболического основания находится сверху. Ванну заполняют жидким фотополимером «Дихром-Люкс» до уровня, совпадающего с положением вершины основания. На четвертом этапе (фиг.4) проводят экспонирование жидкого фотополимера (4) в камере экспонирования PLC-45 от источника света УФ-лампы (1), обеспечивающей максимум излучения на длине волны 365 нм через маски из кварца (2) с непрозрачным покрытием из трехокиси железа. Вначале используют маску с n=1, имеющую прозрачное отверстие с радиусом R=50 мкм, центрируют ее относительно вершины основания и проводят экспонирование в течение 1,5 минут до получения первого сегмента линзы (3). Затем основание сдвигают вниз на расстояние L=160 мкм и проводят экспонирование через маску (2) с n=2, интервал времени экспонирования сохраняется. Цикл операций повторяется при смене масок (2) с возрастающим номером и последовательным сдвигом на указанное выше расстояние до получения полного числа сегментов линзы (3). По окончании цикла линзу отделяют от основания и помещают в держатель. Контроль качества полученных линз проводили путем измерения средних геометрических параметров сегментов. Данные были обработаны с помощью специализированной компьютерной программы, позволявшей определить коэффициент усиления интенсивности в фокальном пятне для линз с технологическими несовершенствами.
Так, для линзы, изготовленной по способу прототипу, средняя высота сегментов составила 155 мкм при расчетном значении 162 мкм, а радиус закругления на основании составил 25 мкм при расчетном значении менее 0,5 мкм. Обсчет измеренных значений технологических отклонений показал, что коэффициент усиления интенсивности в фокальном пятне для линзы по способу прототипу составит 45% от значения для идеальной бездефектной линзы.
Для линзы, изготовленной по предлагаемому способу в условиях, перечисленных выше, средняя высота сегментов составила 160,5 мкм при расчетном значении 162 мкм, а радиус закругления на основании составил 5 мкм при расчетном значении менее 0,5 мкм Обсчет измеренных значений технологических отклонений показал, что коэффициент усиления интенсивности в фокальном пятне для линзы по предлагаемому способу составит 75% от значения для идеальной бездефектной линзы. Таким образом, линзы, изготовленные по предлагаемому способу, имеют существенно лучшие показатели фокусировки.
Пример 2. То же, что в примере 1, где на втором этапе (фиг.2) полученную матрицу заливают эпоксидной смолой марки ЭДП с отвердителем общей массой М0=17,5 мг и выдерживают 30 минут до полного отвердения, после чего полученное основание линзы отделяют от матрицы.
Для линзы, изготовленной по предлагаемому способу в условиях, перечисленных выше, средняя высота сегментов (3) составила 159,5 мкм при расчетном значении 162 мкм, а радиус закругления на основании составил 4 мкм при расчетном значении менее 0,5 мкм. Обсчет измеренных значений технологических отклонений показал, что коэффициент усиления интенсивности в фокальном пятне для линзы по предлагаемому способу составит 72% от значения для идеальной бездефектной линзы. Таким образом, линзы, изготовленные по предлагаемому способу, имеют существенно лучшие показатели фокусировки.
Пример 3. То же, что в примере 1, где на втором этапе (фиг.2) полученную матрицу заливают жидким фотополимером (4), способным к фронтальной фотополимеризации по радикальному механизму, в виде олиго-карбонат-метакрилата. В качестве фотоинициатора используют изобутиловый эфир в весовом соотношении до 2.5%. Затем проводят экспонирование от источника (1) в виде светополимеризационной лампы OPTILIGHT LD III в течение 3 минут.
Для линзы, изготовленной по предлагаемому способу, в условиях, перечисленных выше, средняя высота сегментов (3) составила 160,4 мкм при расчетном значении 162 мкм, а радиус закругления на основании составил 4,5 мкм при расчетном значении менее 0,5 мкм. Обсчет измеренных значений технологических отклонений показал, что коэффициент усиления интенсивности в фокальном пятне для линзы по предлагаемому способу составит 76% от значения для идеальной бездефектной линзы. Таким образом, линзы, изготовленные по предлагаемому способу, имеют существенно лучшие показатели фокусировки.
Пример 4. То же, что в примере 1, где на втором этапе (фиг.2) полученную матрицу заливают раствором поликарбоната в хлористом метилене, таким образом, что масса сухого остатка, полученного после испарения растворителя, составляет М0=17,5 мг.
Для линзы, изготовленной по предлагаемому способу в условиях, перечисленных выше, средняя высота сегментов (3) составила 160,5 мкм при расчетном значении 162 мкм, а радиус закругления на основании составил 5 мкм при расчетном значении менее 0,5 мкм. Обсчет измеренных значений технологических отклонений показал, что коэффициент усиления интенсивности в фокальном пятне для линзы по предлагаемому способу составит 75% от значения для идеальной бездефектной линзы. Таким образом, линзы, изготовленные по предлагаемому способу, имеют существенно лучшие показатели фокусировки.
Пример 5. То же, что в примере 1, где для получения составных наборов из единичных линз, вставляемых друг в друга, используют маски (2), в которых граничный размер радиальной щели R' изменяется по параболическому закону, соответствующему форме основания линзы. Вначале используют маску с n=1, имеющую прозрачное отверстие с радиусом R1=50 мкм, на которой для получения зазора между соседними линзами Н=150 мкм сформированы прозрачные радиальные щели с граничным размером R'=180,2 мкм. При радиусе кривизны параболического основания Rc=100 мкм радиусы прозрачных колец с высшими номерами и граничные размеры прозрачных радиальных щелей рассчитывают по соотношениям, приведенным в тексте формулы изобретения.
Для линзы, изготовленной по предлагаемому способу, в условиях, перечисленных выше, средняя высота сегментов составила 160,5 мкм при расчетном значении 162 мкм, а радиус закругления на основании составил 5 мкм при расчетном значении менее 0,5 мкм. Обсчет измеренных значений технологических отклонений показал, что коэффициент усиления интенсивности в фокальном пятне для единичных линз по предлагаемому способу составит 75% от значения для идеальной бездефектной линзы. Стыковка единичных линз в набор из 10 штук сохраняла их соосность. Таким образом, линзы, изготовленные по предлагаемому способу, имеют существенно лучшие показатели фокусировки.
Пример 6. То же, что в примере 1, где в ванне с жидким фотополимером (4) размещают 4 основания линзы, полученных согласно описанию первого этапа примера 1, в углах квадрата со стороной 5 мм. Ванну заполняют жидким фотополимером «Дихром-Люкс» (4) до уровня, совпадающего с положением вершин оснований. На четвертом этапе (фиг.4) проводят экспонирование от источника света УФ-лампы (1) в камере экспонирования PLC-45 через маски (2) из кварца с непрозрачным покрытием из трехокиси железа, на которых система прозрачных колец и радиальных щелей состоит из 4-х наборов, также расположенных в углах квадрата со стороной 5 мм, с предварительной центровкой масок (2) относительно изготовленных оснований.
Для линз, изготовленных по предлагаемому способу в условиях, перечисленных выше, средняя высота сегментов (3) составила 160 мкм при расчетном значении 162 мкм, а радиус закругления на основании составил 5,5 мкм при расчетном значении менее 0,5 мкм. Разброс средней высоты сегментов по изготовленным одновременно 4-м линзам в пределах ±2 мкм. Обсчет измеренных значений технологических отклонений показал, что коэффициент усиления интенсивности в фокальном пятне для линзы по предлагаемому способу составит от 75% до 95% значений для идеальной бездефектной линзы.
Таким образом, линзы, изготовленные по предлагаемому способу, имеют существенно лучшие показатели фокусировки.

Claims (7)

1. Способ изготовления рентгеновской преломляющей линзы с минимизированным поглощением, имеющей профиль вращения, включающий изготовление матрицы линзы из материала, способного к фотополимеризации, формированием одной или нескольких линз с требуемым фокусным расстоянием F, определяемым по соотношению
Figure 00000014
, где N число линз,
a F0=Rс/2δ, где Rс - радиус кривизны параболического профиля, δ - декремент показателя преломления материала линзы путем внесения необходимого количества материала линзы
Figure 00000015
, где ρ - плотность материала линзы, R - радиус линзы, в жидком состоянии в оправку цилиндрической формы с тем же внутренним радиусом, материал которой обеспечивает для данной жидкости угол смачивания, определяемый условием
Figure 00000016
, помещением оправки на центрифугу и вращением ее с материалом линзы до достижения однородности при угловой частоте вращения
Figure 00000017
, где η - вязкость материала линзы в жидком состоянии, Re - число Рейнольдса, затем переводом материала линзы в твердое состояние в процессе вращения при воздействии потока излучения от источника света и прекращения вращения, отличающийся тем, что с помощью полученной матрицы образуют одно или несколько оснований для линз, для чего вносят материал, не имеющий адгезии к материалу матрицы, в количестве М0=kМ, где k<1 - коэффициент, определяемый из условий смачивания, в матрице переводят материал основания в твердую фазу, отделяют полученное основание от матрицы, размещают его в ванне с жидким фотополимером на поршне с прецизионным ходом линейного смещения, затем проводят фотополимеризацию через набор масок с кольцевыми просветами и радиальными щелями, где внутренний радиус кольцевого просвета, определяется как
Figure 00000018
и внешний радиус как
Figure 00000019
, где m - четное число, сдвигают основание на величину, равную четному числу длин сдвига фазы L=mλ/δ, операции экспонирования через последующие маски и сдвига повторяют до получения заданного числа сегментов, отделяют линзу от основания и проводят сборку линзы в держатель.
2. Способ по п.1, отличающийся тем, что перевод материала основания линзы в твердое состояние осуществляют за счет протекания реакции полимеризации материала.
3. Способ по п.2, отличающийся тем, что полимеризацию материала основания линзы проводят в присутствии катализатора.
4. Способ по п.2, отличающийся тем, что в качестве материала основания линзы берут материал, способный к фотополимеризации, а его полимеризацию проводят при воздействии потока излучения от источника света, спектр излучения которого является оптимальным для перевода фотополимера в твердую фазу.
5. Способ по п.2, отличающийся тем, что материал основания линзы берут в качестве раствора его в органическом растворителе, а перевод материала основания линзы в твердое состояние осуществляют испарением растворителя.
6. Способ по п.1, отличающийся тем, что для получения составных наборов из единичных линз, вставляемых друг в друга, используют маски, в которых граничный размер радиальной щели R′ изменяется по параболическому закону, соответствующему форме основания линзы согласно условию
Figure 00000013
, где Н - требуемая величина зазора между соседними линзами в наборе.
7. Способ по п.1, отличающийся тем, что для одновременного получения нескольких линз в ванне с жидким фотополимером размещают требуемое число оснований, а экспонирование фотополимера от источника света проводят через набор кольцевых масок с радиальными щелями, имеющих число кольцевых просветов, соответствующих числу оснований и центрированных на их вершины.
RU2008111077/28A 2008-03-25 2008-03-25 Способ изготовления рентгеновской преломляющей линзы с минимизированным поглощением, имеющей профиль вращения RU2366015C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008111077/28A RU2366015C1 (ru) 2008-03-25 2008-03-25 Способ изготовления рентгеновской преломляющей линзы с минимизированным поглощением, имеющей профиль вращения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008111077/28A RU2366015C1 (ru) 2008-03-25 2008-03-25 Способ изготовления рентгеновской преломляющей линзы с минимизированным поглощением, имеющей профиль вращения

Publications (1)

Publication Number Publication Date
RU2366015C1 true RU2366015C1 (ru) 2009-08-27

Family

ID=41150011

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008111077/28A RU2366015C1 (ru) 2008-03-25 2008-03-25 Способ изготовления рентгеновской преломляющей линзы с минимизированным поглощением, имеющей профиль вращения

Country Status (1)

Country Link
RU (1) RU2366015C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470271C2 (ru) * 2010-12-30 2012-12-20 Общество с ограниченной ответственностью предприятие "Репер НН" Способ и форма для изготовления рентгеновских фокусирующих линз
RU2692405C2 (ru) * 2017-11-20 2019-06-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Линза для рентгеновского излучения
RU2709472C1 (ru) * 2019-04-18 2019-12-18 Михаил Андреевич Любомирский Способ пассивной настройки корректирующей пластины составной рефракционной линзы для рентгеновского излучения
RU205416U1 (ru) * 2020-12-31 2021-07-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Пиролизованный трансфокатор для рентгеновского излучения
RU205417U1 (ru) * 2020-12-31 2021-07-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Пиролизованный объектив для рентгеновского излучения
RU205730U1 (ru) * 2020-12-31 2021-07-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Пиролизованная линза для рентгеновского излучения
RU2756103C1 (ru) * 2020-12-31 2021-09-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) Способ изготовления пиролизованных линз для рентгеновского излучения

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470271C2 (ru) * 2010-12-30 2012-12-20 Общество с ограниченной ответственностью предприятие "Репер НН" Способ и форма для изготовления рентгеновских фокусирующих линз
RU2692405C2 (ru) * 2017-11-20 2019-06-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Линза для рентгеновского излучения
RU2709472C1 (ru) * 2019-04-18 2019-12-18 Михаил Андреевич Любомирский Способ пассивной настройки корректирующей пластины составной рефракционной линзы для рентгеновского излучения
RU205416U1 (ru) * 2020-12-31 2021-07-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Пиролизованный трансфокатор для рентгеновского излучения
RU205417U1 (ru) * 2020-12-31 2021-07-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Пиролизованный объектив для рентгеновского излучения
RU205730U1 (ru) * 2020-12-31 2021-07-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Пиролизованная линза для рентгеновского излучения
RU2756103C1 (ru) * 2020-12-31 2021-09-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) Способ изготовления пиролизованных линз для рентгеновского излучения

Similar Documents

Publication Publication Date Title
RU2366015C1 (ru) Способ изготовления рентгеновской преломляющей линзы с минимизированным поглощением, имеющей профиль вращения
Kazanskiy et al. Technological line for creation and research of diffractive optical elements
Choi et al. Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography
Brasselet et al. Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum
RU2692405C2 (ru) Линза для рентгеновского излучения
Williams et al. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8
Žukauskas et al. Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization
Snigirev et al. High energy X-ray micro-optics
RU2298852C1 (ru) Способ изготовления рентгеновских преломляющих линз
Poleshchuk et al. Laser technologies in micro-optics. Part 2. Fabrication of elements with a three-dimensional profile
Duc Nguyen et al. Freeform three-dimensional embedded polymer waveguides enabled by external-diffusion assisted two-photon lithography
JP2003001599A (ja) 三次元微小構造物の製造方法及びその装置
Spangenberg et al. Recent advances in two-photon stereolithography
Meyer et al. Deep x-ray lithography
Takei et al. Development of a numerically controlled elastic emission machining system for fabricating mandrels of ellipsoidal focusing mirrors used in soft x-ray microscopy
Žukauskas et al. Single-step direct laser fabrication of complex shaped microoptical components
RU2297681C2 (ru) Способ изготовления рентгеновской преломляющей линзы с профилем вращения
Shcherbakov et al. Direct Laser Writing of Microscale 3D Structures: Morphological and Mechanical Properties
Yuanyuan et al. Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology
RU2709472C1 (ru) Способ пассивной настройки корректирующей пластины составной рефракционной линзы для рентгеновского излучения
RU2756103C1 (ru) Способ изготовления пиролизованных линз для рентгеновского излучения
Stender et al. Industrial-Scale Fabrication of Optical Components Using High-Precision 3D Printing: Aspects-Applications-Perspectives
Kühne et al. Insights into challenges and potentials of two-photon lithography
Matital et al. Laser Scanning Confocal Microscopy for Analyzing Optical Characteristics and Morphology of an Aspherical Microlens Array
JP5164176B2 (ja) 立体投影による光投影露光装置及び光投影露光方法