RU2350943C1 - Магнитная система электромагнитно-акустического преобразователя - Google Patents

Магнитная система электромагнитно-акустического преобразователя Download PDF

Info

Publication number
RU2350943C1
RU2350943C1 RU2007125800/28A RU2007125800A RU2350943C1 RU 2350943 C1 RU2350943 C1 RU 2350943C1 RU 2007125800/28 A RU2007125800/28 A RU 2007125800/28A RU 2007125800 A RU2007125800 A RU 2007125800A RU 2350943 C1 RU2350943 C1 RU 2350943C1
Authority
RU
Russia
Prior art keywords
magnet
concentrator
emat
magnetic
pole tip
Prior art date
Application number
RU2007125800/28A
Other languages
English (en)
Inventor
Андрей Анатольевич Самокрутов (RU)
Андрей Анатольевич Самокрутов
Владимир Тимофеевич Бобров (RU)
Владимир Тимофеевич Бобров
Виктор Гаврилович Шевалдыкин (RU)
Виктор Гаврилович Шевалдыкин
Константин Леонидович Сергеев (RU)
Константин Леонидович Сергеев
Сергей Геннадиевич Алехин (RU)
Сергей Геннадиевич Алехин
Владимир Николаевич Козлов (RU)
Владимир Николаевич Козлов
Original Assignee
Закрытое акционерное общество научно-исследовательский институт интроскопии Московского научно-производственного объединения "СПЕКТР" (ЗАО НИИИН МНПО "СПЕКТР")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество научно-исследовательский институт интроскопии Московского научно-производственного объединения "СПЕКТР" (ЗАО НИИИН МНПО "СПЕКТР") filed Critical Закрытое акционерное общество научно-исследовательский институт интроскопии Московского научно-производственного объединения "СПЕКТР" (ЗАО НИИИН МНПО "СПЕКТР")
Priority to RU2007125800/28A priority Critical patent/RU2350943C1/ru
Application granted granted Critical
Publication of RU2350943C1 publication Critical patent/RU2350943C1/ru

Links

Images

Abstract

Изобретение относится к области неразрушающего контроля, а именно к средствам обнаружения дефектов в металлах и сплавах в широком диапазоне толщин при одностороннем бесконтактном доступе, и предназначено для применения в металлургии, машиностроении и др. отраслях промышленности. Магнитная система электромагнитно-акустического преобразователя (ЭМАП) содержит постоянный магнит в форме цилиндра с направлением намагничивания вдоль оси, концентратор из магнитомягкого материала, дополнительный магнит, полюсный наконечник, магнитопровод и вставку из немагнитного металла, при этом концентратор установлен на торцевой части магнита, дополнительный магнит выполнен с направлением намагничивания по нормали к боковым граням концентратора и с обеспечением одинаковой полярности всех примыкающих к концентратору полюсов, полюсный наконечник расположен на противоположном от концентратора торце магнита, а магнитопровод расположен между дополнительным магнитом и полюсным наконечником, причем вставка установлена между полюсным наконечником и магнитопроводом. Технический результат: расширение функциональных возможностей и области применения за счет повышения чувствительности аппаратуры для обнаружения дефектов и измерения толщины деталей, а также снижение уровня рассеянного магнитного поля на боковых поверхностях ЭМАП, что обеспечивает выполнение санитарных требований и позволяет использовать ЭМАП без вреда для оператора-дефектоскописта. 3 ил.

Description

Изобретение относится к области неразрушающего контроля, а именно к средствам обнаружения дефектов проката и конструкций типа лент, полос, труб, сосудов, рельсов и др. из черных и цветных металлов и сплавов в широком диапазоне толщин при одностороннем бесконтактном доступе, и предназначено для применения в металлургии, машиностроении, авиастроении, автомобилестроении, в нефтегазовой и др. отраслях промышленности.
Известны магнитные системы электромагнитно-акустических (ЭМА) преобразователей (ЭМАП), обеспечивающих возбуждение сдвиговых (поперечных) и продольных ультразвуковых объемных волн, предназначенных для обнаружения дефектов проката и конструкций типа лент, полос, труб, сосудов, рельсов и др. из черных и цветных металлов и сплавов в широком диапазоне толщин при одностороннем бесконтактном доступе [1. Глухов Н.А. Некоторые параметры электромагнитного датчика сдвиговых ультразвуковых колебаний в токопроводящих материалах. - Дефектоскопия, 1971, № 4, с.69-74. 2. Самокрутов А.А., Бобров В.Т., Шевалдыкин В.Г., Козлов В.Н., Алехин С.Г., Жуков А.В. Исследование анизотропии проката и ее влияния на результаты акустических измерений. // Контроль. Диагностика. 2003, № 11. С.6-8, 13-19]. Эти технические решения имеют существенные недостатки, ограничивающие область их применения.
Известна магнитная система ЭМАП для возбуждения сдвиговых ультразвуковых волн [1], содержащая электромагнит, между рабочим торцом которого и контролируемым изделием располагают высокочастотную катушку (индуктор). Указанный ЭМАП не обеспечивает необходимой чувствительности и имеет низкое отношение сигнал/шум при контроле изделий в особенности с криволинейной поверхностью и из-за больших габаритов и массы магнитной системы не может быть использован в переносных и портативных приборах для ручного контроля.
Известна магнитная система ЭМАП для возбуждения продольных ультразвуковых волн [2, рис.2а], содержащая постоянный магнит в виде кольца и концентратор. Между рабочим торцом магнита и концентратором располагают высокочастотную катушку (индуктор). Указанный ЭМАП не обеспечивает необходимой чувствительности и имеет низкое отношение сигнал/шум.
Наиболее близким решением является магнитная система ЭМАП для возбуждения сдвиговых (поперечных) ультразвуковых объемных волн с применением постоянных магнитов [2, рис.2б], содержащая магнит в форме цилиндра с направлением намагничивания вдоль оси, на торце которого расположена катушка индуктора ЭМАП. Этот ЭМАП также не обеспечивает требуемой чувствительности при контроле как в ручном, так и в автоматическом режиме объектов из различных материалов с коррозионным повреждением поверхности, а рассеянное магнитное поле не позволяет использовать его при ручном контроле, так как нарушаются санитарные нормы по воздействию постоянного магнитного поля на руки оператора.
Сущность заявляемого изобретения состоит в том, что в магнитную систему электромагнитно-акустического преобразователя, содержащую постоянный магнит в форме цилиндра с направлением намагничивания вдоль оси, введены концентратор из магнитомягкого материала, дополнительный магнит, полюсный наконечник, магнитопровод и вставка из немагнитного металла, при этом концентратор установлен на торцевой части магнита, дополнительный магнит выполнен с направлением намагничивания по нормали к боковым граням концентратора и с обеспечением одинаковой полярности всех примыкающих к концентратору полюсов, полюсный наконечник расположен на противоположном от концентратора торце магнита, а магнитопровод расположен между дополнительным магнитом и полюсным наконечником, причем вставка установлена между полюсным наконечником и магнитопроводом.
Техническим результатом применения предложенной магнитной системы ЭМАП является то, что она позволяет расширить функциональные возможности (наряду с возбуждением сдвиговых волн с радиальной поляризацией обеспечивается возбуждение сдвиговых волн с линейной поляризацией и продольных волн, а также их одновременное возбуждение) и области применения аппаратуры, работающей совместно с предложенной магнитной системой ЭМАП, за счет повышения отношения сигнал/шум и чувствительности аппаратуры при обнаружении дефектов в изделиях с различной степенью криволинейности поверхности из углеродистой и нержавеющей сталей, сплавов алюминия, титана и других электропроводящих материалов и измерения толщины деталей из упомянутых металлов и сплавов как в состоянии поставки, так и в процессе работы в агрессивной среде при наличии коррозионных повреждений. Другим результатом является снижение уровня рассеянного магнитного поля на боковых поверхностях ЭМАП, что обеспечивает выполнение санитарных требований и позволяет использовать ЭМАП без вреда для оператора-дефектоскописта.
На фиг.1 показан общий вид магнитной системы ЭМАП для возбуждения сдвиговых (поперечных) и продольных ультразвуковых объемных волн. На фиг.2, 3 показан вид магнитной системы со стороны рабочего торца концентратора 2 (вид снизу).
Магнитная система ЭМАП содержит постоянный магнит 1 в форме цилиндра с направлением намагничивания вдоль оси, концентратор 2 из магнитомягкого материала, установленный на торцевой части магнита 1, дополнительный магнит 3 с направлением намагничивания по нормали к боковым граням концентратора 2, обеспечивающим одинаковую полярность всех примыкающих к концентратору 2 полюсов, полюсный наконечник 4, расположенный на противоположном от концентратора 2 торце магнита 1, вставку 5 из немагнитного металла и магнитопровод 6, устанавливаемый между дополнительным магнитом 3 и вставкой 5.
В зависимости от технологии изготовления магнитной системы возможны два варианта исполнения концентратора 2 и дополнительного магнита 3. На фиг.2 показан вариант исполнения дополнительного магнита в виде кольца 3 с радиальным направлением намагничивания. На фиг.3 показан вариант исполнения дополнительного магнита в виде состыкованных секторов 3, намагниченных таким образом, что в собранном виде они намагничены радиально, аналогично варианту, представленному на фиг.2.
Для повышения прочности магнитной системы ЭМА преобразователя вставка 5 может быть выполнена в виде цилиндрической гайки с резьбой на внутренней и наружной поверхностях, а магнитопровод 6 содержать резьбовую часть на наружной поверхности для крепления в корпусе ЭМАП (на фиг.1 не показан). Концентратор 2 может иметь и отличающуюся от цилиндрической форму, например форму параллелепипеда квадратного или прямоугольного сечения. При этом дополнительный магнит 3 выполняется в соответствии с фиг.3 и также повторяет форму концентратора. Магнитопровод 6 также изготавливается с учетом формы концентратора 2 и дополнительного магнита 3.
Соотношение размеров выступающих за пределы дополнительного магнита 3 частей концентратора 2 и магнитопровода 6 определяется задачей возбуждения того или иного типа ультразвуковой волны. Все элементы магнитной системы дополнительно соединяются между собой с помощью клея на основе, например, эпоксидной смолы.
В зависимости от конструктивных параметров элементов магнитной системы и индуктора ЭМАП в объекте контроля возбуждаются объемные сдвиговые волны с радиальной или линейной поляризацией (со смещениями поперек направления распространения волны) или продольные волны. Ультразвуковые колебания возникают в результате взаимодействия вихревых токов, наводимых при подаче на индуктор ЭМАП импульса высокочастотных колебаний, и нормальной или касательной составляющей магнитного поля магнитной системы.
Возникающие в поверхностном слое объекта контроля импульсы сдвиговых или продольных объемных волн, однократно или многократно отражаясь от дефектов или стенок изделия, характеризуют местоположение и размеры дефектов и остаточную толщину стенки изделия или конструкции.
Работа магнитной системы ЭМА преобразователя.
ЭМА преобразователь с предлагаемой магнитной системой для возбуждения УЗ-колебаний располагают над поверхностью контролируемого изделия или конструкции. На индуктор ЭМА преобразователя подают импульсы высокочастотных колебаний, наводящие в поверхностном слое конструкции или проката вихревые токи. Для возбуждения сдвиговых волн магнитная система ЭМАП создает магнитный поток с нормальной составляющей магнитного поля в области проекции концентратора 2 на поверхность контролируемого изделия. Под действием сил Лоренца в поверхностном слое объекта контроля возникает сдвиговая объемная волна, распространяющаяся вглубь металла в направлении, соответствующем нормали к поверхности изделия. Прием импульсов ультразвуковых колебаний и их преобразование в электрические сигналы обеспечивает этот же ЭМАП. Для измерения толщины стенки изделия используются эхосигналы, многократно переотражающиеся от поверхностей стенки изделия, для обнаружения дефектов - эхосигналы от дефектов (эхометод) или противоположной поверхности стенки изделия (зеркально-теневой метод).
Далее регистрируют отраженные от дефектов акустические сигналы сдвиговой объемной волны и по их амплитуде и временному положению оценивают условные размеры и координаты дефектов. По скорости и времени распространения многократно отразившихся от стенок изделия эхосигналов сдвиговой волны УЗ-колебаний в материале судят о толщине стенки изделия. Описанный вариант ЭМАП с использованием предлагаемой магнитной системы эффективно работает при контроле изделий, изготовленных из изотропного или слабоанизотропного металла.
При контроле изделий, изготовленных из анизотропного металла, целесообразно использовать ЭМАП с предлагаемой магнитной системой и индуктором в форме катушки с линейными участками в области проекции концентратора на поверхность изделия, обеспечивающим возбуждение сдвиговых волн с линейной поляризацией (синфазное возбуждение). Работа данного варианта ЭМАП с предлагаемой магнитной системой аналогична вышеописанному варианту. Отличием является необходимость ориентации ЭМАП вдоль или поперек направления прокатки металла или приложенных напряжений. При использовании ЭМАП с линейной поляризацией за счет его разворота на 90° возможно измерение текстурной анизотропии и напряженно-деформированного состояния.
Оба типа описанных ЭМАП с предлагаемой магнитной системой могут эффективно использоваться как при контроле ферромагнитных, так и неферромагнитных металлов и сплавов.
При контроле неферромагнитных металлов и сплавов (аустенитные стали, сплавы алюминия, латуни, медные и титановые сплавы) эффективно применение ЭМАП с предлагаемой магнитной системой для возбуждения продольных ультразвуковых волн. В этом случае индуктор ЭМАП выполняется в виде спиральной катушки, располагаемой в области максимального значения касательной составляющей магнитного поля предлагаемой магнитной системы в пространстве между концентратором и магнитопроводом. Оптимизация параметров ЭМАП обеспечивается за счет выбора оптимального соотношения размеров выступающих за пределы дополнительного магнита 3 частей концентратора 2 и магнитопровода 6, ширины катушки ЭМАП и ее положения относительно магнитной системы.
ЭМА преобразователь с предлагаемой магнитной системой для возбуждения продольных УЗ колебаний располагают над поверхностью контролируемого изделия или конструкции. На индуктор ЭМА преобразователя в форме спиральной катушки подают импульсы высокочастотных колебаний, наводящие в поверхностном слое конструкции или проката вихревые токи. Для возбуждения продольных волн используется касательная составляющая магнитного поля в области проекции области магнитной системы между концентратором 2 и магнитопроводом 3 на поверхность контролируемого изделия. Под действием сил Лоренца в поверхностном слое объекта контроля возникает продольная объемная волна, распространяющаяся вглубь металла в направлении, соответствующем нормали к поверхности изделия. Прием импульсов ультразвуковых колебаний и их преобразование в электрические сигналы обеспечивает этот же ЭМАП. Для измерения толщины стенки изделия используются эхосигналы, многократно переотражающиеся от поверхностей стенки изделия, для обнаружения дефектов - эхосигналы от дефектов (эхометод) или противоположной поверхности стенки изделия (зеркально-теневой метод). При этом учитывается тот факт, что скорость распространения продольных волн примерно в два раза больше скорости сдвиговых волн. Достоинством ЭМАП для возбуждения продольных волн с предлагаемой магнитной системой является независимость от положения ЭМАП относительно направления прокатки металла контролируемой конструкции. При использовании комбинированного индуктора возможно одновременное или поочередное возбуждение сдвиговых и продольных волн.
Техническим результатом применения предложенной магнитной системы ЭМАП является то, что она позволяет расширить функциональные возможности (наряду с возбуждением сдвиговых волн с радиальной поляризацией обеспечивается возбуждение сдвиговых волн с линейной поляризацией и продольных волн, а также их одновременное возбуждение) и области применения аппаратуры, работающей совместно с предложенной магнитной системой ЭМАП, за счет улучшения отношения сигнал/шум и чувствительности аппаратуры при обнаружении дефектов в изделиях с различной степенью кривизны поверхности из углеродистой и нержавеющей сталей, сплавов алюминия, титана и других электропроводящих материалов и измерения толщины деталей из упомянутых металлов и сплавов как в состоянии поставки, так и в процессе работы в агрессивной среде при наличии коррозионных повреждений.

Claims (1)

  1. Магнитная система электромагнитно-акустического преобразователя, содержащая постоянный магнит в форме цилиндра с направлением намагничивания вдоль оси, отличающаяся тем, что в нее введены концентратор из магнитомягкого материала, дополнительный магнит, полюсный наконечник, магнитопровод и вставка из немагнитного металла, при этом концентратор установлен на торцевой части магнита, дополнительный магнит выполнен с направлением намагничивания по нормали к боковым граням концентратора и с обеспечением одинаковой полярности всех примыкающих к концентратору полюсов, полюсный наконечник расположен на противоположном от концентратора торце магнита, а дополнительный магнитопровод расположен между дополнительным магнитом и полюсным наконечником, причем вставка установлена между полюсным наконечником и магнитопроводом.
RU2007125800/28A 2007-07-10 2007-07-10 Магнитная система электромагнитно-акустического преобразователя RU2350943C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007125800/28A RU2350943C1 (ru) 2007-07-10 2007-07-10 Магнитная система электромагнитно-акустического преобразователя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007125800/28A RU2350943C1 (ru) 2007-07-10 2007-07-10 Магнитная система электромагнитно-акустического преобразователя

Publications (1)

Publication Number Publication Date
RU2350943C1 true RU2350943C1 (ru) 2009-03-27

Family

ID=40542998

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007125800/28A RU2350943C1 (ru) 2007-07-10 2007-07-10 Магнитная система электромагнитно-акустического преобразователя

Country Status (1)

Country Link
RU (1) RU2350943C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603442A (zh) * 2017-03-02 2019-12-20 奎斯特综合股份有限公司 用于腐蚀映射的电磁声换能器(emat)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Самокрутов А.А. и др. Исследование анизотропии проката и ее влияния на результаты акустических измерений. Контроль. Диагностика. 2003, №11, с.14. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603442A (zh) * 2017-03-02 2019-12-20 奎斯特综合股份有限公司 用于腐蚀映射的电磁声换能器(emat)
CN110603442B (zh) * 2017-03-02 2023-08-25 奎斯特综合股份有限公司 用于腐蚀映射的电磁声换能器(emat)

Similar Documents

Publication Publication Date Title
US6294912B1 (en) Method and apparatus for nondestructive inspection of plate type ferromagnetic structures using magnetostrictive techniques
Cho et al. Megahertz-range guided pure torsional wave transduction and experiments using a magnetostrictive transducer
Nakamura et al. Mode conversion and total reflection of torsional waves for pipe inspection
US11774409B2 (en) Electromagnetic acoustic transducer (EMAT) for corrosion mapping
Ma et al. Excitation and detection of shear horizontal waves with electromagnetic acoustic transducers for nondestructive testing of plates
CA2585823A1 (en) Device and method for the electromagnetic, acoustic material testing and/or thickness measurement of a test object that contains at least electrically conductive and ferromagneticmaterial fractions
KR100573736B1 (ko) 비틀림파를 발생 및 측정할 수 있는 트랜스듀서와 이를이용한 이상진단 장치 및 방법
US10175200B2 (en) Methods and systems for detecting nonuniformities in a material, component, or structure
US6014024A (en) Apparatus and method for detecting and/or measuring flaws in conductive material
Niese et al. Wall thickness measurement sensor for pipeline inspection using EMAT technology in combination with pulsed eddy current and MFL
Urayama et al. Application of EMAT/EC dual probe to monitoring of wall thinning in high temperature environment
RU2350943C1 (ru) Магнитная система электромагнитно-акустического преобразователя
JP3299505B2 (ja) 磁歪効果を用いる超音波探傷方法
JPH0587780A (ja) 金属管の非破壊検査の方法と装置
RU2334981C1 (ru) Электромагнитно-акустический преобразователь
Chen et al. Oil-tank weld detection using EMAT
Wang et al. A new system for defects inspection of boiler water wall tubes using a combination of EMAT and MFL
Kuansheng et al. A new frequency-tuned longitudinal wave transducer for nondestructive inspection of pipes based on magnetostrictive effect
RU2343475C1 (ru) Электромагнитно-акустический преобразователь
RU2231055C1 (ru) Устройство для ультразвукового контроля прочностных характеристик материала движущегося листового проката
JP7450305B1 (ja) 検査装置及び検査方法
RU2314880C1 (ru) Способ возбуждения акустических колебаний в электропроводящих материалах
Shevaldykin et al. EMA Transformation in pulsed magnetic field and its use in portable instruments for acoustic measurements
Nakamoto et al. Reliability evaluation of pipe thickness measurement by electromagnetic acoustic transducer
Light et al. Health Monitoring of Piping and Plate Using the Magnetostrictive Sensor(MsS) Guided-Wave Technology

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100711