RU2356129C1 - Визуализатор электромагнитных излучений - Google Patents

Визуализатор электромагнитных излучений Download PDF

Info

Publication number
RU2356129C1
RU2356129C1 RU2007140119/28A RU2007140119A RU2356129C1 RU 2356129 C1 RU2356129 C1 RU 2356129C1 RU 2007140119/28 A RU2007140119/28 A RU 2007140119/28A RU 2007140119 A RU2007140119 A RU 2007140119A RU 2356129 C1 RU2356129 C1 RU 2356129C1
Authority
RU
Russia
Prior art keywords
mirror
target
radiation
thermal imager
angle
Prior art date
Application number
RU2007140119/28A
Other languages
English (en)
Inventor
Анатолий Николаевич Свиридов (RU)
Анатолий Николаевич Свиридов
Андрей Сергеевич Кононов (RU)
Андрей Сергеевич Кононов
Владимир Павлович Пономаренко (RU)
Владимир Павлович Пономаренко
Анатолий Михайлович Филачев (RU)
Анатолий Михайлович Филачев
Original Assignee
Федеральное государственное унитарное предприятие "НПО "ОРИОН"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "НПО "ОРИОН" filed Critical Федеральное государственное унитарное предприятие "НПО "ОРИОН"
Priority to RU2007140119/28A priority Critical patent/RU2356129C1/ru
Application granted granted Critical
Publication of RU2356129C1 publication Critical patent/RU2356129C1/ru

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

Изобретение относится к области приборостроения и может быть использовано для получения видимых изображений объектов, испускающих или рассеивающих инфракрасное (ИК) и субмиллиметровое (СМ) электромагнитные излучения (ЭМИ). Технический результат - визуализация субмиллиметрового и инфракрасного излучений. Для достижения данного результата в устройство дополнительно введена мишень, преобразующая изображения объектов, излучающих в СМ диапазоне. На основе дополнительно введенных и установленных определенным образом оптических элементов (линзовой антенны и двух зеркал) обеспечена визуализация не только ИК, но и СМ излучений. При этом обеспечивается возможность совмещения изображений объектов, наблюдаемых в СМ и ИК диапазонах. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области электрооптического (радиооптического) приборостроения и может быть использовано для получения видимых изображений объектов, испускающих или рассеивающих инфракрасное (ИК) и субмиллиметровое (СМ) электромагнитные излучения (ЭМИ).
Из широкого (от рентгеновского до СВЧ-диапазона) спектра электромагнитных излучений, испускаемых природными или искусственными объектами, человеческий глаз способен видеть изображения объектов, только в диапазоне длин волн 0.45÷0.75 мкм.
Для видения за пределами этого диапазона разрабатываются различные визуализаторы электромагнитных излучений (ВЭИ), например, радиометры изображения или отображающие радиометры (imaging radiometers) для ЭМИ СМ диапазонов, электронно-оптические преобразователи (ЭОПы) и тепловизоры, соответственно для ближней и средней ИК-областей спектра.
ВЭИ, как правило, содержат:
- линзовую или зеркальную антенну (или объектив), строящую невидимое глазом изображение в плоскости матричной или сплошной мишени;
- мишень, каждый элемент разложения изображения которой преобразует поглощенное им ЭМИ, в конечном итоге, в электрический сигнал, пропорциональный мощности (энергии) поглощенного ЭМИ;
- устройство для построения (по электрическим сигналам) видимого глазом изображения объектов, испускающих невидимые ЭМИ (монитор у тепловизоров, люминесцентный экран у ЭОПов).
Известен [S.V.Shitov, A.N.Vystavkin. An integrated array antenna for a TES imaging radiometer: general concept and simulations. // Proc. of 16th Intern. Symp. on Space Terahertz Technology, 31 April - 4 May, 2005] визуализатор электромагнитных излучений СМ диапазона - радиометр изображения (imaging radiometer), мишень которого выполнена в виде матрицы сверхпроводящих болометров на основе двухслойных структур «сверхпроводник - нормальный металл». Болометры из слоев «молибден - медь» с нанометровыми толщинами (10-100 нм) имеют предельную чувствительность 4·10-19÷4·10-21 Вт/Гц1/2 и работают при температурах 0.4÷0.08 К. Болометры включены в антенную матрицу, каждая ячейка (пиксель) которой образована пересекающимися парами щелевых антенн, длина которых соизмерима с длиной принимаемой волны ЭМИ. Каждая пара антенн соединена микрополосковой линией. В разрыв каждой микрополосковой линии включен болометр. Под действием ЭМИ СМ диапазона в каждой антенне возбуждаются СВЧ-токи, (соответствующие облученности этой ячейки), которые нагревают болометр этой ячейки до температуры, соответствующей ее облученности. В результате изменяется сопротивление каждого болометра и изменяется ток (напряжение) в цепи каждого болометра. Видимое изображение на мониторе строится по электрическим сигналам, вырабатываемым каждым болометром.
Основным недостатком этого ВЭИ является, что он не пригоден для визуализации ЭМИ ИК диапазона, к другим недостаткам этого ВИ можно отнести необходимость сверхглубокого охлаждения болометров, что делает этот прибор уникальным. Кроме того, для визуализации изображения требуется осуществлять вращение СМ- изображения в плоскости матрицы, (т.к. для уменьшения теплопритоков болометры каждой строки включены последовательно), что дополнительно усложняет и удорожает ВЭИ СМ диапазона.
Наиболее близким к изобретению, является ВЭИ, представляющий собой смотрящий тепловизор [Ж. Гроссорг. Инфракрасная термография. Основы, техника, применение. // М., Мир, 1968, с.312].
Недостатком тепловизоров можно считать то, что они непригодны для визуализации СМ ЭМИ.
Задачами изобретения является следующее
- обеспечение возможности отдельно визуализировать субмиллиметровое или инфракрасное излучение;
- обеспечение возможности одновременно визуализировать субмиллиметровое и инфракрасное излучение на одном дисплее (так называемый комплексированный режим).
Поставленные задачи решаются тем, что в визуализатор дополнительно введена линзовая антенна, в фокальной плоскости которой установлена плоская мишень, каждый элемент разложения которой под действием поглощенного излучения субмиллиметрового диапазона нагревается до температуры, однозначно зависящей от его облученности, при этом b - поперечный размер мишени и f - фокусное расстояние линзовой антенны выбираются таким образом, чтобы выполнялось следующее соотношение: α=2·arctg (b/2·f), где α - угол поля зрения тепловизора, причем мишень расположена внутри термоизолирующего вакуумируемого корпуса, в котором со стороны, обращенной к антенне, имеется окно, прозрачное для излучений субмиллиметрового и инфракрасного диапазонов длин волн, между окном и линзовой антенной введено первое плоское зеркало, угол между плоскостью мишени и плоскостью зеркала составляет 45 градусов, подложка зеркала прозрачна для субмиллиметрового излучения, сторона подложки, обращенная к мишени, имеет покрытие, отражающее инфракрасное излучение, причем максимальное отражение обеспечивается в спектральной полосе 8÷14 мкм при угле падения лучей 45 градусов, оптическая ось объектива тепловизора, пересекающаяся с оптической осью линзовой антенны в геометрическом центре отражающего слоя зеркала, образует угол 45 градусов с нормалью к отражающей поверхности зеркала, L - сумма расстояний от этой точки пересечения оптических осей до мишени и объектива равна L=b/2·tg (α/2), между объективом тепловизора и первым зеркалом установлено второе плоское зеркало, отражающее излучение в спектральной полосе 8÷14 мкм при угле падения лучей 45 градусов, так чтобы оно могло быть введено в поле зрения тепловизора и выведено из него, при этом, когда зеркало введено в поле зрения тепловизора, его отражающая поверхность образует угол 90 градусов с плоскостью подложки первого зеркала и обращена в сторону объектива тепловизора.
С целью обеспечения возможности отдельно визуализировать инфракрасное излучение с максимальной чувствительностью второе плоское зеркало визуализатора изготовлено с максимальным коэффициентом отражения в спектральной полосе 8÷14 мкм при угле падения лучей 45 градусов.
С целью обеспечения возможности одновременно визуализировать субмиллиметровое и инфракрасное излучение на одном дисплее, второе плоское зеркало визуализатора сделано частично прозрачным в спектральной полосе 8÷14 мкм при угле падения лучей 45 градусов.
С целью повышения спектральной селективности и чувствительности, мишень визуализатора выполнена в виде матрицы антенн, расположенных в одной плоскости, имеющих размеры, соизмеримые с длиной волны субмиллиметрового диапазона, причем электрической нагрузкой каждой антенны является пленка, изготовленная из резистивного материала, расположенная в плоскости матрицы.
Поясним принцип работы визуализатора излучений.
Плоская мишень, помещенная в термоизолирующую камеру, может быть выполнена в виде сплошной или разделенной узкими канавками резистивной пленки, нанесенной на тонкую (толщиной доли, мм) диэлектрическую подложку, сделанную, например, из кварца, или представлять собой антенную матрицу, в которой электрическими нагрузками каждой из антенн являются резистивные пленки.
Линзовая антенна строит изображение (в СМ диапазоне длин волн) наблюдаемого объекта в плоскости мишени. Каждый элемент разложения изображения в плоскости мишени (размеры которого соизмеримы с длиной волны излучения субмиллиметрового диапазона) под действием поглощенного излучения субмиллиметрового диапазона нагревается до температуры, однозначно зависящей от его облученности. Часть инфракрасного излучения каждого элемента разложения мишени с помощью первого зеркала (при этом второе зеркало выведено из поля зрения тепловизора) направляется в объектив тепловизора, который преобразует температурное поле мишени в видимое изображение, воспроизводимое монитором. (Поскольку температуры элементов разложения мишени, нагреваемых СМ излучением, мало отличаются от температуры окружающей среды, для визуализации температурного поля мишени целесообразно использовать тепловизор, работающий в полосе 8-14 мкм). Для того чтобы получить изображение наблюдаемого объекта, излучающего в ИК диапазоне, в поле зрения тепловизора вводится второе зеркало, которое направляет часть ИК - излучения наблюдаемого объекта в объектив тепловизора.
Выполнение соотношений: α=2·arctg(b/2·f) и L=b/2·tg(α/2), (где L - сумма расстояний от точки пересечения оптических осей линзовой антенны и объектива тепловизора до мишени и объектива; b - поперечный размер мишени; α - угол поля зрения тепловизора) обеспечивает равенство углов полей зрения субмиллиметрового и инфракрасного каналов ВЭИ.
Для повышения спектральной селективности и чувствительности ВЭИ к излучению с заданной длиной волны и, следовательно, повышения помехозащищенности в визуализаторе излучений по п.2 мишень может быть выполнена в виде матрицы антенн, расположенных в одной плоскости и имеющих размеры, соизмеримые с длиной волны субмиллиметрового диапазона. Таким образом, каждая антенна определяет геометрические размеры элемента разложения изображения наблюдаемого объекта в плоскости мишени в субмиллиметровом диапазоне длин волн. Антенны могут быть изготовлены из металлической пленки, причем электрической нагрузкой каждой антенны является пленка, изготовленная из резистивного материала, расположенная в плоскости матрицы.
Под действием ЭМИ СМ диапазона в каждой антенне возбуждаются резонансные СВЧ-токи, (соответствующие облученности этого элемента разложения), которые нагревают изготовленную из резистивного материала пленку, являющуюся электрической нагрузкой антенны до температуры, соответствующей облученности антенны. Часть инфракрасного излучения каждой пленки с помощью первого зеркала (при этом второе зеркало выведено из поля зрения тепловизора) направляется в объектив тепловизора, который преобразует температурное поле мишени в видимое изображение, воспроизводимое монитором. Причем в процессе преобразования яркость каждого элемента разложения видимого изображения на экране монитора определяется температурой резистивной пленки, оптически сопряженной с этим элементом.
Излучения СМ диапазона с длинами волн, отличающимися от заданных геометрическими размерами антенны, практически не возбуждают СВЧ-токи в антеннах и, следовательно, не приводят к нагреву резистивных пленок и не фиксируются тепловизором. В результате повышается помехозащищенность ВЭИ. Следует отметить, что антенны, нагруженные на резистивную пленку, принимают СМ излучение более эффективно, чем сама резистивная пленка, что повышает чувствительность ВЭИ.
В ряде случаев для лучшей идентификации объекта желательно иметь возможность совмещения его изображений в СМ и ИК диапазонах, т.е. визуализировать субмиллиметровое излучение одновременно с инфракрасным излучением. Для реализации этой задачи необходимо, чтобы в ВЭИ по п.1 второе плоское зеркало было частично прозрачным в спектральной полосе 8-14 мкм при угле падения лучей 45 градусов и было введено в поле зрения тепловизора.
Действительно, выполнение соотношений: α=2·arctg(b/2·f) и L=b/2·tg(α/2) обеспечивает равенство углов полей зрения субмиллиметрового и инфракрасного каналов ВИ и позволяет с помощью введения второго зеркала в поле зрения тепловизора совмещать на мониторе тепловизора изображения объекта, наблюдаемого в СМ и ИК диапазонах.
Таким образом, с помощью описанных выше дополнительно введенных и установленных определенным образом элементов, ВЭИ на основе тепловизора оказывается пригодным для визуализации не только инфракрасного, но и субмиллиметрового излучений. При этом обеспечивается возможность совмещения изображений объектов, наблюдаемых в СМ и ИК диапазонах, т.е. обеспечивается возможность для лучшей идентификации объекта визуализировать субмиллиметровое излучение одновременно с инфракрасным излучением.
На фиг.1 показана схема визуализатора электромагнитных излучений по п.1 формулы изобретения.
Визуализатор имеет следующие основные элементы: линзовую антенну 1, в фокальной плоскости которой находится плоская мишень 4, зеркало 2, прозрачное для СМ излучения и отражающее ИК излучение в полосе 8÷14 мкм, вакуумированный термоизолирующий корпус 5, с окном 3, прозрачным для СМ и ИК излучений, зеркало 6, изготовленное с возможностью перемещения в положение А или В, смотрящий тепловизор, содержащий объектив 7, матричный приемник с электронным блоком обработки 8, монитор 9.
Сущность визуализатора электромагнитных излучений по п.2 формулы изобретения поясняется фиг.1. Для обеспечения возможности отдельно визуализировать инфракрасное излучение с максимальной чувствительностью, в визуализаторе изображений по п.1 второе плоское зеркало изготовлено с максимальным коэффициентом отражения в спектральной полосе 8÷14 мкм при угле падения лучей 45 градусов и установлено в положение А.
Сущность визуализатора электромагнитных излучений по п.3 формулы изобретения поясняется фиг.1.
Для обеспечения возможности одновременного наблюдения объекта в двух спектральных диапазонах зеркало 6 изготавливается полупрозрачным в полосе 8÷14 мкм и устанавливается в положение В.
Сущность выполнения мишени визуализатора по п.4 формулы изобретения поясняется фиг.2, где: 1 и 2 - горизонтальный и вертикальный провода дипольных антенн [А.З.Фрадин. Антенно-фидерные устройства. // М., «Связь», 1977]; 3-резистивная пленка, электрически соединенная с проводами дипольных антенн. На фиг.2 показана мишень, содержащая матрицы, образованные взаимно перпендикулярными дипольными антеннами, между проводами которых находятся квадратные пленки из резистивного материала. Подобное расположение антенн обеспечивает прием излучения с любой поляризацией. Каждая пара горизонтальных и вертикальных проводов, нагруженных на резистивный квадрат, представляет собой элемент разложения (разрешения) мишени.
Следует отметить, что антенная матрица мишени может быть образована не только с помощью дипольных антенн, но и с помощью антенн других видов, например, щелевых [А.З. Фрадин. Антенно-фидерные устройства. // М., «Связь», 1977].
Визуализатор по п.1 формулы изобретения работает следующим образом.
Линзовая антенна 1 принимает СМ излучение от наблюдаемого объекта. Это излучение проходит через зеркало 2 и окно 3 вакуумируемого термоизолирующего корпуса 5, фокусируется в виде точек изображения этого объекта на поверхности мишени 4, каждый элемент разложения которой преобразует падающую на него энергию СМ излучения, в конечном итоге, в тепло, в результате чего его температура повышается в соответствии с величиной поглощенной энергии СМ излучения. Часть инфракрасного излучения от каждого элемента разложения мишени падает на зеркало 2 и после отражения от него попадает в объектив 7 тепловизора (при этом зеркало 6 выведено из поля зрения тепловизора и находится в положении А), который строит ИК изображение температурного поля мишени 4 на поверхности матричного приемника тепловизора, каждый пиксель которого преобразует энергию ИК излучения в электрический сигнал. Электрические сигналы от каждого пикселя матричного приемника после обработки поступают из блока 8, содержащего матричный приемник с блоком обработки информации, на монитор 9, который создает видимое изображение объекта, излучающего в СМ области спектра.
Визуализатор по п.2 формулы изобретения работает следующим образом.
Для наблюдения объекта, излучающего в ИК области спектра, зеркало 6 вводится в поле зрения тепловизора (устанавливается в положение В). В этом случае инфракрасное излучение объекта (в спектральной полосе 8-14 мкм) после отражения от зеркала 6 попадает в объектив тепловизора и воспроизводится в видимой области спектра на мониторе тепловизора.
Визуализатор по п.3 формулы изобретения работает следующим образом. Для обеспечения возможности одновременного наблюдения объекта в двух спектральных диапазонах зеркало 6, изготавливается полупрозрачным в полосе 8-14 мкм и устанавливается в положение В.
Причем вследствие того, что углы поля зрения субмиллиметрового и инфракрасного каналов визуализатора равны между собой, на мишени тепловизора совмещаются два инфракрасных (в полосе 8-14 мкм) изображения, геометрически сопряженных с наблюдаемым объектом: изображение температурного поля мишени 4, обусловленное СМ излучением наблюдаемого объекта, и изображение наблюдаемого объекта, образованное его ИК излучением. Суперпозиция этих изображений (комплексированное изображение) воспроизводится в видимой области спектра на мониторе 9.
Для более детального пояснения сущности изобретения сделаем оценку возможных конструктивных размеров ВЭИ. Пусть требуется разработать ВЭИ со следующими характеристиками.
Визуализируемые излучения:
СМ диапазон λСМ≈100 мк
ИК диапазон λИК=8…14 мкм.
Пространственное разрешение 100×100 точек.
Пример реализации подобного ВЭИ по п.1 формулы изобретения.
Поперечный размер мишени b≈k·λСМ·100, где k≈1.5-4 - коэффициент, учитывающий размеры аберрационного пятна в фокальной плоскости линзовой антенны. При k≈2, получим b≈200 мм.
Пусть α≈30°, тогда f≈1.86·b≈372 мм.
L=373 мм, fт≈28 мм, bт≈15 мм, где fт и bт, соответственно, фокусное расстояние и поперечный размер матричного приемника тепловизора.
Пример реализации ВЭИ по п.2 формулы изобретения
Пусть мишень представляет собой антенную матрицу с топологией, показанной на фиг.2. Тогда при поперечных размерах мишени b≈200 мм и пространственном разрешении 100×100 точек, размеры каждого элемента разложения изображения мишени, образованного двумя взаимно перпендикулярными дипольными антеннами, электрической нагрузкой которых является резистивная пленка, могут быть равны 200 мм/100=2 мм, при длине провода каждого диполя 0.75 мм и стороне квадрата резистивной пленки, равной 0.5 мм.

Claims (4)

1. Визуализатор электромагнитных излучений, содержащий смотрящий тепловизор, отличающийся тем, что в визуализатор дополнительно введена линзовая антенна, в фокальной плоскости которой установлена плоская мишень, каждый элемент разложения которой под действием поглощенного излучения субмиллиметрового диапазона нагревается до температуры, однозначно зависящей от его облученности, при этом b - поперечный размер мишени и f - фокусное расстояние линзовой антенны выбираются таким образом, чтобы выполнялось следующее соотношение: α=2·arctg (b/2·f), где α - угол поля зрения тепловизора, причем мишень расположена внутри термоизолирующего вакуумируемого корпуса, в котором со стороны, обращенной к антенне, имеется окно, прозрачное для излучений субмиллиметрового и инфракрасного диапазонов длин волн, между окном и линзовой антенной введено первое плоское зеркало, угол между плоскостью мишени и плоскостью зеркала составляет 45°, подложка зеркала прозрачна для субмиллиметрового излучения, сторона подложки, обращенная к мишени, имеет покрытие, отражающее инфракрасное излучение, причем максимальное отражение обеспечивается в спектральной полосе 8÷14 мкм при угле падения лучей 45°, оптическая ось объектива тепловизора, пересекающаяся с оптической осью линзовой антенны в геометрическом центре отражающего слоя зеркала, образует угол 45° с нормалью к отражающей поверхности зеркала, L - сумма расстояний от этой точки пересечения оптических осей до мишени и объектива равна L=b/2·tg(α/2), между объективом тепловизора и первым зеркалом установлено второе плоское зеркало, отражающее излучение в спектральной полосе 8÷4 мкм при угле падения лучей 45°, так, чтобы оно могло быть введено в поле зрения тепловизора и выведено из него, при этом, когда зеркало введено в поле зрения тепловизора, его отражающая поверхность образует угол 90° с плоскостью подложки первого зеркала и обращена в сторону объектива тепловизора.
2. Визуализатор электромагнитных излучений по п.1, отличающийся тем, что второе плоское зеркало выполнено с максимальным коэффициентом отражения в спектральной полосе 8÷14 мкм при угле падения лучей 45°.
3. Визуализатор электромагнитных излучений по п.1, отличающийся тем, что второе плоское зеркало выполнено частично прозрачным в спектральной полосе 8÷14 мкм при угле падения лучей 45°.
4. Визуализатор электромагнитных излучений по одному из пп.1-3, отличающийся тем, что мишень выполнена в виде матрицы антенн, расположенных в одной плоскости, имеющих размеры, соизмеримые с длиной волны субмиллиметрового диапазона, причем электрической нагрузкой каждой антенны является пленка, изготовленная из резистивного материала, расположенная в плоскости матрицы.
RU2007140119/28A 2007-10-29 2007-10-29 Визуализатор электромагнитных излучений RU2356129C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007140119/28A RU2356129C1 (ru) 2007-10-29 2007-10-29 Визуализатор электромагнитных излучений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007140119/28A RU2356129C1 (ru) 2007-10-29 2007-10-29 Визуализатор электромагнитных излучений

Publications (1)

Publication Number Publication Date
RU2356129C1 true RU2356129C1 (ru) 2009-05-20

Family

ID=41021850

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007140119/28A RU2356129C1 (ru) 2007-10-29 2007-10-29 Визуализатор электромагнитных излучений

Country Status (1)

Country Link
RU (1) RU2356129C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2504801C1 (ru) * 2012-06-13 2014-01-20 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Устройство для визуализации электрических полей свч в пространстве
RU2507542C2 (ru) * 2012-08-27 2014-02-20 Асхат Хайдарович Кутлубаев Способ визуализации электромагнитных излучений и устройство для его реализации
RU2545346C1 (ru) * 2013-10-04 2015-03-27 Асхат Хайдарович Кутлубаев Способ визуализации электромагнитных излучений и устройство-тераскоп для его реализации
RU2565350C1 (ru) * 2014-06-09 2015-10-20 Асхат Хайдарович Кутлубаев Способ и устройство визуализации электромагнитных излучений

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ГРОССОРГ Ж. Инфракрасная термография. Основы, техника, применение. - М.: Мир, 1968, с.312. SHITOV S.V., VYSTAVKIN A.N. An integrated array antenna for a TES imaging radiometer: general concept and simulations. // Proc. of 16 th Intern. Symp. on Space Terahertz Technology, 31 April - 4 May, 2005. *
ФРАДИН А.З. Антенно-фидерные устройства. - М.: Связь, 1971, с.240. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2504801C1 (ru) * 2012-06-13 2014-01-20 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Устройство для визуализации электрических полей свч в пространстве
RU2507542C2 (ru) * 2012-08-27 2014-02-20 Асхат Хайдарович Кутлубаев Способ визуализации электромагнитных излучений и устройство для его реализации
RU2545346C1 (ru) * 2013-10-04 2015-03-27 Асхат Хайдарович Кутлубаев Способ визуализации электромагнитных излучений и устройство-тераскоп для его реализации
RU2565350C1 (ru) * 2014-06-09 2015-10-20 Асхат Хайдарович Кутлубаев Способ и устройство визуализации электромагнитных излучений

Similar Documents

Publication Publication Date Title
JP3895474B2 (ja) サブミリ波で機能する撮像システム
US7893404B2 (en) Electromagnetic wave sensor, imaging element and imaging device
US10234379B2 (en) Electromagnetic wave detector, electromagnetic wave detector array, and gas analyzing apparatus
Baryshev et al. Progress in antenna coupled kinetic inductance detectors
Arnold et al. The bolometric focal plane array of the POLARBEAR CMB experiment
JP6486695B2 (ja) ボロメータ型THz検出器
CN102575961A (zh) 包括电容耦合天线的太赫兹检测器
KR20140080206A (ko) 광대역 광 흡수체를 포함하는 적외선 검출기
US9638578B2 (en) Terahertz wave detecting device, camera, imaging apparatus, and measuring apparatus
Ferrari et al. Antenna coupled MKID performance verification at 850 GHz for large format astrophysics arrays
KR20130072806A (ko) 적외선 검출기 및 이를 사용하는 적외선 검출 방법
Timofeev et al. Optical and electrical characterization of a large kinetic inductance bolometer focal plane array
RU2356129C1 (ru) Визуализатор электромагнитных излучений
CN109309140A (zh) 偏振非制冷红外焦平面探测器
US9360375B2 (en) Photon radiation detector comprising an array of antennas and a spiral resistive support
Chuss et al. Cosmology large angular scale surveyor (CLASS) focal plane development
Dem'Yanenko et al. Microbolometer detector arrays for the infrared and terahertz ranges
US5214292A (en) Dynamic infrared scene display
Tarasov et al. Arrays of annular antennas with SINIS bolometers
May et al. Next generation of a sub-millimetre wave security camera utilising superconducting detectors
Hu et al. Emerging thermal infrared ‘THz Torch’technology for low-cost security and defence applications
Hong et al. Large-Scale Terahertz Sensor Array Module With Antenna-Coupled Microbolometers on Glass Substrate With Sigma–Delta ADC Readout ASIC
Lundgren et al. IR and metasurface based mm-wave camera
Grossman et al. Imaging with modular linear arrays of cryogenic Nb microbolometers
US20130181129A1 (en) High Resolution Thermography

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191030