RU2362012C1 - Устройство для контроля положения ствола горизонтальной скважины - Google Patents

Устройство для контроля положения ствола горизонтальной скважины Download PDF

Info

Publication number
RU2362012C1
RU2362012C1 RU2008102305/03A RU2008102305A RU2362012C1 RU 2362012 C1 RU2362012 C1 RU 2362012C1 RU 2008102305/03 A RU2008102305/03 A RU 2008102305/03A RU 2008102305 A RU2008102305 A RU 2008102305A RU 2362012 C1 RU2362012 C1 RU 2362012C1
Authority
RU
Russia
Prior art keywords
pulses
sensors
switch
polarity
angle
Prior art date
Application number
RU2008102305/03A
Other languages
English (en)
Inventor
Василий Прокопьевич Чупров (RU)
Василий Прокопьевич Чупров
Рамиль Анварович Шайхутдинов (RU)
Рамиль Анварович Шайхутдинов
Алексей Викторович Бельков (RU)
Алексей Викторович Бельков
Original Assignee
Общество с ограниченной ответственностью Научно-производственная фирма "ВНИИГИС-Забойные телеметрические комплексы" (ООО НПФ "ВНИИГИС-ЗТК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Научно-производственная фирма "ВНИИГИС-Забойные телеметрические комплексы" (ООО НПФ "ВНИИГИС-ЗТК") filed Critical Общество с ограниченной ответственностью Научно-производственная фирма "ВНИИГИС-Забойные телеметрические комплексы" (ООО НПФ "ВНИИГИС-ЗТК")
Priority to RU2008102305/03A priority Critical patent/RU2362012C1/ru
Application granted granted Critical
Publication of RU2362012C1 publication Critical patent/RU2362012C1/ru

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Предложение относится к буровой технике и предназначено для контроля положения ствола горизонтальной скважины между кровлей и подошвой пласта - коллектора. Техническим результатом изобретения является упрощение конструкции и повышение оперативности управления процессом проводки при горизонтальном бурении скважин, в частности в маломощных пластах. Устройство содержит: установленные в непосредственной близости от долота датчики гамма-каротажа (ГК), ориентированные под углом 180° друг к другу, и феррозонд (ФЗ), расположенный под углом 90° к диаметральной оси датчиков ГК, в котором указанные датчики ГК и ФЗ расположены в отдельном измерительном наддолотном модуле с беспроводным электромагнитным каналом связи и снабжены электронной схемой согласования сигналов ФЗ с импульсами датчиков ГК, содержащей: блок управления, коммутатор переключения импульсов датчиков ГК, счетчики импульсов ГК, а также суммарный счетчик импульсов ГК, при этом выход измерительной обмотки ФЗ подключен к входу блока управления, определяющего полярность выходного сигнала ФЗ и связанного с коммутатором, обеспечивающим переключение каналов прохождения импульсов счетчиков ГК в зависимости от полярности выходного сигнала ФЗ, в соответствующие счетчики импульсов ГК, обозначенные как: ГК - «верх» или ГК - «низ», выходы которых соединены с суммарным счетчиком импульсов ГК - «сумма», соединенным с измерительной схемой наддолотного модуля. 4 ил.

Description

Изобретение относится к буровой технике и предназначено для контроля положения ствола горизонтальной скважины между кровлей и подошвой пласта - коллектора. Контроль необходим для обеспечения проводки скважины по заданной траектории приблизительно по середине пласта и недопущения выхода ствола скважины во вмещающие породы.
Известна система NaviGator, которая сочетает ориентируемый буровой двигатель с использованием датчиков для геонавигации и датчиков оценки пласта и содержит инклинометр, два азимутальных гамма-датчика, ориентированные под углом 180° относительно друг друга и многочастотный датчик удельного сопротивления горных пород, позволяющие при горизонтальном бурении обнаруживать границу контрастирующего пласта и контакт флюида на расстоянии до 5,5 метра от датчика (материалы фирмы Baker Hughes Inteq, США, 2006 г.).
Этот прибор позволяет бурильщику производить своевременное обнаружение границ пласта в горизонтальных скважинах до того, как долото выйдет из целевой зоны.
Недостатком конструкции является то, что азимутальные гамма-датчики значительно удалены от долота, что снижает оперативность управления при бурении в более тонких пластах.
Известна аппаратура для определения направления скважины в процессе бурения в виде конструкции с направленным гамма-датчиком, содержащей ряд счетчиков Гейгера-Мюллера, расположенных в отрезке трубы над буровой коронкой и несколько магнитных и гравитационных датчиков, обеспечивающих направленную характеристику в процессе вращения гамма-датчика. Эти ориентационные датчики включают акселерометры и магнитометры, пригодные для обнаружения изменений в ориентации и позиции приборного переводника. Акселерометры способны выявлять в реальном времени вращательное смещение от эталона по мере его возникновения в процессе бурения. Датчики магнитного потока, или магнитометры, облегчают выявление азимутальной ориентации прибора на основе магнитного поля Земли. (Международный патент WO №02/082124 А 1, класс G01V 3/30, международная заявка PCT/USA/02634, приоритет 06.04.2001 г.)
По данным акселерометров можно вычислить апсидальный угол гравиметра и ориентацию ряда гамма - счетчиков.
Выход магнитометра являет собой синусоидальную волну, период которой является скоростью вращения, и амплитуда которой представляет позицию прибора в магнитном поле Земли. Во время вращения выход магнитометра может измеряться постоянно и определяется его амплитуда от пика до пика. Обладая этой информацией и применяя известные математические формулы, можно установить угловую позицию магнитометра в любой данный момент (прототип).
Недостаток известной аппаратуры заключается в сложности конструкции, содержащей ряд счетчиков Гейгера-Мюллера и специальный механизм со ступенчатым двигателем для позиционирования окон для пропускания излучения. Кроме того, здесь используется до 8 магнитометров и несколько акселерометров, что также усложняет схему обработки сигналов и их согласование с показаниями гамма-счетчиков.
Задачей предлагаемого изобретения является упрощение конструкции и повышение оперативности управления процессом проводки при горизонтальном бурении скважин, в частности в маломощных пластах.
Указанная задача решается тем, что в устройстве для контроля положения ствола горизонтальной скважины, содержащем установленные в непосредственной близости от долота датчики ГК (например, сцинтилляторы или счетчики Гейгера), ориентированные под углом 180° друг к другу, и феррозонд (магнитометр), расположенный под углом 90° к диаметральной оси датчиков ГК, при этом указанные датчики ГК и феррозонд расположены в отдельном измерительном наддолотном модуле с беспроводным электромагнитным каналом связи, и снабжены электронной схемой согласования сигналов феррозонда с импульсами датчиков ГК, содержащей: блок управления, коммутатор переключения импульсов датчиков ГК, счетчики импульсов ГК, а также суммарный счетчик импульсов ГК, при этом выход измерительной обмотки феррозонда подключен к входу блока управления, который определяет полярность выходного сигнала феррозонда и управляет коммутатором, обеспечивающим переключение каналов прохождения импульсов счетчиков ГК, в зависимости от полярности выходного сигнала феррозонда, в соответствующие счетчики импульсов ГК, обозначенные как: ГК - «верх» или ГК - «низ», выходы которых соединены с суммарным счетчиком импульсов ГК - «сумма», соединенным с измерительной схемой наддолотного модуля.
На фиг.1 представлено сечение наддолотного модуля с блоками датчиков ГК и феррозондом.
На фиг.2 изображено синусоидальное изменение амплитуды выходного сигнала феррозонда при повороте феррозонда вместе с наддолотным модулем.
На фиг.3 представлена схема согласования сигналов феррозонда с импульсами датчиков ГК.
На фиг.4 изображена схема расположения долота в границах пласта.
Устройство содержит: (поз.1) - первый блок датчиков ГК (ГК1), (например, сцинтилляторы или счетчики Гейгера), и (поз.2) - второй блок датчиков ГК (ГК2), расположенные под углом 180° друг к другу, феррозонд 3, ориентированный под углом 90° к диаметральной оси блоков датчиков ГК. Указанные датчики помещены в выемки корпуса измерительного наддолотного модуля 4 (фиг.1), с беспроводным электромагнитным каналом связи, передающим информацию на приемный модуль основной телесистемы, обеспечивающей проводку скважины. Конструкция телесистемы и наддолотного модуля подробно представлена в описании к патенту РФ на полезную модель №27839, где описана их работа.
Схема согласования (фиг.3) сигналов феррозонда 3 с импульсами датчиков ГК1 и ГК2 содержит: блок счетчиков импульсов ГК1 (поз.5), блок счетчиков импульсов ГК2 (поз.6), блок управления 7, к которому подключен выход измерительной катушки феррозонда 3, коммутатор 8, к которому подведены выходы блока управления 7 и выходы блоков счетчиков импульсов ГК1 и ГК2, а также счетчик импульсов ГК, обозначенный - «верх» (поз.9), и счетчик импульсов ГК, обозначенный - «низ» (поз.10), входы которых подключены к коммутатору 8, а выходы - к суммарному счетчику импульсов ГК, обозначенный как «сумма» (поз.11). Поз.12 - долото с наддолотным модулем 13 и телесистемой 14 в границах пласта (фиг.4).
Устройство работает следующим образом.
При повороте феррозонда 3 вместе с наддолотным модулем 4 происходит совпадение одной из компонент вектора направленности естественного магнитного поля Земли и оси чувствительности феррозонда, которое может быть зафиксировано в измерительной катушке феррозонда максимальными значениями изменения амплитуды выходного сигнала (фиг.2). Синусоидальный сигнал от феррозонда 3 поступает в блок управления 7, который определяет полярность сигнала феррозонда и управляет работой коммутатора.
Если выходной сигнал феррозонда положительной полярности, то блок счетчиков ГК1 определяется как ГК - «верх» и его выход через коммутатор подключается к входу счетчика импульсов ГК - «верх» и, соответственно, блок счетчиков ГК2 определяется как ГК - «низ» и его выход через коммутатор подключается к входу счетчика импульсов ГК - c«низ».
При отрицательной полярности выходного сигнала феррозонда блок управления определяет ГК2 как ГК - «верх», а ГК1 как ГК - «низ» и в соответствии с этим осуществляет коммутацию.
Далее, выходная информация со счетчиков ГК - «верх» и ГК - «низ» суммируется в блоке счетчиков импульсов ГК - «сумма».
Анализ оператором уровня выходных сигналов ГК - «верх» и ГК - «низ» позволяет определять местонахождение границы пласта (фиг.4) относительно наддолотного модуля, находящегося в непосредственной близости от долота, и управлять процессом бурения.

Claims (1)

  1. Устройство для контроля положения ствола горизонтальной скважины, содержащее установленные в непосредственной близости от долота датчики гамма-каротажа (ГК), ориентированные под углом 180° друг к другу, и феррозонд, расположенный под углом 90° к диаметральной оси датчиков ГК, отличающееся тем, что указанные датчики ГК и феррозонд расположены в отдельном измерительном наддолотном модуле с беспроводным электромагнитным каналом связи и снабжены электронной схемой согласования сигналов феррозонда с импульсами датчиков ГК, содержащей блок управления, коммутатор переключения импульсов датчиков ГК, счетчики импульсов ГК, а также суммарный счетчик импульсов ГК, при этом выход измерительной обмотки феррозонда подключен к входу блока управления, определяющего полярность выходного сигнала феррозонда и связанного с коммутатором, обеспечивающим переключение каналов прохождения импульсов счетчиков ГК в зависимости от полярности выходного сигнала феррозонда, в соответствующие счетчики импульсов ГК, обозначенные как ГК - «верх» или ГК - «низ», выходы которых соединены с суммарным счетчиком импульсов ГК - «сумма», соединенным с измерительной схемой наддолотного модуля.
RU2008102305/03A 2008-01-21 2008-01-21 Устройство для контроля положения ствола горизонтальной скважины RU2362012C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008102305/03A RU2362012C1 (ru) 2008-01-21 2008-01-21 Устройство для контроля положения ствола горизонтальной скважины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008102305/03A RU2362012C1 (ru) 2008-01-21 2008-01-21 Устройство для контроля положения ствола горизонтальной скважины

Publications (1)

Publication Number Publication Date
RU2362012C1 true RU2362012C1 (ru) 2009-07-20

Family

ID=41047185

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008102305/03A RU2362012C1 (ru) 2008-01-21 2008-01-21 Устройство для контроля положения ствола горизонтальной скважины

Country Status (1)

Country Link
RU (1) RU2362012C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490448C1 (ru) * 2012-06-26 2013-08-20 Общество с ограниченной ответственностью "ТомскГАЗПРОМгеофизика" Устройство для контроля положения ствола горизонтальной скважины
RU2571457C1 (ru) * 2011-08-03 2015-12-20 Хэллибертон Энерджи Сервисиз, Инк. Устройство и способ посадки скважины в целевой зоне
RU2613364C1 (ru) * 2015-12-25 2017-03-16 Талгат Раисович Камалетдинов Способ геонавигации бурильного инструмента и управления его траекторией при проводке скважин в нужном направлении
RU176509U1 (ru) * 2017-07-18 2018-01-22 Общество с ограниченной ответственностью Научно-производственная фирма "ВНИИГИС-Забойные телеметрические комплексы" (ООО НПФ "ВНИИГИС-ЗТК") Наддолотный модуль с набором детекторов естественного гамма-излучения горной породы

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2571457C1 (ru) * 2011-08-03 2015-12-20 Хэллибертон Энерджи Сервисиз, Инк. Устройство и способ посадки скважины в целевой зоне
RU2490448C1 (ru) * 2012-06-26 2013-08-20 Общество с ограниченной ответственностью "ТомскГАЗПРОМгеофизика" Устройство для контроля положения ствола горизонтальной скважины
RU2613364C1 (ru) * 2015-12-25 2017-03-16 Талгат Раисович Камалетдинов Способ геонавигации бурильного инструмента и управления его траекторией при проводке скважин в нужном направлении
RU176509U1 (ru) * 2017-07-18 2018-01-22 Общество с ограниченной ответственностью Научно-производственная фирма "ВНИИГИС-Забойные телеметрические комплексы" (ООО НПФ "ВНИИГИС-ЗТК") Наддолотный модуль с набором детекторов естественного гамма-излучения горной породы

Similar Documents

Publication Publication Date Title
US9963963B1 (en) Well ranging apparatus, systems, and methods
CA2001745C (en) Downhole combination tool
CA2912472C (en) Method and apparatus for detecting gamma radiation downhole
RU2661359C1 (ru) Способ и устройство для проведения многоскважинной дальнометрии
AU2012383577B2 (en) Tilted antenna logging systems and methods yielding robust measurement signals
CA2844111C (en) Improved casing detection tools and methods
CN108240213A (zh) 一种多探测深度的地质导向装置和地质导向方法
GB2481495A (en) Real time determination of casing location and distance from tilted antenna measurement
RU2362012C1 (ru) Устройство для контроля положения ствола горизонтальной скважины
RU76680U1 (ru) Устройство для контроля положения ствола горизонтальной скважины
RU2490448C1 (ru) Устройство для контроля положения ствола горизонтальной скважины
RU169724U1 (ru) Наддолотный модуль
RU176509U1 (ru) Наддолотный модуль с набором детекторов естественного гамма-излучения горной породы
RU2206737C1 (ru) Способ измерения параметров траектории скважины
Hauser et al. Geophysical techniques applied to cavity detection at the Wharf Mine, Lead, South Dakota

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160122