RU2346368C1 - Lightning protector and power transmission line equipped therewith - Google Patents

Lightning protector and power transmission line equipped therewith Download PDF

Info

Publication number
RU2346368C1
RU2346368C1 RU2007131216/09A RU2007131216A RU2346368C1 RU 2346368 C1 RU2346368 C1 RU 2346368C1 RU 2007131216/09 A RU2007131216/09 A RU 2007131216/09A RU 2007131216 A RU2007131216 A RU 2007131216A RU 2346368 C1 RU2346368 C1 RU 2346368C1
Authority
RU
Russia
Prior art keywords
insulating body
electrodes
arrester
spark gap
electrode
Prior art date
Application number
RU2007131216/09A
Other languages
Russian (ru)
Inventor
Георгий Викторович Подпоркин (RU)
Георгий Викторович Подпоркин
Евгений Сергеевич Калакутский (RU)
Евгений Сергеевич Калакутский
Original Assignee
ОАО "Научно-производственное объединение "Стример"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОАО "Научно-производственное объединение "Стример" filed Critical ОАО "Научно-производственное объединение "Стример"
Priority to RU2007131216/09A priority Critical patent/RU2346368C1/en
Application granted granted Critical
Publication of RU2346368C1 publication Critical patent/RU2346368C1/en

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

FIELD: electricity.
SUBSTANCE: invention deals with devices used for protecting electrical equipment and high-voltage power transmission lines against lightning overvoltage. The proposed lightning protector designed for electrical equipment units and power transmission lines consists of insulator body represented by bar, tape of cylinder of solid nonconductive material, two main electrodes mechanically connected to the insulator body and two or more intermediate electrodes. The intermediate electrodes are arranged between the main electrodes mutually shifted along the insulator body longitudinal axis or a spiral line and enable establishment of a discharge channel between adjacent electrodes. The electrodes referred to are arranged inside the insulator body with a stratum of nonconductive material isolating them from the surface. Between the adjacent electrodes couples there are dead end and open-ended discharge chambers arranged that extend to reach the insulator body surface and may be represented by rectangular or round holes in the insulator body. The power transmission line structure includes insulated supports and at least a single device of the design proposed providing for lightning protection of the power transmission line component parts.
EFFECT: improved reliability and simplified structure of lightning protectors.
25 cl, 19 dwg

Description

Область техникиTechnical field

Предлагаемое изобретение относится к разрядникам для защиты электрооборудования и высоковольтных линий (ВЛ) электропередачи от грозовых перенапряжений. С помощью таких устройств могут защищаться, например, высоковольтные установки, изоляторы и другие элементы ВЛ, а также различное электрооборудование.The present invention relates to arresters for the protection of electrical equipment and high voltage lines (VL) power lines from lightning surges. Using such devices can be protected, for example, high-voltage installations, insulators and other elements of overhead lines, as well as various electrical equipment.

Уровень техникиState of the art

Известен так называемый трубчатый разрядник для ограничения перенапряжений на линии электропередачи (см. Техника высоких напряжений. / Под ред. Д.В.Разевига. - М.: Энергия, 1976, с.287). Основу разрядника составляет трубка из изоляционного газогенерирующего материала. Один конец трубки заглушен металлической крышкой, на которой укреплен внутренний стержневой электрод. На открытом конце трубки расположен электрод в виде кольца. Промежуток между стержневым и кольцевым электродами называется внутренним или дугогасящим промежутком. Один из электродов подсоединяется к земле, а второй через внешний искровой промежуток подсоединяется к проводу линии электропередачи.The so-called tubular arrester is known for limiting overvoltages on a power line (see Technique of high voltages. / Under the editorship of D.V. Razevig. - M.: Energy, 1976, p. 287). The arrester is based on a tube made of insulating gas-generating material. One end of the tube is plugged with a metal cover on which the inner rod electrode is mounted. An electrode in the form of a ring is located at the open end of the tube. The gap between the rod and ring electrodes is called the internal or arc gap. One of the electrodes is connected to the ground, and the second is connected to the wire of the power line through an external spark gap.

При грозовом перенапряжении оба промежутка пробиваются, и импульсный ток отводится в землю. После окончания импульса через разрядник продолжает проходить сопровождающий ток, и искровой канал переходит в дуговой. Под действием высокой температуры канала дуги переменного тока в трубке происходит интенсивное выделение газа, и давление сильно увеличивается. Газы, устремляясь к открытому концу трубки, создают продольное дутье, благодаря чему дуга гасится при первом же прохождении тока через нулевое значение.During a lightning overvoltage, both gaps break through, and the pulse current is discharged to the ground. After the end of the pulse, an accompanying current continues to pass through the arrester, and the spark channel passes into the arc channel. Under the action of the high temperature of the channel of the alternating current arc, intense gas evolution occurs in the tube, and the pressure increases greatly. Gases, rushing to the open end of the tube, create a longitudinal blast, due to which the arc is extinguished during the first passage of the current through the zero value.

В результате многократной работы разрядника разрядная камера трубки разрабатывается. Разрядник становится неработоспособным и подлежит замене, что требует больших эксплуатационных расходов.As a result of the multiple operation of the arrester, a discharge tube chamber is being developed. The arrester becomes inoperative and must be replaced, which requires large operating costs.

Известен также разрядник для ограничения перенапряжений на линии электропередачи на основе защитного воздушного искрового промежутка, образованного между двумя металлическими стержнями (см. Техника высоких напряжений. / Под ред. Д.В.Разевига. - М.: Энергия, 1976, с.285). Один из стержней известного разрядника присоединен к высоковольтному проводу линии, а второй - к заземленной конструкции, например к телу опоры линии электропередачи. При перенапряжении искровой промежуток пробивается, ток грозового перенапряжения отводится в землю, и напряжение на устройстве резко падает. Таким образом, осуществляются отвод грозового тока и ограничение перенапряжения. Однако дугогасящая способность одиночного промежутка незначительна, так что после окончания перенапряжения по дуге искрового промежутка продолжает протекать сопровождающий ток. Поэтому должен вступить в работу выключатель и разорвать цепь, что весьма нежелательно для потребителей, получающих электроэнергию от данной линии.A spark gap is also known to limit overvoltages on a power line based on a protective air spark gap formed between two metal rods (see High Voltage Technique. / Ed. By D.V. Rasevig. - M .: Energy, 1976, p. 285) . One of the rods of the known arrester is connected to the high-voltage wire of the line, and the second to the grounded structure, for example, to the body of the support of the power line. During overvoltage, the spark gap breaks through, the lightning overvoltage current is diverted to the ground, and the voltage across the device drops sharply. Thus, thunderstorm current is removed and overvoltage is limited. However, the arcing ability of a single gap is insignificant, so that after the overvoltage over the arc of the spark gap the accompanying current continues to flow. Therefore, the switch must come into operation and break the circuit, which is very undesirable for consumers receiving electricity from this line.

Известен далее разрядник, отличающийся от описанного выше тем, что между первым и вторым основными электродами (стержнями) расположен третий промежуточный стержневой электрод (см., например, патент США №4665460, 12.05.87, Н01Т 004/02). Таким образом, вместо одного воздушного искрового промежутка создано два промежутка. Благодаря этому удалось несколько увеличить дугогасящую способность разрядника и с его помощью гасить небольшие (порядка десятков ампер) сопровождающие токи при однофазных замыканиях на землю. Однако этот разрядник не может отключать токи более 100 А, которые обычно бывают при двух- и трехфазных замыканиях на землю при грозовых перенапряжениях.A spark gap is further known, which differs from that described above in that a third intermediate rod electrode is located between the first and second main electrodes (rods) (see, for example, US patent No. 4665460, 12.05.87, H01T 004/02). Thus, instead of one air spark gap, two spaces are created. Thanks to this, it was possible to somewhat increase the arcing ability of the arrester and, with its help, suppress small (of the order of tens of amperes) accompanying currents during single-phase earth faults. However, this arrester cannot disconnect currents of more than 100 A, which usually occur during two- and three-phase earth faults during lightning overvoltages.

В качестве ближайшего аналога настоящего изобретения может быть выбран разрядник для грозозащиты элементов электрооборудования или линии электропередачи с так называемой мультиэлектродной системой (МЭС), описанный в патенте РФ №2299508, 20.05.2007, Н02Н 3/22. Данный разрядник содержит изоляционное тело, выполненное из твердого диэлектрика, два основных электрода, механически связанных с изоляционным телом, а также два или более промежуточных электродов. Промежуточные электроды расположены между основными электродами с взаимным смещением, по меньшей мере, вдоль продольной оси изоляционного тела. При этом они выполнены таким образом, чтобы обеспечить формирование стримерного разряда между каждым основным и смежным с ним промежуточным электродом, а также между смежными промежуточными электродами.As the closest analogue of the present invention, an arrester for lightning protection of elements of electrical equipment or a power line with a so-called multi-electrode system (MES), described in RF patent No. 2299508, 05.20.2007, Н02Н 3/22, can be selected. This spark gap contains an insulating body made of a solid dielectric, two main electrodes mechanically connected to the insulating body, as well as two or more intermediate electrodes. The intermediate electrodes are located between the main electrodes with mutual displacement, at least along the longitudinal axis of the insulating body. Moreover, they are made in such a way as to ensure the formation of a streamer discharge between each main and adjacent intermediate electrode, as well as between adjacent intermediate electrodes.

Благодаря разбиению интервала между основными электродами на множество искровых промежутков данный разрядник обладает более высокой дугогасящей способностью, чем устройства с одним или с малым количеством разрядных промежутков (см. например, Таев А. С.«Электрическая дуга в аппаратах низкого напряжения», изд. «Энергия», 1965 г., стр.85).Due to the separation of the interval between the main electrodes into many spark gaps, this spark gap has a higher arc suppression ability than devices with one or with a small number of discharge gaps (see, for example, A. S. Taev, “Electric arc in low voltage devices”, ed. “ Energy ”, 1965, p. 85).

Тем не менее, дугогасящая способность известного разрядника недостаточно велика, что ограничивает его область применения только грозозащитой ВЛ 6-10. Его сложно применять для грозозащиты ВЛ более высоких классов напряжения, т.к. число промежуточных электродов и габариты разрядника становятся слишком большими.Nevertheless, the arcing ability of the known arrester is not large enough, which limits its scope only to lightning protection VL 6-10. It is difficult to use for lightning protection of overhead lines of higher voltage classes, because the number of intermediate electrodes and the dimensions of the arrester become too large.

Раскрытие изобретенияDisclosure of invention

Соответственно, задачей, которую решает настоящее изобретение, является создание надежного и обладающего невысокой стоимостью в производстве и эксплуатации разрядника, характеризующегося низкими разрядными напряжениями и высокой эффективностью гашения тока. Это позволит использовать разрядник по изобретению для грозозащиты ВЛ более высокого напряжения (20-35 кВ и выше), а также улучшить технико-экономические характеристики разрядников 3-10 кВ.Accordingly, the task that the present invention solves is the creation of a reliable and low cost in the production and operation of a spark gap, characterized by low discharge voltages and high current suppression efficiency. This will make it possible to use the arrester according to the invention for lightning protection of overhead lines of higher voltage (20-35 kV and higher), as well as to improve the technical and economic characteristics of 3-10 kV arresters.

Таким образом, достигаемым техническим результатом является повышение надежности и упрощение конструкции грозовых разрядников.Thus, the achieved technical result is to increase the reliability and simplify the design of lightning arresters.

Указанная задача решена, в основном, созданием разрядника для грозозащиты электрооборудования или линии электропередачи, содержащего изоляционное тело, выполненное из твердого диэлектрика, два основных электрода, механически связанных с изоляционным телом, и два или более промежуточных электродов, выполненных с возможностью формирования разряда (например, стримерного) между каждым из основных электродов и смежным с ним промежуточным электродом и между смежными промежуточными электродами, причем смежные электроды расположены между основными электродами с взаимным смещением, по меньшей мере, вдоль продольной оси изоляционного тела. В частности, линия, вдоль которой с взаимным смещением размещены промежуточные электроды, может быть расположена по продольной оси изоляционного тела. Разрядник по изобретению характеризуется тем, что промежуточные электроды расположены внутри изоляционного тела и отделены от его поверхности слоем изоляции, толщина которого выбрана превышающей расчетный диаметр Dk канала указанного разряда, при этом между смежными промежуточными электродами выполнены выходящие на поверхность изоляционного тела разрядные камеры (полости), площадь S поперечного сечения которых в зоне формирования канала разряда выбрана из условия S<Dк·g, где g - минимальное расстояние между смежными промежуточными электродами.This problem was solved mainly by creating a spark gap for lightning protection of electrical equipment or a power line containing an insulating body made of a solid dielectric, two main electrodes mechanically connected to the insulating body, and two or more intermediate electrodes made with the possibility of forming a discharge (for example, streamer) between each of the main electrodes and an adjacent intermediate electrode and between adjacent intermediate electrodes, and adjacent electrodes are located between main electrodes with mutual displacement, at least along the longitudinal axis of the insulating body. In particular, a line along which intermediate electrodes are placed with mutual displacement can be located along the longitudinal axis of the insulating body. The arrester according to the invention is characterized in that the intermediate electrodes are located inside the insulating body and are separated from its surface by an insulation layer whose thickness is chosen to exceed the calculated channel diameter D k of the specified discharge, while discharge chambers (cavities) extending to the surface of the insulating body are made between adjacent intermediate electrodes , the cross-sectional area S in which the formation area of the discharge channel is selected from the condition S <D to · g, where g - the minimum distance between adjacent intermediate e ktrodami.

В зависимости от конкретного исполнения разрядника и от используемой технологии его изготовления разрядные камеры могут выполняться в виде глухих или сквозных отверстий в изоляционном теле. При этом эти отверстия могут иметь различную форму поперечного сечения (сечения плоскостью, перпендикулярной оси камеры), т.е. являться круглыми, прямоугольными, иметь вид щелей или иную форму, обеспечивающую выполнение разрядной камерой своих функций, которые будут подробно описаны далее. В частности, размеры поперечного сечения разрядной камеры могут быть непостоянными по ее длине (например, увеличивающимися по мере приближения к поверхности изоляционного тела).Depending on the specific design of the arrester and the technology used to manufacture it, the discharge chambers can be made in the form of blind or through holes in the insulating body. Moreover, these holes can have a different cross-sectional shape (section by a plane perpendicular to the camera axis), i.e. be round, rectangular, have the form of slots or some other shape that ensures the discharge chamber performs its functions, which will be described in detail below. In particular, the cross-sectional dimensions of the discharge chamber may be variable along its length (for example, increasing as they approach the surface of the insulating body).

Для эффективного решения задачи, поставленной перед изобретением, существенным условием является оптимальный выбор размеров разрядных камер. Так, длину камеры, задающую минимальное расстояние g между смежными электродами, целесообразно выбирать с учетом конкретного назначения разрядника, определяющего такие параметры его использования, как тип защищаемых конструкций, класс напряжения и др. Например, в разрядниках, предназначенных для защиты ВЛ среднего класса напряжения (6-35 кВ) от удара молнии значение g может лежать в интервале 1-5 мм. Если же разрядник по изобретению должен использоваться для защиты ВЛ высокого и сверхвысокого напряжения, значение g следует увеличить до 5-20 мм.For an effective solution of the problem posed by the invention, an essential condition is the optimal selection of the sizes of the discharge chambers. So, it is advisable to choose the length of the chamber, which sets the minimum distance g between adjacent electrodes, taking into account the specific purpose of the arrester, which determines such parameters as the type of protected structures, voltage class, etc. For example, in arresters designed to protect overhead lines of a medium voltage class ( 6-35 kV) from a lightning strike, the value of g can lie in the range of 1-5 mm. If the arrester according to the invention is to be used to protect high and ultra-high voltage overhead lines, the g value should be increased to 5-20 mm.

В некоторых вариантах выполнения разрядника он может быть дополнительно снабжен разрядными камерами, выполненными между каждым из основных электродов и смежным с ним промежуточным электродом.In some embodiments, the arrester can be additionally equipped with discharge chambers made between each of the main electrodes and an adjacent intermediate electrode.

Что касается выполнения изоляционного тела, наиболее предпочтительным (в том числе по соображениям технологичности) представляется придание ему формы бруска, ленты или цилиндра. Стоимостные показатели разрядника могут быть дополнительно улучшены при использовании варианта, обеспечивающего уменьшение материалоемкости за счет выполнения изоляционного тела с утолщениями в местах выходов разрядных камер на поверхность изоляционного тела. Такое решение позволяет обеспечить требуемую толщину слоя изоляции только на участках, окружающих разрядные камеры, тогда как на отрезках между этими участками толщина данного слоя может быть существенно уменьшена.As for the implementation of the insulating body, the most preferable (including for reasons of manufacturability) seems to give it the shape of a bar, tape or cylinder. The cost performance of the arrester can be further improved by using the option that provides a reduction in material consumption due to the implementation of the insulating body with thickenings in the places where the discharge chambers exit to the surface of the insulating body. This solution allows you to provide the required thickness of the insulation layer only in the areas surrounding the discharge chambers, while in the sections between these sections the thickness of this layer can be significantly reduced.

В целях обеспечения технологичности разрядника промежуточные электроды целесообразно выполнить в виде пластин или цилиндров, например, из металла, графита или углеволокна.In order to ensure the manufacturability of the arrester, the intermediate electrodes are expediently made in the form of plates or cylinders, for example, of metal, graphite or carbon fiber.

Для того чтобы обеспечить важное требование в отношении низкого разрядного напряжения разрядника по изобретению, предлагается снабдить его дополнительным электродом, соединенным с одним из основных электродов, и расположить этот дополнительный электрод на поверхности изоляционного тела, противоположной по отношению к поверхности, на которую выходят разрядные камеры, или внутри изоляционного тела. В последнем случае может оказаться конструктивно целесообразным, чтобы у изоляционного тела имелся полый компонент, а дополнительный электрод был установлен внутри этого полого компонента. При этом и полому компоненту изоляционного тела, и дополнительному электроду целесообразно придать круглое поперечное сечение. Такое выполнение позволит изготовить разрядник по изобретению на основе кабельной заготовки (отрезка электрического кабеля), жила и твердая изоляция которой образуют соответственно дополнительный электрод и полый компонент изоляционного тела разрядника, имеющие одинаковую длину. В общем случае длина дополнительного электрода составляет, по меньшей мере, половину расстояния между основными электродами. Электрическая прочность изоляции между дополнительным электродом и другим, не соединенным с ним основным электродом, выбирается больше, чем расчетное разрядное напряжение между основными электродами.In order to provide an important requirement regarding the low discharge voltage of the arrester according to the invention, it is proposed to provide it with an additional electrode connected to one of the main electrodes and arrange this additional electrode on the surface of the insulating body opposite to the surface on which the discharge chambers go, or inside an insulating body. In the latter case, it may be structurally expedient that the insulating body has a hollow component, and an additional electrode is installed inside this hollow component. At the same time, it is advisable to give a round cross section to both the hollow component of the insulating body and the additional electrode. This embodiment will make it possible to manufacture the arrester according to the invention on the basis of a cable billet (length of an electric cable), the core and solid insulation of which form respectively an additional electrode and a hollow component of the insulator body of the arrester having the same length. In general, the length of the additional electrode is at least half the distance between the main electrodes. The dielectric strength between the additional electrode and the other, the main electrode not connected to it, is selected more than the calculated discharge voltage between the main electrodes.

При этом промежуточные электроды могут быть закреплены внутри ленты из изоляционного материала, образующей часть изоляционного тела. Такое решение облегчает задачу расположения промежуточных электродов по оптимальной траектории. Например, гибкая лента с электродами может быть зафиксирована на поверхности полого компонента изоляционного тела таким образом, что промежуточные электроды будут расположены параллельно продольной оси изоляционного тела. Альтернативно гибкая лента с промежуточными электродами может быть намотана по спирали на поверхность полого компонента, так что промежуточные электроды будут размещены, с взаимным смещением, вдоль линии, имеющей форму спирали. Последний вариант позволит увеличить, при неизменной общей длине разрядника, количество используемых в нем промежуточных электродов и за счет этого дополнительно повысить его дугогасящую способность.In this case, the intermediate electrodes can be fixed inside the tape of insulating material forming a part of the insulating body. This solution facilitates the task of arranging the intermediate electrodes along an optimal path. For example, a flexible tape with electrodes can be fixed on the surface of the hollow component of the insulating body so that the intermediate electrodes are parallel to the longitudinal axis of the insulating body. Alternatively, a flexible tape with intermediate electrodes may be spirally wound onto the surface of the hollow component, so that the intermediate electrodes will be positioned, mutually displaced, along a spiral-shaped line. The latter option will increase, with a constant total length of the arrester, the number of intermediate electrodes used in it and thereby increase its arc-suppressing ability.

В альтернативном варианте разрядник по изобретению может использоваться в сочетании с известным разрядником длинно-искровым (РДИ) петлевого типа. В этом варианте полому компоненту изоляционного тела может быть придана U-образная форма, причем первый основной электрод может быть выполнен в виде металлической трубки, охватывающей полый компонент в его изогнутой части. Второй основной электрод может быть механически соединен с одним или с обоими концами полого компонента изоляционного тела и электрически соединен с дополнительным электродом, функцию которого в данном варианте выполняет металлический стержень РДИ. Соответственно, длина дополнительного электрода равна длине изоляционного тела. Промежуточные электроды могут быть расположены на одном или на обоих плечах изоляционного тела.Alternatively, the arrester according to the invention can be used in combination with a known loop-type long spark arrester (RDI). In this embodiment, the hollow component of the insulating body can be given a U-shape, the first main electrode being in the form of a metal tube covering the hollow component in its curved part. The second main electrode can be mechanically connected to one or both ends of the hollow component of the insulating body and electrically connected to an additional electrode, the function of which in this embodiment is performed by the metal core of the RDI. Accordingly, the length of the additional electrode is equal to the length of the insulating body. Intermediate electrodes may be located on one or both shoulders of the insulating body.

Еще одна задача, решенная настоящим изобретением, состоит в создании линии электропередачи, обладающей надежной грозозащитой благодаря ее оснащению надежными и недорогими разрядниками, характеризующимися низкими разрядными напряжениями и высокой дугогасящей способностью.Another problem solved by the present invention is to create a power line with reliable lightning protection due to its equipping with reliable and inexpensive arresters, characterized by low discharge voltages and high arc suppression ability.

Данная задача решена созданием линии электропередачи, содержащей опоры с изоляторами, по меньшей мере, один находящийся под электрическим напряжением провод, связанный с изоляторами посредством крепежных устройств, и, по меньшей мере, один разрядник для грозозащиты элементов линии электропередачи. В соответствии с изобретением такой разрядник (а предпочтительнее, каждый из множества таких разрядников) выполнен в виде разрядника по настоящему изобретению. Согласно предпочтительным вариантам осуществления изобретения один основной электрод, по меньшей мере, одного или каждого разрядника по изобретению непосредственно или через искровой разрядный промежуток соединен с защищаемым элементом линии, а другой основной электрод непосредственно или через искровой разрядный промежуток соединен с землей.This problem was solved by creating a power line containing supports with insulators, at least one wire under electrical voltage connected to the insulators by means of fastening devices, and at least one spark gap for lightning protection of power line elements. In accordance with the invention, such a spark gap (and preferably each of a plurality of such spark gap) is made in the form of a spark gap of the present invention. According to preferred embodiments of the invention, one main electrode of at least one or each spark gap of the invention is connected directly or through the spark gap to the line element to be protected, and the other main electrode is connected directly or through the spark gap to the ground.

Если находящийся под напряжением провод линии электропередачи по изобретению расположен внутри изоляционного защитного слоя, отрезок этого провода, примыкающий к изолятору линии электропередачи и расположенный между основными электродами разрядника, может быть использован в качестве дополнительного электрода, а соответствующий ему отрезок защитного слоя - в качестве полого компонента изоляционного тела. В данном случае первый основной электрод будет выполнен в виде прокусывающего зажима, установленного на указанном отрезке изоляционного защитного слоя и электрически соединенного с концом указанного отрезка провода (т.е. с дополнительным электродом). Второй основной электрод будет расположен на поверхности изоляционного защитного слоя (т.е. полого компонента изоляционного тела) и электрически соединен с металлическим средством крепления провода. Промежуточные электроды разрядника при этом желательно закрепить внутри ленты из изоляционного материала, зафиксированной на поверхности указанного отрезка изоляционного защитного слоя.If the energized wire of the power transmission line according to the invention is located inside the insulating protective layer, a section of this wire adjacent to the insulator of the transmission line and located between the main electrodes of the arrester can be used as an additional electrode, and the corresponding length of the protective layer as a hollow component insulating body. In this case, the first main electrode will be made in the form of a biting clamp installed on the indicated section of the insulating protective layer and electrically connected to the end of the specified section of wire (i.e., with an additional electrode). The second main electrode will be located on the surface of the insulating protective layer (i.e., the hollow component of the insulating body) and is electrically connected to the metal means for attaching the wire. In this case, it is desirable to fix the intermediate electrodes of the arrester inside the tape of insulating material fixed on the surface of the indicated segment of the insulating protective layer.

В одном из предпочтительных вариантов линии электропередачи по изобретению используется вариант разрядника, у которого изоляционное тело и дополнительный электрод имеют круглое поперечное сечение, причем дополнительный электрод разрядника выполнен в виде штыря изолятора, который в этом случае устанавливается непосредственно на разрядник. Изоляционное тело разрядника соответственно выполнено в виде изоляционного колпачка, при помощи которого изолятор обычно закрепляется на штыре.In one of the preferred variants of the power transmission line according to the invention, a variant of the arrester is used, in which the insulating body and the additional electrode have a circular cross-section, and the additional electrode of the arrester is made in the form of an insulator pin, which in this case is mounted directly on the arrester. The insulator body of the arrester is respectively made in the form of an insulating cap, with the help of which the insulator is usually mounted on a pin.

Краткое описание чертежейBrief Description of the Drawings

Заявляемое изобретение иллюстрируется чертежами, гдеThe invention is illustrated by drawings, where

на фиг.1 на виде спереди, в сечении, показан вариант осуществления разрядника с плоским изоляционным телом;figure 1 in front view, in cross section, shows an embodiment of a spark gap with a flat insulating body;

на фиг.2 разрядник по фиг.1 представлен на виде сверху;in Fig.2 the arrester of Fig.1 is a top view;

на фиг.3 показан фрагмент разрядника в сечении на виде спереди по фиг.1;figure 3 shows a fragment of the arrester in cross section in front view of figure 1;

на фиг.4 фрагмент по фиг.1 представлен на виде сверху;in Fig.4 a fragment of Fig.1 is a top view;

на фиг.5 на виде спереди, в сечении, показан вариант разрядника по изобретению с цилиндрическим изоляционным телом.figure 5 in front view, in cross section, shows a variant of the spark gap according to the invention with a cylindrical insulating body.

на фиг.6 разрядник по фиг.5 представлен на виде сверху;in Fig.6 the arrester of Fig.5 is a top view;

на фиг.7 на виде спереди, в сечении, показан вариант разрядника с изоляционным телом, имеющим утолщения в местах выхода на поверхность тела разрядных камер;Fig.7 in a front view, in cross section, shows a variant of a spark gap with an insulating body having thickenings at the points of exit of the discharge chambers to the surface of the body;

на фиг.8 разрядник по фиг.7 представлен на виде сверху;in Fig.8 the arrester in Fig.7 is presented in a top view;

на фиг.9 на виде спереди, в сечении, показан вариант разрядника с плоским изоляционным телом и с дополнительным электродом;figure 9 in front view, in cross section, shows a variant of a spark gap with a flat insulating body and with an additional electrode;

на фиг.10 разрядник по фиг.9 представлен на виде сверху;figure 10 the arrester of figure 9 is presented in a top view;

на фиг.11 представлен фрагмент принципиальной электрической схемы разрядника по фиг.9;figure 11 presents a fragment of a circuit diagram of the spark gap of figure 9;

фиг.12 поясняет распределение напряжения между электродами разрядника;12 illustrates the distribution of voltage between the electrodes of a spark gap;

на фиг.13 в сечении представлен вариант разрядника с изоляционным телом и с дополнительным электродом, выполненными в форме цилиндра со скругленным окончанием;on Fig in cross section presents a variant of a spark gap with an insulating body and with an additional electrode made in the form of a cylinder with a rounded end;

на фиг.14 показан вариант осуществления разрядника по фиг.13 с промежуточными электродами, расположенными по спирали;on Fig shows an embodiment of the arrester of Fig.13 with intermediate electrodes arranged in a spiral;

фиг.15 иллюстрирует вариант ВЛ по изобретению с разрядником, выполненным с использованием изоляционного колпачка и металлического штыря изолятора;Fig illustrates a variant of the overhead line according to the invention with a spark gap made using an insulating cap and a metal pin of an insulator;

на фиг.16 представлен вариант разрядника с полым компонентом изоляционного тела и с дополнительным электродом, выполненными в форме петли;on Fig presents a variant of a spark gap with a hollow component of the insulating body and with an additional electrode made in the form of a loop;

на фиг.17, 18 на видах спереди и сверху показан вариант осуществления разрядника с промежуточными электродами, вваренными в изоляцию кабельной заготовки;on Fig, 18 in front and top views shows an embodiment of a spark gap with intermediate electrodes welded into the insulation of the cable billet;

фиг.19 иллюстрирует вариант выполнения ВЛ по изобретению, использующей провод, расположенный внутри изоляционного защитного слоя.Fig. 19 illustrates an embodiment of an overhead line according to the invention using a wire located inside the insulating protective layer.

Осуществление изобретенияThe implementation of the invention

Как показано на фиг.1-4, разрядник согласно изобретению содержит продолговатое плоское изоляционное тело 1, выполненное из твердого диэлектрика, например из полиэтилена. На концах изоляционного тела 1 установлены первый и второй основные электроды 2, 3 соответственно, которые за счет такой установки оказываются механически связанными с изоляционным телом. Внутри изоляционного тела 1 установлены m промежуточных электродов 4. Минимальное значение m равно двум, тогда как оптимальное количество промежуточных электродов выбирается с учетом конкретной формы их выполнения, расчетного значения перенапряжения и других условий их работы. В представленном на фиг.1-4 варианте разрядника имеется 5 промежуточных электродов 4, которые выполнены в виде прямоугольных пластин, смещенных одна относительно другой вдоль продольной оси разрядника (соединяющей основные электроды 2, 3). Между каждой парой смежных промежуточных электродов 4 имеется воздушный искровой промежуток, определяющий расстояние между смежными электродами (измеряемое вдоль линии, соединяющей смежные электроды). Согласно изобретению длина искрового промежутка не должна быть меньше минимального расстояния g между электродами 4, выбираемого с учетом условий работы разрядника, как это будет описано далее. При этом каждый такой искровой промежуток расположен в разрядной камере 5, выходящей на поверхность изоляционного тела 1.As shown in FIGS. 1-4, the arrester according to the invention comprises an elongated flat insulating body 1 made of a solid dielectric, for example, polyethylene. At the ends of the insulating body 1, the first and second main electrodes 2, 3 are installed, respectively, which due to this installation are mechanically connected with the insulating body. Inside the insulating body 1, m intermediate electrodes 4 are installed. The minimum value of m is two, while the optimal number of intermediate electrodes is selected taking into account the specific form of their execution, the calculated value of the overvoltage, and other conditions of their operation. In the embodiment of the arrester shown in Figs. 1-4, there are 5 intermediate electrodes 4, which are made in the form of rectangular plates, displaced one relative to the other along the longitudinal axis of the arrester (connecting the main electrodes 2, 3). Between each pair of adjacent intermediate electrodes 4 there is an air spark gap defining the distance between adjacent electrodes (measured along the line connecting the adjacent electrodes). According to the invention, the length of the spark gap should not be less than the minimum distance g between the electrodes 4, selected taking into account the operating conditions of the spark gap, as will be described later. Moreover, each such spark gap is located in the discharge chamber 5, which extends to the surface of the insulating body 1.

При защите высоковольтных установок или линий электропередачи разрядник непосредственно или через искровой разрядный промежуток подключается одним основным электродом (например, первым основным электродом 2) к высоковольтному элементу электропередачи, например к проводу (на фиг.1-4 не изображен) электрически параллельно защищаемому элементу электропередачи, например изолятору (на фиг.1-4 не изображен). Своим другим, соответственно вторым, основным электродом 3 разрядник непосредственно или через искровой разрядный промежуток подключается к земле.When protecting high-voltage installations or power lines, the arrester is connected directly or through a spark gap to one high-voltage power transmission element, for example, to a wire (not shown in Figs. 1-4), which is electrically parallel to the protected power transmission element, using one main electrode (for example, the first main electrode 2), for example, an insulator (not shown in FIGS. 1-4). With its other, respectively, second, main electrode 3, the spark gap is connected directly or through the spark gap to the ground.

При воздействии на разрядник импульса перенапряжения от первого основного электрода 2 по направлению ко второму основному электроду 3 развивается разряд, последовательно пробивая промежутки между промежуточными электродами 4. Данный разряд, в зависимости от условий его формирования, может развиваться в различной форме, например в виде стримерного, лавинного или лидерного разряда. Далее для облегчения понимания и большей конкретности осуществление изобретения будет рассматриваться только на примере стримерного разряда, хотя оно применимо и к другим видам разряда. В процессе образования и развития искрового канала 6 происходит его расширение со сверхзвуковой скоростью. Как будет подробно описано далее, если сделать объемы разрядных искровых камер 5 между промежуточными электродами достаточно малыми, в результате развития разряда внутри камер 5 будет создаваться высокое давление. Под действием этого давления каналы 6 искровых разрядов между промежуточными электродами перемещаются к поверхности изоляционного тела (как это схематично показано на фиг.1 и 3) и далее выбрасываются наружу в окружающий разрядник воздух. Вследствие возникающего дутья, приводящего к удлинению каналов между промежуточными электродами, суммарное сопротивление всех каналов увеличивается. В результате общее сопротивление разрядника возрастает и происходит ограничение импульсного тока грозового перенапряжения. По окончании импульса грозового перенапряжения к разряднику остается приложенным напряжение промышленной частоты. Однако благодаря тому, что разрядник имеет большое сопротивление, а канал разряда разбит на множество элементарных каналов между промежуточными электродами, разряд не может самостоятельно существовать и гаснет.When a surge voltage pulse is applied to the spark gap from the first main electrode 2 towards the second main electrode 3, a discharge develops, sequentially punching the gaps between the intermediate electrodes 4. This discharge, depending on the conditions of its formation, can develop in various forms, for example, in the form of a streamer, avalanche or leader discharge. Further, to facilitate understanding and more specificity, the implementation of the invention will be considered only on the example of a streamer discharge, although it is applicable to other types of discharge. In the process of formation and development of spark channel 6, it expands with supersonic speed. As will be described in detail below, if the volumes of the discharge spark chambers 5 between the intermediate electrodes are made sufficiently small, a high pressure will be created as a result of the development of the discharge inside the chambers 5. Under the influence of this pressure, the channels 6 of the spark discharges between the intermediate electrodes move to the surface of the insulating body (as shown schematically in Figs. 1 and 3) and then are thrown out into the surrounding spark gap. Due to the arising blast, which leads to an elongation of the channels between the intermediate electrodes, the total resistance of all channels increases. As a result, the total resistance of the arrester increases and the impulse current of lightning overvoltage is limited. At the end of the lightning overvoltage pulse, an industrial frequency voltage remains applied to the arrester. However, due to the fact that the spark gap has a large resistance, and the discharge channel is divided into many elementary channels between the intermediate electrodes, the discharge cannot independently exist and goes out.

Для обеспечения эффективности гашения параметры разрядника по изобретению, в первую очередь такие как минимальное расстояние g между смежными электродами, разделенными камерой 5, а также ширина разрядных камер 5 в зоне формирования разряда и толщина b слоя изоляции, должны выбираться в зависимости от расчетных характеристик разряда (в частности, от силы и крутизны тока в разряде и от его расчетного диаметра). Как это будет показано далее, расчетный диаметр разряда может быть определен с достаточной точностью исходя из требований к разряднику, обусловленных назначением разрядника, т.е. характеристиками и условиями использования элемента высоковольтного оборудования или ВЛ, защищаемого с его помощью.To ensure the quenching efficiency, the parameters of the spark gap according to the invention, primarily such as the minimum distance g between adjacent electrodes separated by a chamber 5, as well as the width of the discharge chambers 5 in the discharge formation zone and the thickness b of the insulation layer, should be selected depending on the design characteristics of the discharge ( in particular, on the strength and steepness of the current in the discharge and on its calculated diameter). As will be shown below, the calculated discharge diameter can be determined with sufficient accuracy based on the requirements for the spark gap due to the purpose of the spark gap, i.e. characteristics and conditions of use of an element of high-voltage equipment or overhead lines protected with its help.

Более конкретно, при выборе конструктивных параметров разрядников для защиты ВЛ необходимо учитывать, что возможны два существенно различных режима их работы: при ударе молнии вблизи высоковольтной линии электропередачи и при прямом ударе молнии (ПУМ) в линию.More specifically, when choosing the design parameters of arresters for overhead line protection, it is necessary to take into account that two essentially different modes of their operation are possible: when lightning strikes near a high-voltage power line and when lightning strikes directly (PUM) in a line.

Первый режим соответствует защите ВЛ от индуктированных перенапряжений, т.е. от перенапряжений, возникающих при ударе молнии вблизи ВЛ. Эти перенапряжения характеризуются относительно небольшими амплитудами, не более 300 кВ, и малой длительностью, порядка 2-5 мкс. Амплитуда тока имеет порядок 1-2 кА, а крутизна тока di/dt на фронте импульса лежит в диапазоне 0,1-2 кА/мкс. Как показали лабораторные исследования, применительно к данному режиму и к стримерной форме разряда оптимальное значение длины искрового разрядного промежутка находится в интервале 0,1-2 мм. Индуктированные перенапряжения опасны только для линий среднего класса напряжения, т.е. для ВЛ 6-35 кВ, причем для этих линий они являются основной причиной грозовых отключений. Прямые удары молнии в эти линии - явление относительно редкое вследствие небольшой высоты их опор. Таким образом, для защиты элементов ВЛ от индуктированных перенапряжений целесообразно использовать разрядники с g=0,1-2 мм.The first mode corresponds to the protection of overhead lines against induced overvoltages, i.e. from overvoltage arising from a lightning strike near the overhead line. These overvoltages are characterized by relatively small amplitudes, not more than 300 kV, and short duration, of the order of 2-5 μs. The current amplitude is on the order of 1-2 kA, and the current slope di / dt at the pulse front lies in the range of 0.1-2 kA / μs. As laboratory studies have shown, in relation to this regime and to the streamer shape of the discharge, the optimal value of the length of the spark discharge gap is in the range of 0.1–2 mm. Induced overvoltages are dangerous only for medium voltage class lines, i.e. for 6-35 kV overhead lines, and for these lines they are the main cause of lightning outages. Direct lightning strikes in these lines are a relatively rare phenomenon due to the low height of their supports. Thus, to protect overhead line elements from induced overvoltages, it is advisable to use arresters with g = 0.1-2 mm.

При ПУМ в одиночный хорошо заземленный объект ток молнии может достигать 100 и более килоампер, длительность разряда - 50-1000 мкс, а крутизна тока di/dt на фронте импульса 20 кА/мкс. При ПУМ в провод ВЛ напряжение теоретически могло бы достичь 10 MB. Однако при ПУМ в ВЛ среднего напряжения, защищенную разрядниками, установленными электрически параллельно каждому изолятору, происходит срабатывание разрядников на нескольких опорах, т.к. длины пролетов небольшие (50-100 м) и уровень изоляции линии относительно низкий (100-300 кВ). Ток молнии распределяется между несколькими опорами, а на опорах разветвляется еще на три части между разрядниками трех фаз. Как показали полевые измерения, ток через одну опору не превышает 20 кА. Для таких величин тока во избежание образования проводящих каналов из расплавленного металла электродов целесообразно увеличить минимальное расстояние g между смежными электродами, разделенными камерой, до 4-5 мм.With PUM in a single well-grounded object, the lightning current can reach 100 or more kiloamperes, the duration of the discharge is 50-1000 μs, and the current slope di / dt at the pulse front is 20 kA / μs. With PUM in the overhead line, the voltage could theoretically reach 10 MB. However, during PUM in a medium voltage overhead line protected by arresters installed electrically parallel to each insulator, the arrears are triggered on several supports, because spans are short (50-100 m) and the insulation level of the line is relatively low (100-300 kV). The lightning current is distributed between several supports, and on the supports it branches out into three parts between the arresters of three phases. As field measurements showed, the current through one support does not exceed 20 kA. For such current values, in order to avoid the formation of conductive channels from molten metal electrodes, it is advisable to increase the minimum distance g between adjacent electrodes separated by a chamber to 4-5 mm.

На ВЛ высокого напряжения 110-220 кВ длины пролетов составляют 200-300 м, а уровень изоляции находится в диапазоне 500-1000 кВ. Поэтому при ПУМ в отводе тока молнии участвуют разрядники одной или двух опор, т.е. ток через один разрядник не превышает 40 кА. Для таких ВЛ по указанной выше причине целесообразно выбирать g в интервале 5-10 мм.On high-voltage overhead lines of 110-220 kV, the span lengths are 200-300 m, and the insulation level is in the range of 500-1000 kV. Therefore, during PUM, the arresters of one or two supports participate in the removal of the lightning current, i.e. the current through one spark gap does not exceed 40 kA. For such overhead lines for the above reason, it is advisable to choose g in the range of 5-10 mm.

На ВЛ сверхвысокого напряжения 330-750 кВ длины пролетов составляют 400-500 м, а уровень изоляции находится в диапазоне 2000-3000 кВ. Поэтому при ПУМ в отводе тока молнии участвуют только разрядники одной опоры или только один разрядник пораженной молнией фазы. В связи с этим ток через один разрядник может достигать 60-100 кА. Для таких ВЛ целесообразно выбирать g в интервале 10-20 мм.On VL of superhigh voltage of 330-750 kV, the span lengths are 400-500 m, and the insulation level is in the range of 2000-3000 kV. Therefore, with PUM, only arresters of one support or only one spark gap of the phase affected by the lightning are involved in the removal of the lightning current. In this regard, the current through one spark gap can reach 60-100 kA. For such overhead lines, it is advisable to choose g in the range of 10–20 mm.

С учетом приведенных данных минимальное расстояние g между смежными электродами, разделенными камерой, согласно изобретению при его использовании для защиты элементов ВЛ среднего класса напряжения целесообразно выбирать в интервале 0,1-5 мм. Если же разрядник по изобретению предназначен для защиты элементов ВЛ высокого или сверхвысокого напряжения, значение g целесообразно выбирать в интервале 5-20 мм.Given the above data, the minimum distance g between adjacent electrodes separated by a chamber, according to the invention, when it is used to protect the elements of the overhead line of the middle voltage class, it is advisable to choose in the range of 0.1-5 mm If the arrester according to the invention is intended to protect high-voltage or ultra-high-voltage overhead line elements, it is advisable to choose g in the range of 5-20 mm.

Площадь поперечного сечения S разрядных камер и толщина b изоляции могут быть оценены из следующих соображений.The cross-sectional area S of the discharge chambers and the insulation thickness b can be estimated from the following considerations.

Расчетный радиус rк канала стримера при разряде в воздухе при нормальных условиях может быть определен по формуле С.И.Брагинского (см. Техника высоких напряжений: учебник для вузов. / Под ред. Г.С.Кучинского. СПб.: Энергоатомиздат, 2003, стр.88):The calculated radius r to the streamer channel during a discharge in air under normal conditions can be determined by the formula of S.I. Braginsky (see High Voltage Technique: Textbook for High Schools. / Ed. By G.S. Kuchinsky. St. Petersburg: Energoatomizdat, 2003 , p. 88):

Figure 00000001
Figure 00000001

где t - время, с; di/dt - крутизна тока, А/с.where t is the time, s; di / dt - current slope, A / s.

В Таблице приведены расчетные значения радиуса rk по формуле (1) для различных, наиболее характерных значений di/dt и t. Следует отметить, что радиус канала rk и соответственно его диаметр Dk=2rк являются функциями времени, т.е. с увеличением времени они возрастают. Данные расчета приведены в последовательности, дающей постепенное увеличение радиуса стримерного канала.The table shows the calculated values of the radius r k according to formula (1) for various, most characteristic values of di / dt and t. It should be noted that the radius of the channel r k and, accordingly, its diameter D k = 2r k are functions of time, i.e. with increasing time they increase. The calculation data are presented in a sequence giving a gradual increase in the radius of the streamer channel.

Figure 00000002
Figure 00000002

В качестве параметра t приведены значения длин фронта импульса для наиболее характерных вариантов использования разрядника: 1) при индуктированных перенапряжениях (т.е. при ударе молнии вблизи линии); 2) при прямом ударе молнии в провод для повторных разрядов; 3) при ударе молнии в линию и обратном перекрытии линейной изоляции (например, гирлянды изоляторов); 4) при прямом ударе молнии в провод линии. Крутизны тока di/dt, приведенные в Таблице, также соответствуют вышеназванным вариантам.As a parameter t, the values of the pulse front lengths are given for the most typical variants of using a spark gap: 1) for induced overvoltages (i.e., when lightning strikes near a line); 2) with a direct lightning strike into the wire for repeated discharges; 3) upon a lightning strike in a line and reverse overlap of linear insulation (for example, a string of insulators); 4) with a direct lightning strike into the line wire. The current slopes di / dt shown in the Table also correspond to the above options.

Разумеется, для определения расчетного значения радиуса (диаметра) канала стримерного (или иного) разряда могут быть использованы и другие расчетные формулы или экспериментальные методы, оптимизированные для конкретных ситуаций использования разрядника и/или для конкретных вариантов конструкции разрядника по изобретению (например, для конкретных профилей разрядных камер или конструкции промежуточных электродов). Однако, как это подтверждено результатами лабораторных испытаний, расчеты по формуле (1) дают приемлемые результаты практически для всех вариантов разрядника, охватываемых прилагаемой формулой изобретения.Of course, to determine the calculated value of the radius (diameter) of the streamer (or other) discharge channel, other calculation formulas or experimental methods can be used that are optimized for specific situations of using a spark gap and / or for specific design options of a spark gap according to the invention (for example, for specific profiles discharge chambers or construction of intermediate electrodes). However, as confirmed by the results of laboratory tests, the calculations according to formula (1) give acceptable results for almost all versions of the arrester covered by the attached claims.

Для того чтобы при разряде возникло избыточное давление в разрядной камере, должны выполняться определенные условия. Рассмотрим эти условия применительно к варианту разрядника с промежуточными электродами в виде пластин и с разрядными камерами, имеющими форму параллелепипедов (см. фиг.1). Стример зарождается между точками смежных промежуточных электродов, на которых напряженность поля максимальна (в рассматриваемом варианте - между углами промежуточных электродов). При развитии стримера его канал расширяется со сверхзвуковой скоростью в радиальном от оси направлении. Если диаметр канала стримера становится больше, чем глубина разрядной камеры h, т е.In order for the overpressure in the discharge chamber to occur during discharge, certain conditions must be met. Consider these conditions in relation to the version of the spark gap with intermediate electrodes in the form of plates and with discharge chambers having the shape of parallelepipeds (see figure 1). The streamer arises between points of adjacent intermediate electrodes, at which the field strength is maximum (in the present case, between the corners of the intermediate electrodes). With the development of a streamer, its channel expands at a supersonic speed in the direction radial from the axis. If the diameter of the streamer channel becomes larger than the depth of the discharge chamber h, i.e.

Figure 00000003
Figure 00000003

где b - толщина слоя изоляции; а - толщина электрода, он начинает перемещаться по стенкам камеры наружу, что способствует его охлаждению и, соответственно, гашению разряда. Таким образом, минимальная толщина изоляции, способствующая гашению разряда, должна бытьwhere b is the thickness of the insulation layer; and - the thickness of the electrode, it begins to move outward along the walls of the chamber, which contributes to its cooling and, accordingly, to quenching of the discharge. Thus, the minimum insulation thickness that contributes to quenching of the discharge should be

Figure 00000004
Figure 00000004

где а - толщина электрода. Чем больше толщина изоляции b, тем сильнее возникающее в процессе расширения канала стримера дутье, т.е. тем лучше охлаждается и гасится канал разряда. Поэтому для повышения надежности гашения целесообразно выбрать значение b превышающим расчетный диаметр Dк канала.where a is the thickness of the electrode. The greater the thickness of the insulation b, the stronger the blast that occurs during the expansion of the streamer channel, i.e. the better the discharge channel is cooled and quenched. Therefore, to increase the extinguishing reliability, it is advisable to choose a value b exceeding the calculated diameter D of the channel.

С другой стороны, с увеличением b усиливается давление на стенки газоразрядных камер, что может привести к разрушению разрядника. Оптимальная толщина изоляции b может быть определена расчетным и экспериментальным путем при конкретной разработке разрядника в зависимости от его назначения и применяемых материалов. Однако, полагая приближенно толщину электрода а=1 мм, можно указать границы, в которых она находится, используя формулу (3) и данные Таблицы: b=1÷35≈1÷40 мм.On the other hand, with increasing b, the pressure on the walls of the gas discharge chambers increases, which can lead to the destruction of the spark gap. The optimum insulation thickness b can be determined by calculation and experimentally with a specific development of the arrester depending on its purpose and the materials used. However, assuming approximately the thickness of the electrode is a = 1 mm, one can indicate the boundaries in which it is located using formula (3) and the data in the Table: b = 1 ÷ 35≈1 ÷ 40 mm.

Продольное сечение канала стримера имеет расчетную площадь Dк·g. Однако при выборе ширины камеры меньшей Dk, т.е. при выполнении условияThe longitudinal section of the streamer channel has a calculated area D to · g. However, when choosing a camera width smaller than D k , i.e. under the condition

Figure 00000005
Figure 00000005

стример полностью перекроет разрядную камеру по ширине, не успев достичь расчетного диаметра Dk. Другими словами, стримерный разряд займет всю площадь S поперечного сечения разрядной камеры. Как следствие, канал стримера будет выдуваться из разрядной камеры наружу, что приведет к ускоренному гашению разряда.the streamer will completely block the discharge chamber in width, not having time to reach the calculated diameter D k . In other words, the streamer discharge will occupy the entire cross-sectional area S of the discharge chamber. As a result, the streamer channel will be blown out of the discharge chamber, which will lead to accelerated quenching of the discharge.

Подставляя в (4) соответствующие значения расчетного диаметра Dk=2rк, где значения радиуса rк канала стримера взяты из Таблицы (rк=0,5-18 мм и g=0,1-20 мм), легко определить конкретные значения и диапазоны возможных изменений площади поперечного сечения разрядных камер:Substituting in (4) the corresponding values of the calculated diameter D k = 2r k , where the values of the radius r to the streamer channel are taken from the Table (r k = 0.5-18 mm and g = 0.1-20 mm), it is easy to determine the specific values and ranges of possible changes in the cross-sectional area of the discharge chambers:

Figure 00000006
Figure 00000006

Механизм гашения искрового разряда внешне напоминает механизм гашения дугового разряда в трубчатом разряднике, описанном в разделе "Уровень техники", но имеет существенное отличие, которое состоит в том, что внутри трубчатого разрядника достаточно долго (до 10 мс) горит дуга, имеющая температуру порядка 20 тыс. градусов. Она выжигает стенки газогенерирующей трубки, и образовавшиеся от теплового разрушения газы выбрасывают канал разряда наружу. В разряднике по изобретению гашение искрового разряда происходит сразу после окончания импульса грозового перенапряжения, длительность которого в среднем составляет порядка 50 мкс, т.е. примерно на 3 порядка меньше, чем длительность горения дуги. Кроме того, температура канала стримера не превышает 5-6 тыс. градусов, т.е. примерно в 4 раза меньше, чем температура дуги. Благодаря указанным двум факторам в разряднике по изобретению практически нет эрозии даже после многократных срабатываний.The mechanism of extinguishing a spark discharge resembles the mechanism of extinguishing an arc discharge in a tubular arrester described in the prior art, but has a significant difference, which consists in the fact that an arc with a temperature of about 20 burns for a rather long time (up to 10 ms) thousand degrees. It burns out the walls of the gas-generating tube, and the gases formed from thermal destruction eject the discharge channel to the outside. In the arrester according to the invention, the suppression of the spark discharge occurs immediately after the end of the lightning surge pulse, the average duration of which is about 50 μs, i.e. about 3 orders of magnitude less than the duration of the arc. In addition, the temperature of the streamer channel does not exceed 5-6 thousand degrees, i.e. about 4 times less than the temperature of the arc. Due to these two factors, there is practically no erosion in the arrester according to the invention even after repeated tripping.

На практике возможны следующие варианты применения разрядников:In practice, the following applications are possible:

1) для защиты ВЛ среднего класса напряжения (СН) 6-35 кВ от индуктированных перенапряжений (см. Таблицу, строки 1 и 2);1) to protect overhead lines of a medium voltage class (MV) 6-35 kV from induced overvoltages (see Table, lines 1 and 2);

2) для защиты ВЛ высокого (ВН) 110-220 кВ и сверхвысокого (СВН) 330-7500 кВ классов напряжения при наличии грозозащитного троса от обратных перекрытий (см. Таблицу, строки 5 и 6);2) for the protection of overhead lines of high (HV) 110-220 kV and ultrahigh (HV) 330-7500 kV voltage classes in the presence of a lightning protection cable from reverse ceilings (see Table, lines 5 and 6);

3) для защиты ВЛ высокого 110-220 кВ и сверхвысокого 330-7500 кВ классов напряжения при отсутствии грозозащитного троса от прямых ударов молнии в провод линии (см. Таблицу, строки 3, 4 и 7, 8) и обратных перекрытий (см. Таблицу, строки 5 и 6).3) for the protection of overhead lines of high 110-220 kV and ultrahigh 330-7500 kV voltage classes in the absence of a lightning protection cable from direct lightning strikes into the line wire (see the Table, lines 3, 4 and 7, 8) and reverse overlaps (see the Table , lines 5 and 6).

При конструировании разрядников необходимо ориентироваться на наиболее тяжелые условия работы в данном классе, т.е. на наибольшие значения крутизны тока di/dt и времени t. Так, для защиты ВЛ 6-35 кВ от индуктированных перенапряжений следует расчет конструкции разрядника вести в соответствии со строкой 2 приведенной таблицы, т.е. для t=2 мкс и соответственно для rк=1,8 мм. При этом согласно изобретению толщина слоя изоляции b желательно должна быть больше, чем диаметр канала Dk к моменту максимума напряжения, т.е. b>Dk=2rк=2·1,8=3,6 мм. Площадь поперечного сечения разрядной камеры S, по изобретению, должна быть S<Dк·g=2·3,6=7,2 мм2. Например, при круглой форме поперечного сечения разрядной камеры ее диаметр d должен быть не более

Figure 00000007
When designing arresters, it is necessary to focus on the most difficult working conditions in this class, i.e. to the largest values of the current slope di / dt and time t. So, to protect the 6-35 kV overhead line from induced overvoltages, the design of the arrester should be calculated in accordance with line 2 of the table, i.e. for t = 2 μs and, respectively, for r k = 1.8 mm. Moreover, according to the invention, the thickness of the insulation layer b should preferably be greater than the diameter of the channel D k at the time of the maximum voltage, i.e. b> D k = 2r k = 2 · 1.8 = 3.6 mm. The cross-sectional area of the discharge chamber S, according to the invention, should be S <D to · g = 2 · 3.6 = 7.2 mm 2 . For example, with a round cross-sectional shape of the discharge chamber, its diameter d must be no more than
Figure 00000007

Экспериментальные исследования показали, что в конкретных реализациях, рассчитанных на вариант 1 применения, т.е. предназначенных для защиты ВЛ 10 кВ от индуктированных перенапряжений, параметры разрядника могут быть, например, следующие: число разрядных камер m=50; g=2 мм; b=4 мм; d=3 мм; S=7 мм2 (реализация 1). Для ВЛ 20 кВ: m=150; g=3 мм; b=4 мм; d=3 мм; S=7 мм2 (реализация 2).Experimental studies have shown that in specific implementations designed for use option 1, i.e. designed to protect 10 kV overhead lines from induced overvoltages, the arrester parameters can be, for example, the following: number of discharge chambers m = 50; g = 2 mm; b = 4 mm; d = 3 mm; S = 7 mm 2 (implementation 1). For overhead lines of 20 kV: m = 150; g = 3 mm; b = 4 mm; d = 3 mm; S = 7 mm 2 (implementation 2).

При этом следует учитывать, что в разряднике по изобретению ограничения накладываются только на минимальное расстояние между смежными электродами, разделенными камерой, на минимальное значение толщины изоляции и на максимальное значение площади поперечного сечения разрядной камеры. Это позволяет оптимизировать конструкцию разрядника применительно к конкретным вариантам его использования, варьируя указанные параметры, а также форму разрядных камер в достаточно широких пределах.It should be borne in mind that in the spark gap according to the invention, restrictions are imposed only on the minimum distance between adjacent electrodes separated by a chamber, on the minimum value of the insulation thickness and on the maximum cross-sectional area of the discharge chamber. This allows you to optimize the design of the arrester in relation to specific options for its use, varying these parameters, as well as the shape of the discharge chambers in a fairly wide range.

На фиг.5, 6 показан вариант разрядника с цилиндрическим изоляционным телом 1 и с разрядными камерами 5, проходящими от промежуточных электродов 4 к верхней и к нижней поверхностям изоляционного тела 1. Таким образом, разрядные камеры 5 выполнены в виде сквозных отверстий, проходящих через изоляционное тело 1 и определяющих разрядные воздушные промежутки между промежуточными электродами 4. Поперечное сечение камеры может иметь прямоугольную (как показано на фиг.1-4), круглую (как показано на фиг.6) или иную форму. Вариант по фиг.5, 6 обладает большей технологичностью по сравнению с вариантом, показанным на фиг.1-4, т.к. для его изготовления может быть применена, например, высокотехнологичная гидроабразивная резка материалов, с использованием которой возможно быстрое и точное выполнение сквозных отверстий.5, 6 show a variant of a spark gap with a cylindrical insulating body 1 and with discharge chambers 5 passing from the intermediate electrodes 4 to the upper and lower surfaces of the insulating body 1. Thus, the discharge chambers 5 are made in the form of through holes passing through the insulating the body 1 and defining the discharge air gaps between the intermediate electrodes 4. The cross-section of the chamber may have a rectangular (as shown in Fig.1-4), round (as shown in Fig.6) or other shape. The embodiment of FIGS. 5, 6 is more adaptable than the embodiment shown in FIGS. 1-4, because For its manufacture, for example, high-tech waterjet cutting of materials can be applied, with which fast and accurate through holes can be made.

В сквозных (т.е. выходящих на обе стороны изоляционного тела) разрядных камерах давление, создаваемое внутри камеры при расширении канала разряда, меньше, чем в глухих (т.е. с выходом только на одну поверхность изоляционного тела) камерах, поэтому скорость перемещения канала разряда в них меньше и эффективность гашения ниже. Однако надежность их работы выше, т.к. вероятность разрыва камеры при избыточном давлении ниже. То же самое относится и к щелевым камерам. Эффективность гашения их ниже, но электродинамическая стойкость (т.е. способность выдерживать большие токи, например, при прямом ударе молнии в линию) выше. Поэтому выбор типа и формы разрядных камер зависит от назначения разрядника (например, для защиты от индуктированных перенапряжений или от ПУМ), технологии изготовления и экономических факторов.In through-through (i.e. extending to both sides of the insulating body) discharge chambers, the pressure created inside the chamber during expansion of the discharge channel is less than in blind (i.e., when only one surface of the insulating body exits) chambers, therefore, the speed of movement the discharge channel in them is smaller and the quenching efficiency is lower. However, the reliability of their work is higher, because the probability of rupture of the chamber at overpressure is lower. The same applies to slotted cameras. Their damping efficiency is lower, but the electrodynamic resistance (i.e. the ability to withstand large currents, for example, with a direct lightning strike in a line) is higher. Therefore, the choice of the type and shape of the discharge chambers depends on the purpose of the arrester (for example, to protect against inductive overvoltages or PUM), manufacturing technology and economic factors.

На фиг.7, 8 показан вариант разрядника с изоляционным телом 1 в виде гибкой ленты с утолщениями в местах выходов разрядных камер 5 на поверхность изоляционного тела 1 и с промежуточными электродами 4 в виде круглых металлических шайб или шайб из графита. Этот вариант характеризуется наиболее экономным использованием изоляционного материала для изготовления изоляционного тела 1, так как необходимая толщина b изоляции, определяющая размер камеры по ее оси, обеспечивается локально в месте выхода камеры на поверхность изоляционного тела.7, 8 show a variant of a spark gap with an insulating body 1 in the form of a flexible tape with thickenings at the places of the discharge chambers 5 exiting onto the surface of the insulating body 1 and with intermediate electrodes 4 in the form of round metal washers or graphite washers. This option is characterized by the most economical use of the insulating material for the manufacture of the insulating body 1, since the required insulation thickness b, which determines the size of the chamber along its axis, is provided locally at the exit point of the chamber to the surface of the insulating body.

На фиг.9, 10 представлен вариант разрядника с плоским изоляционным телом 1 и с дополнительным электродом 7. Первый основной электрод 2 предназначен для подключения к элементу высоковольтной линии электропередачи, например к проводу, находящемуся под высоким потенциалом, а второй основной электрод 3 - к земле, имеющей нулевой потенциал. В данном варианте помимо разрядных камер 5 между промежуточными электродами 4 введены дополнительные разрядные камеры между каждым из основных электродов 2, 3 и смежным с ним промежуточным электродом 4. Дополнительные разрядные камеры могут быть выполнены аналогично разрядным камерам между промежуточными электродами. Однако в некоторых вариантах выполнения разрядника по изобретению параметры дополнительных разрядных камер могут быть модифицированы с учетом того, что длина канала разряда в этих камерах может превышать длину аналогичного канала в остальных разрядных камерах.Figures 9, 10 show a variant of a spark gap with a flat insulating body 1 and with an additional electrode 7. The first main electrode 2 is designed to be connected to an element of a high-voltage power line, for example, to a wire under high potential, and the second main electrode 3 to earth having zero potential. In this embodiment, in addition to the discharge chambers 5, additional discharge chambers are introduced between the intermediate electrodes 4 between each of the main electrodes 2, 3 and the adjacent intermediate electrode 4. Additional discharge chambers can be made similar to the discharge chambers between the intermediate electrodes. However, in some embodiments of the arrester according to the invention, the parameters of the additional discharge chambers can be modified taking into account the fact that the length of the discharge channel in these chambers may exceed the length of a similar channel in the remaining discharge chambers.

Дополнительный электрод 7 электрически соединен со вторым основным электродом 3, т.е. он также имеет нулевой потенциал. Таким образом, высокое напряжение между основными электродами 2 и 3 приложено также между первым основным электродом 2 и дополнительным электродом 7. Ширина плоского изоляционного тела 1 выбирается такой, чтобы электрическая прочность по верхней и нижней поверхностям плоского изоляционного тела по кратчайшему расстоянию между электродами 2 и 7 была выше, чем электрическая прочность между основными электродами 2 и 3. Изоляционные свойства материала, из которого изготовлено изоляционное тело 1, и его толщина должны быть такими, чтобы их электрическая прочность также была выше, чем разрядное напряжение разрядника между основными электродами 2 и 3. Это необходимо для того, чтобы при воздействии перенапряжения разряд развивался от основного электрода 2 через искровые промежутки между промежуточными электродами 4 ко второму основному электроду 3, а не напрямую между основным электродом 2 и дополнительным электродом 7. Благодаря наличию дополнительного электрода в этом варианте разрядника обеспечиваются малые разрядные напряжения, что позволяет ограничивать перенапряжения до весьма низкого уровня. Более подробно механизм влияния дополнительного электрода на разрядные напряжения поясняется фиг.11, 12.The additional electrode 7 is electrically connected to the second main electrode 3, i.e. it also has zero potential. Thus, a high voltage between the main electrodes 2 and 3 is also applied between the first main electrode 2 and the additional electrode 7. The width of the flat insulating body 1 is chosen so that the electric strength along the upper and lower surfaces of the flat insulating body over the shortest distance between the electrodes 2 and 7 was higher than the electric strength between the main electrodes 2 and 3. The insulating properties of the material of which the insulating body 1 is made, and its thickness should be such that their electric The strength was also higher than the discharge voltage of the spark gap between the main electrodes 2 and 3. This is necessary so that under the influence of overvoltage the discharge develops from the main electrode 2 through the spark gaps between the intermediate electrodes 4 to the second main electrode 3, and not directly between the main electrode 2 and additional electrode 7. Due to the presence of an additional electrode in this version of the arrester, small discharge voltages are provided, which makes it possible to limit overvoltages to low ma. In more detail, the mechanism of the influence of the additional electrode on the discharge voltage is illustrated in Figs. 11, 12.

На фиг.11 показан развернутый фрагмент принципиальной электрической схемы варианта по фиг.9, содержащий первый основной электрод 2, ближайший к нему промежуточный электрод 4 и дополнительный электрод 7. Между электродами 2 и 4 существует емкость C1, а между электродами 4 и 7 - емкость С0. Эти емкости соединены последовательно, причем при воздействии импульса перенапряжения к ним прикладывается напряжение U. Напряжение U1 на емкости C1, т.е. напряжение на искровом промежутке между первым основным электродом 2 и ближайшим к нему промежуточным электродом 4, в относительных единицах определяется по формулеIn Fig.11 shows a detailed fragment of the circuit diagram of the variant of Fig.9, containing the first main electrode 2, the closest intermediate electrode 4 and the additional electrode 7. Between the electrodes 2 and 4 there is a capacitance C 1 , and between the electrodes 4 and 7 - capacity C 0 . These capacitances are connected in series, and when exposed to an overvoltage pulse, voltage U is applied to them. Voltage U 1 on capacitances C 1 , i.e. the voltage at the spark gap between the first main electrode 2 and the intermediate electrode 4 nearest to it, in relative units, is determined by the formula

Figure 00000008
Figure 00000008

Благодаря относительно большой площади поверхности промежуточного электрода 4, обращенной в сторону дополнительного электрода 7, а также вследствие того, что диэлектрическая проницаемость твердого диэлектрика ε значительно выше, чем диэлектрическая проницаемость воздуха ε0 (обычно ε/ε0=2÷3), емкость промежуточного электрода 4 на дополнительный электрод 7 (т.е. емкость этого промежуточного электрода на землю) существенно больше, чем его емкость на основной электрод 2, т.е. С0>C1 и, соответственно, C1/C0<1.Due to the relatively large surface area of the intermediate electrode 4 facing the side of the additional electrode 7, and also because the dielectric constant of the solid dielectric ε is much higher than the dielectric constant of air ε 0 (usually ε / ε 0 = 2 ÷ 3), the capacity of the intermediate electrode 4 to the additional electrode 7 (i.e., the capacity of this intermediate electrode to earth) is significantly larger than its capacity to the main electrode 2, i.e. C 0 > C 1 and, accordingly, C 1 / C 0 <1.

При значениях отношения C1/C0, лежащих в диапазоне C1/C0=0,1÷1, напряжение U1 находится в диапазоне U1=(0,50÷0,91)U. Поэтому при воздействии напряжения U на разрядник основная часть (по меньшей мере, более половины) падения напряжения приходится на первый искровой промежуток между электродами 2 и 4. Под действием этого напряжения U1 данный промежуток пробивается, и ближний к основному электроду 2 промежуточный электрод 4 приобретает потенциал основного электрода 2, а следующий, соседний с первым промежуточным электродом, промежуточный электрод приобретает потенциал U0. Далее физическая картина пробоя искрового промежутка повторяется. Таким образом, происходит каскадное, т.е. последовательное, перекрытие промежутков между промежуточными электродами с образованием искрового разряда. Благодаря каскадности срабатывания разрядных промежутков обеспечиваются требуемые низкие разрядные напряжения срабатывания разрядника в целом.When the values of the ratio C 1 / C 0 lying in the range C 1 / C 0 = 0.1 ÷ 1, the voltage U 1 is in the range U 1 = (0.50 ÷ 0.91) U. Therefore, when the voltage U affects the arrester, the main part (at least more than half) of the voltage drop falls on the first spark gap between the electrodes 2 and 4. Under the influence of this voltage U 1, this gap breaks through and the intermediate electrode 4 closest to the main electrode 2 acquires the potential of the main electrode 2, and the next, adjacent to the first intermediate electrode, the intermediate electrode acquires the potential U 0 . Further, the physical picture of the breakdown of the spark gap is repeated. Thus, cascading, i.e. sequential overlapping of the gaps between the intermediate electrodes with the formation of a spark discharge. Due to the cascade of operation of the discharge gaps, the required low discharge voltage of the operation of the arrester as a whole is provided.

На фиг.13 показан вариант разрядника с изоляционным телом 1 в виде цилиндра со скругленным окончанием. Таким образом, изоляционное тело 1 в данном варианте содержит цилиндрический полый компонент и сплошной компонент, образующий скругленное окончание. Дополнительный электрод 7 расположен внутри полого компонента изоляционного тела 1 и также имеет форму цилиндра со скругленным окончанием. Первый основной электрод 2 разрядника через воздушный искровой промежуток 10 подключен к проводу 9 ВЛ. При возникновении перенапряжения на проводе 9 сначала перекрывается искровой промежуток 10, и в результате высокое напряжение прикладывается к первому основному электроду 2. Далее процесс работы разрядника протекает так, как это было описано выше со ссылкой на фиг.1-4.On Fig shows a variant of a spark gap with an insulating body 1 in the form of a cylinder with a rounded end. Thus, the insulating body 1 in this embodiment contains a cylindrical hollow component and a continuous component forming a rounded end. The additional electrode 7 is located inside the hollow component of the insulating body 1 and also has the shape of a cylinder with a rounded end. The first main electrode 2 of the spark gap through the air spark gap 10 is connected to the wire 9 VL. When an overvoltage occurs on the wire 9, the spark gap 10 first overlaps, and as a result, a high voltage is applied to the first main electrode 2. Next, the spark gap operation process proceeds as described above with reference to Figs. 1-4.

На фиг.14 показан вариант разрядника с промежуточными электродами 4, расположенными по спирали вблизи поверхности полого компонента удлиненного изоляционного тела 1, причем внутри данного компонента расположен дополнительный электрод 7, связанный со вторым основным электродом 3. Такое расположение дает возможность разместить на разряднике большее количество промежуточных электродов 4, чем в предыдущем варианте по фиг.13, и тем самым еще более улучшить дугогасящую способность разрядника. В данном варианте (как и в других вариантах, рассматриваемых далее) полый компонент и дополнительный электрод, по меньшей мере, в зоне установки промежуточных электродов предпочтительно имеют круглое поперечное сечение. Такое выполнение облегчает равномерное распределение промежуточных электродов 4 по наружной поверхности изоляционного тела 1 и равенство толщины изоляционного слоя по всем радиальным направлениям.On Fig shows a variant of the arrester with intermediate electrodes 4 located in a spiral near the surface of the hollow component of the elongated insulating body 1, and inside this component there is an additional electrode 7 connected to the second main electrode 3. This arrangement makes it possible to place a larger number of intermediate electrodes 4 than in the previous embodiment of FIG. 13, and thereby further improve the arcing ability of the arrester. In this embodiment (as in other embodiments discussed below), the hollow component and the additional electrode, at least in the area of installation of the intermediate electrodes, preferably have a circular cross section. This embodiment facilitates the uniform distribution of the intermediate electrodes 4 on the outer surface of the insulating body 1 and the equality of the thickness of the insulating layer in all radial directions.

На фиг.15 показан вариант ВЛ по изобретению с разрядником, выполненным с использованием изоляционного колпачка и металлического штыря изолятора. Вариант выполнения разрядника аналогичен вариантам, показанным на фиг.13, 14, но отличается тем, что вместо искрового промежутка 10 использован изолятор 12 линии электропередачи. Таким образом, в этом варианте дополнительный электрод 7 разрядника выполняет также функцию штыря, на котором устанавливается линейный изолятор. Изоляционное тело 1 разрядника выполняет также функцию полимерного изоляционного колпачка, который обычно применяется при установке линейного изолятора на штырь. Как и в варианте по фиг.13, 14, полый компонент изоляционного тела и дополнительный электрод имеют круглое поперечное сечение. Для упрощения изготовления разрядника его первый основной электрод 2 может быть выполнен конструктивно таким же, как промежуточные электроды 4.On Fig shows a variant of the overhead line according to the invention with a spark gap made using an insulating cap and a metal pin of the insulator. An embodiment of the arrester is similar to the options shown in FIGS. 13, 14, but differs in that instead of the spark gap 10, the power line insulator 12 is used. Thus, in this embodiment, the additional spark gap electrode 7 also performs the function of a pin on which the linear insulator is mounted. The insulator body 1 of the arrester also serves as a polymer insulating cap, which is usually used when installing a linear insulator on the pin. As in the embodiment of FIGS. 13, 14, the hollow component of the insulating body and the additional electrode have a circular cross section. To simplify the manufacture of the spark gap, its first main electrode 2 can be made structurally the same as the intermediate electrodes 4.

При перенапряжении на проводе 9 ВЛ сначала развивается разряд 13 по поверхности изолятора 12, так что высокое напряжение прикладывается к первому основному электроду 2. Затем каскадно перекрываются промежутки между промежуточными электродами 4, т.е. разрядник работает так, как это описано выше.When overvoltage on the overhead wire 9, a discharge 13 first develops on the surface of the insulator 12, so that a high voltage is applied to the first main electrode 2. Then, the gaps between the intermediate electrodes 4 are cascaded over, i.e. The arrester works as described above.

Благодаря выполнению элементами разрядника функций линейной арматуры этот вариант характеризуется компактностью и низкой стоимостью.Due to the performance of the elements of the arrester functions of linear reinforcement, this option is characterized by compactness and low cost.

На фиг.16 показан вариант разрядника по фиг.7, 8, установленный на одно из плеч разрядника длинно-искрового (РДИ) петлевого типа (см. патент РФ №2096882, 17.11.95, Н01Т 4/00, а также Г.В.Подпоркин, Г.В.Сиваев «Современная грозозащита распределительных воздушных линий 6, 10 кВ длинно-искровыми разрядниками», «Электро», 2006, №1, стр.36-42).On Fig shows a variant of the arrester in Fig.7, 8, mounted on one of the arms of the arrester long-spark (RDI) loop type (see RF patent No. 2096882, 11/17/95, H01T 4/00, as well as G.V. .Podporkin, GV Sivaev “Modern lightning protection of 6, 10 kV overhead distribution lines with long-spark arresters”, “Electro”, 2006, No. 1, pp. 36-42).

РДИ состоит из согнутого в виде петли металлического стержня, покрытого слоем 11 изоляции из полиэтилена высокого давления. Концы изолированной петли закреплены в зажиме крепления, с помощью которого РДИ присоединяется к штырю изолятора на опоре ВЛ (не изображены). В средней части петли поверх изоляции расположена металлическая трубка, которая подключается к проводу ВЛ через искровой воздушный промежуток.RDI consists of a metal rod bent in the form of a loop, covered with a layer of 11 insulation from high pressure polyethylene. The ends of the insulated loop are fixed in the clamp of fastening, with the help of which the RDI is connected to the insulator pin on the VL support (not shown). In the middle part of the loop, on top of the insulation, there is a metal tube that connects to the overhead line through the spark gap.

Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника и на предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты.The principle of operation of the arrester is based on the use of the sliding discharge effect, which provides a large length of the pulse overlap on the surface of the spark gap and on the prevention of the transition of the pulse overlap into the power arc of a current of industrial frequency.

При возникновении на проводе ВЛ индуктированного грозового импульса искровой воздушный промежуток между проводом ВЛ и металлической трубкой разрядника пробивается, и к изоляции между металлической трубкой и металлическим стержнем петли, имеющим потенциал опоры, прикладывается напряжение.When an induced lightning pulse arises on the overhead line of the overhead line, a spark gap between the overhead line and the metal tube of the arrester breaks through, and a voltage is applied to the insulation between the metal tube and the metal rod of the loop having a support potential.

Под воздействием приложенного импульсного напряжения вдоль поверхности изоляции петли от металлической трубки (от первого основного электрода 2) к зажиму крепления разрядника (ко второму основному электроду 3) по одному или по обоим плечам петли развивается скользящий разряд. Вследствие эффекта скользящего разряда вольт-секундная характеристика разрядника расположена ниже, чем вольт-секундная характеристика изолятора, т.е. при воздействии грозового перенапряжения разрядник перекрывается, а изолятор нет.Under the influence of the applied pulse voltage along the loop insulation surface from the metal tube (from the first main electrode 2) to the clamp of the arrester fastening (to the second main electrode 3), a sliding discharge develops along one or both shoulders of the loop. Due to the sliding discharge effect, the volt-second characteristic of the arrester is lower than the volt-second characteristic of the insulator, i.e. when exposed to lightning overvoltage, the arrester closes, but the insulator does not.

После прохождения импульсного тока молнии разряд гаснет, не переходя в силовую дугу, что предотвращает возникновение короткого замыкания, повреждение провода и отключение ВЛ.After the passage of the pulse lightning current, the discharge goes out without going into the power arc, which prevents the occurrence of a short circuit, damage to the wire and disconnecting the overhead line.

При совместном использовании с РДИ разрядника по изобретению, например выполненного в варианте, показанном на фиг.7, 8, функции первого и второго основных электродов 2, 3 выполняют соответственно металлическая трубка и зажим крепления РДИ, тогда как полый компонент изоляционного тела и дополнительный электрод (имеющие в данном случае U-образную форму), образованы соответственно слоем 11 изоляции и металлическим стержнем РДИ. Промежуточные электроды размещены внутри ленты, навитой по спирали вокруг полого компонента на одном из плеч РДИ.When used in conjunction with an RDI of the arrester according to the invention, for example, made in the embodiment shown in Figs. 7, 8, the functions of the first and second main electrodes 2, 3 are performed respectively by a metal tube and a fastening clip of the RDI, while the hollow component of the insulating body and the additional electrode having in this case a U-shape) are formed respectively by the insulation layer 11 and the metal core of the RDI. Intermediate electrodes are placed inside the tape, wound in a spiral around a hollow component on one of the shoulders of the RDI.

В случае использования такой комбинации РДИ и разрядника по изобретению при перенапряжении каскадно перекрываются промежутки между промежуточными электродами при более низком напряжении, чем у исходного РДИ. Кроме того, в отличие от обычного РДИ происходит эффективное гашение разряда до перехода тока промышленной частоты через ноль. Поэтому комбинация РДИ и разрядника по изобретению имеет меньшие размеры и большую эффективность, чем обычный РДИ, и может быть применена для более высоких классов напряжения.In the case of using such a combination of the RDI and the arrester according to the invention during overvoltage, the gaps between the intermediate electrodes cascade at a lower voltage than the original RDI. In addition, unlike conventional RDI, there is an effective quenching of the discharge before the current of industrial frequency passes through zero. Therefore, the combination of the RDI and the arrester according to the invention is smaller and more efficient than a conventional RDI, and can be applied to higher voltage classes.

На фиг.17, 18 показан вариант разрядника по изобретению, выполненный по кабельной технологии. В качестве основы для изготовления разрядника используется специальная кабельная заготовка с твердой изоляцией, в которой в качестве полого компонента изоляционного тела 1 и дополнительного электрода 7 выступают твердая изоляция и жила кабеля соответственно. На поверхность такой кабельной заготовки накладывается металлическая проволока или полоса, а затем наносится (например, экструдированием с привариванием к изоляции кабеля) еще один слой твердой изоляции. Таким образом, образуется изоляционное тело разрядника, состоящее из изоляции кабельной заготовки (образующей полый компонент) с нанесенным на нее дополнительным слоем изоляции. Затем, например, сверлением или фрезерованием в изоляционном теле 1 выполняются камеры 5, образующие разрядные промежутки между промежуточными электродами 4 (предпочтительно) между основными электродами 2, 3 и смежными с ними промежуточными электродами 4. При сверлении камеры имеют поперечное сечение круглой формы, а при фрезеровании - прямоугольной или щелевой. Для более компактного расположения промежуточных электродов и уменьшения габаритов разрядника указанные выше металлическая полоса или проволока могут навиваться по спирали аналогично варианту разрядника, показанному на фиг.16. При спиральном расположении щелевых камер необходимо следить за тем, чтобы щели камер, принадлежащих соседним виткам, не были направлены друг на друга. В этом случае, как показали эксперименты, каналы разрядов при выдувании из камер могут слиться в единый канал, расположенный в воздухе поверх изоляционного тела, что приводит к резкому снижению дугогасящих свойств разрядника. Поэтому щелевые камеры на соседних витках должны быть расположены с некоторым дополнительным смещением или с взаимным угловым разворотом.On Fig, 18 shows a variant of the arrester according to the invention, made by cable technology. As the basis for the manufacture of the arrester, a special cable billet with solid insulation is used, in which solid insulation and cable core act as a hollow component of the insulating body 1 and additional electrode 7, respectively. A metal wire or strip is superimposed on the surface of such a cable billet, and then another layer of solid insulation is applied (for example, by extrusion while welding to the cable insulation). Thus, an insulating body of the arrester is formed, consisting of insulation of the cable billet (forming a hollow component) with an additional layer of insulation deposited on it. Then, for example, chambers 5 are formed by drilling or milling in the insulating body 1, forming discharge gaps between the intermediate electrodes 4 (preferably) between the main electrodes 2, 3 and adjacent intermediate electrodes 4. When drilling, the chambers have a circular cross-section, and when milling - rectangular or slotted. For a more compact arrangement of the intermediate electrodes and to reduce the dimensions of the spark gap, the above metal strip or wire can be wound in a spiral similar to the version of the spark gap shown in Fig. 16. With a spiral arrangement of slotted chambers, it is necessary to ensure that the slots of the chambers belonging to adjacent turns are not directed at each other. In this case, as shown by experiments, the discharge channels during blowing out of the chambers can merge into a single channel located in the air above the insulating body, which leads to a sharp decrease in the arcing properties of the arrester. Therefore, slotted chambers on adjacent turns should be located with some additional displacement or with a mutual angular turn.

Для повышения технологичности изготовления разрядника вместо металлической проволоки или полосы может быть использован проводящий жгут или полоса из углеволокна. При этом существенно облегчается процесс сверления и фрезерования разрядных камер. Рассмотренный вариант обладает высокой технологичностью в изготовлении и высокой механической прочностью.To increase the manufacturability of the manufacture of a spark gap, instead of a metal wire or strip, a conductive bundle or strip of carbon fiber can be used. At the same time, the process of drilling and milling of discharge chambers is significantly facilitated. The considered option has high manufacturability and high mechanical strength.

На фиг.19 показан фрагмент ВЛ с защищенными проводами, в которой используется вариант разрядника, оптимизированный применительно к подобной ВЛ. На опоре 14 из проводящего материала (железобетонной, стальной и т.п.) установлен изолятор 12, к которому при помощи металлического крепежного средства 15 крепится провод 9, имеющий изоляционный защитный слой 16. На проводе устанавливается зажим, имеющий контакт с крепежным средством 15 и выполняющий функцию второго основного электрода 3 разрядника по фиг.7, 8. Первый основной электрод 2 выполнен в виде прокусывающего зажима. Он обеспечивает фиксацию разрядника на проводе и контакт с жилой провода 9, отрезок которого между основными электродами 2, 3 выполняет одновременно функцию дополнительного электрода 7 разрядника. Лента, внутри которой закреплены промежуточные электроды разрядника, зафиксирована (навита по спирали) на отрезок изоляционного защитного слоя 16 между основными электродами, выполняющий функцию полого компонента изоляционного тела разрядника.On Fig shows a fragment of overhead lines with protected wires, which uses a variant of the arrester, optimized for such overhead lines. An insulator 12 is mounted on a support 14 of conductive material (reinforced concrete, steel, etc.), to which a wire 9 having an insulating protective layer 16 is attached using a metal fastening means 15. A clip is installed on the wire that is in contact with the fastening means 15 and performing the function of the second main electrode 3 of the arrester in Fig.7, 8. The first main electrode 2 is made in the form of a biting clip. It provides fixation of the arrester on the wire and contact with the core wire 9, a segment of which between the main electrodes 2, 3 simultaneously performs the function of an additional electrode 7 of the arrester. The tape, inside which the intermediate electrodes of the arrester are fixed, is fixed (helically wound) on a segment of the insulating protective layer 16 between the main electrodes, which performs the function of a hollow component of the insulating body of the arrester.

При воздействии перенапряжения на провод 9 сначала перекрывается изолятор 12 и крепежное средство вместе со вторым основным электродом 3 оказывается под потенциалом земли, т.е. под нулевым потенциалом. Провод 9 и соответственно прокусывающий зажим (первый основной электрод 2) находятся под потенциалом перенапряжения. Таким образом, между первым основным электродом 2 (прокусывающим зажимом) и вторым основным электродом 3 (зажимом) возникает перенапряжение, под действием которого последовательно перекрываются все промежутки между основными электродами 2, 3 и промежуточными электродами 4. Таким образом, жила провода 9 через прокусывающий зажим, через промежутки между промежуточными электродами 4, через второй основной электрод 3, через крепежное средство 15, через канал разряда по изолятору 12 оказывается связанной с заземленной опорой 14. Ток грозового перенапряжения протекает по указанному пути в землю. После окончания грозового тока разряд гаснет, не переходя в дуговую стадию, и линия работает без отключения.When the overvoltage acts on the wire 9, the insulator 12 is first blocked and the fastening means together with the second main electrode 3 is under the ground potential, i.e. under zero potential. The wire 9 and, accordingly, the biting clamp (the first main electrode 2) are under potential overvoltage. Thus, between the first main electrode 2 (biting clamp) and the second main electrode 3 (clamp) an overvoltage occurs, under the action of which all the gaps between the main electrodes 2, 3 and the intermediate electrodes 4 are sequentially closed. Thus, the wire 9 lived through the biting clamp , through the gaps between the intermediate electrodes 4, through the second main electrode 3, through the fastening means 15, through the discharge channel through the insulator 12 is connected to the grounded support 14. The lightning current is transferred A voltages flows along the indicated path to the ground. After the end of the thunderstorm current, the discharge goes out without going into the arc stage, and the line works without shutting down.

Работоспособность разрядника по изобретению подтверждена экспериментальной проверкой, для проведения которой были изготовлены и испытаны разрядники двух типов на класс напряжения 10 кВ: 1) РДИП-10, разрядник длинно-искровой петлевого типа с промежуточными электродами-кольцами; 2) РДИП-10 без колец, но с навитым на одно из его плеч разрядником по изобретению в соответствии с вариантом, представленным на фиг.16.The performance of the arrester according to the invention is confirmed by experimental verification, for which two types of arrester were manufactured and tested for a voltage class of 10 kV: 1) RDIP-10, a long-spark loop type arrester with intermediate ring electrodes; 2) RDIP-10 without rings, but with a spark gap wound on one of its shoulders according to the invention in accordance with the embodiment shown in Fig. 16.

Основные параметры испытанных токоотводящих устройств следующие:The main parameters of the tested down conductors are as follows:

кабель типа ПИГР-8 производства завода «Севкабель» с алюминиевой жилой диаметром 9 мм и с полиэтиленовой изоляцией толщиной 4 мм;cable of the PIGR-8 type manufactured by the Sevcable plant with an aluminum core of 9 mm diameter and 4 mm thick polyethylene insulation;

длина одного плеча (от края металлической трубки до края зажима) 800 мм;the length of one shoulder (from the edge of the metal tube to the edge of the clamp) 800 mm;

промежуточные электроды 4 выполнены в виде шайб с наружным диаметром 9 мм и толщиной 1 мм; они были вмонтированы в ленту из силиконовой резины;intermediate electrodes 4 are made in the form of washers with an outer diameter of 9 mm and a thickness of 1 mm; they were mounted in a silicone rubber tape;

количество промежуточных электродов равнялось 50;the number of intermediate electrodes was 50;

расстояние между смежными электродами, разделенными камерой, составляло g=2 мм (обоснование такого выбора применительно к рассматриваемому варианту защиты было приведено выше);the distance between adjacent electrodes separated by a chamber was g = 2 mm (the rationale for this choice with respect to the considered protection option was given above);

разрядные камеры 5 имели диаметр d=3 мм и высоту b=4 мм (таким образом, испытанный вариант разрядника по изобретению соответствовал рассмотренной выше реализации 1 для первого варианта его применения);the discharge chambers 5 had a diameter d = 3 mm and a height b = 4 mm (thus, the tested version of the spark gap according to the invention corresponded to the above implementation 1 for the first variant of its application);

разрядник по фиг.3 был навит на одно из плеч РДИП-10 (т.е. на кабель) с шагом 30 мм; таким образом, разрядник занимал на плече участок длиной 30 см, т.е. примерно одну треть от длины плеча РДИП-10.the spark gap of FIG. 3 was wound on one of the RDIP-10 arms (i.e., on the cable) with a step of 30 mm; Thus, the arrester occupied a section 30 cm long on the shoulder, i.e. approximately one third of the shoulder length of the RDIP-10.

Испытания показали, что оба испытанных разрядника (известный РДИП-10 с кольцами и РДИП-10 с разрядником по изобретению) защищают изолятор ВЛ от грозовых перекрытий, однако РДИП-10 с кольцами гасит дугу сопровождающего тока в нуле, т.е. имеется бестоковая пауза порядка 3-5 мс, а разрядник по изобретению гасит ток сразу после окончания грозового перенапряжения, т.е. в тот момент, когда заканчивается грозовое перенапряжение длительностью 5-30 мкс, и напряжение на проводе снижается до нормального рабочего напряжения. Таким образом, работа разрядника происходит без паузы тока, что важно в случае электроснабжения чувствительных к перебоям в электроснабжении электронных устройств, например компьютеров. Большим преимуществом комбинированного разрядника по изобретению является то, что его габариты почти в три раза меньше, чем известного разрядника РДИП-10, и он может быть разработан на более высокие классы напряжения.Tests have shown that both tested arresters (known RDIP-10 with rings and RDIP-10 with a spark gap according to the invention) protect the overhead line insulator from lightning storms, however RDIP-10 with rings extinguishes the accompanying current arc at zero, i.e. there is a currentless pause of the order of 3-5 ms, and the arrester according to the invention damps the current immediately after the end of a lightning overvoltage, i.e. at the moment when the lightning overvoltage lasting 5-30 μs ends, and the voltage on the wire decreases to normal operating voltage. Thus, the spark gap operates without a pause in current, which is important in the case of power supply of electronic devices, such as computers, which are sensitive to interruptions in the power supply. The great advantage of the combined arrester according to the invention is that its dimensions are almost three times smaller than the well-known arrester RDIP-10, and it can be designed for higher voltage classes.

Таким образом, область применения и надежность работы токоотводящего устройства по настоящему изобретению существенно увеличены. При этом гашение канала разряда осуществляется тем более эффективно, чем больше используется промежуточных электродов. Вместе с тем, с увеличением числа промежуточных электродов при неизменной суммарной длине разрядных промежутков возрастают габариты и стоимость разрядника. Оптимальная конструкция разрядника, следовательно, может быть определена применительно к конкретной задаче, на основе рекомендаций, приведенных в данном описании, и с учетом заданных исходных параметров: типа защищаемых конструкций или оборудования, класса напряжения, уровня защиты оборудования и т.п.Thus, the scope and reliability of the collector of the present invention is significantly increased. In this case, the quenching of the discharge channel is carried out the more efficiently, the more intermediate electrodes are used. At the same time, with an increase in the number of intermediate electrodes with a constant total length of the discharge gaps, the dimensions and cost of the spark gap increase. The optimal design of the arrester, therefore, can be determined in relation to a specific task, based on the recommendations given in this description and taking into account the given initial parameters: the type of structures or equipment to be protected, voltage class, equipment protection level, etc.

Рассмотренные в данном описании варианты и модификации выполнения разрядника по изобретению и линии электропередачи, построенной с использованием таких разрядников, приведены лишь для пояснения их конструкции и принципов работы. Специалистам в данной области техники должно быть понятно, что возможны различные усовершенствования, модификации и отклонения от вышеприведенных примеров выполнения, которые также охватываются формулой изобретения. Например, в том случае, когда возникающий между электродами разрядника разряд развивается не в стримерной, а в другой форме, например в лавинной или в лидерной, могут быть использованы соответствующие иные зависимости для определения расчетного диаметра разряда с возможной модификацией предпочтительных значений минимальных расстояний между смежными электродами.The options and modifications of the spark gap of the invention and the power line constructed using such arresters described in this description are provided only to explain their design and operating principles. Specialists in the art should understand that various improvements, modifications and deviations from the above examples are possible, which are also covered by the claims. For example, in the case when the discharge arising between the electrodes of the arrester does not develop in the streamer, but in a different form, for example, in the avalanche or in the leader, the corresponding other dependencies can be used to determine the calculated diameter of the discharge with the possible modification of the preferred values of the minimum distances between adjacent electrodes .

Claims (25)

1. Разрядник для грозозащиты элементов электрооборудования или линии электропередачи, содержащий изоляционное тело, выполненное из твердого диэлектрика, два основных электрода, механически связанных с изоляционным телом, и два или более промежуточных электродов, размещенных между основными электродами с взаимным смещением, по меньшей мере, вдоль продольной оси изоляционного тела и выполненных с возможностью формирования разряда между каждым из основных электродов и смежным с ним промежуточным электродом и между смежными промежуточными электродами, отличающийся тем, что промежуточные электроды расположены внутри изоляционного тела и отделены от его поверхности слоем изоляции, толщина которого выбрана превышающей расчетный диаметр Dк канала указанного разряда, при этом между смежными промежуточными электродами выполнены выходящие на поверхность изоляционного тела разрядные камеры, площадь S поперечного сечения которых в зоне формирования канала разряда выбрана из условия S<Dк·g, где g - минимальное расстояние между смежными промежуточными электродами.1. Arrester for lightning protection of electrical components or power lines, containing an insulating body made of a solid dielectric, two main electrodes mechanically connected to the insulating body, and two or more intermediate electrodes placed between the main electrodes with mutual displacement, at least along the longitudinal axis of the insulating body and made with the possibility of forming a discharge between each of the main electrodes and an adjacent intermediate electrode and between adjacent intermediate E electrodes, characterized in that the intermediate electrodes are located within the insulating body and separated from the surface of the insulation layer whose thickness is selected to exceed the design diameter D of the channel of said discharge, wherein between adjacent intermediate electrodes formed facing the insulating body surface discharge chambers, area S whose cross section in the zone of formation of the discharge channel is selected from the condition S <Dк · g, where g is the minimum distance between adjacent intermediate electrodes. 2. Разрядник по п.1, отличающийся тем, что минимальное расстояние между смежными электродами выбрано в интервале 1÷5 мм.2. The arrester according to claim 1, characterized in that the minimum distance between adjacent electrodes is selected in the range of 1 ÷ 5 mm. 3. Разрядник по п.1, отличающийся тем, что минимальное расстояние между смежными электродами выбрано в интервале 5÷20 мм.3. The arrester according to claim 1, characterized in that the minimum distance between adjacent electrodes is selected in the range of 5 ÷ 20 mm. 4. Разрядник по п.1, отличающийся тем, что снабжен дополнительными разрядными камерами, выполненными между каждым из основных электродов и смежным с ним промежуточным электродом.4. The spark gap according to claim 1, characterized in that it is equipped with additional discharge chambers made between each of the main electrodes and an intermediate electrode adjacent to it. 5. Разрядник по п.1, отличающийся тем, что разрядные камеры выполнены в виде прямоугольных или круглых отверстий в изоляционном теле.5. The arrester according to claim 1, characterized in that the discharge chambers are made in the form of rectangular or round holes in the insulating body. 6. Разрядник по п.1, отличающийся тем, что разрядные камеры выполнены в виде щелей в изоляционном теле.6. The spark gap according to claim 1, characterized in that the discharge chambers are made in the form of slots in the insulating body. 7. Разрядник по п.1, отличающийся тем, что разрядные камеры выполнены в виде сквозных отверстий в изоляционном теле.7. The spark gap according to claim 1, characterized in that the discharge chambers are made in the form of through holes in the insulating body. 8. Разрядник по п.1, отличающийся тем, что изоляционное тело выполнено в виде бруска, ленты или цилиндра.8. The arrester according to claim 1, characterized in that the insulating body is made in the form of a bar, tape or cylinder. 9. Разрядник по п.1, отличающийся тем, что изоляционное тело выполнено с утолщениями в местах выходов разрядных камер на поверхность изоляционного тела.9. The arrester according to claim 1, characterized in that the insulating body is made with thickenings in the places of the outputs of the discharge chambers to the surface of the insulating body. 10. Разрядник по п.1, отличающийся тем, что промежуточные электроды выполнены в виде пластин или цилиндров.10. The arrester according to claim 1, characterized in that the intermediate electrodes are made in the form of plates or cylinders. 11. Разрядник по п.1, отличающийся тем, что промежуточные электроды выполнены из графита или углеволокна.11. The spark gap according to claim 1, characterized in that the intermediate electrodes are made of graphite or carbon fiber. 12. Разрядник по п.1, отличающийся тем, что линия, вдоль которой, с взаимным смещением, размещены промежуточные электроды, расположена по продольной оси изоляционного тела.12. The arrester according to claim 1, characterized in that the line along which the intermediate electrodes are placed with mutual displacement is located along the longitudinal axis of the insulating body. 13. Разрядник по п.1, отличающийся тем, что линия, вдоль которой, с взаимным смещением, размещены промежуточные электроды, ориентирована параллельно продольной оси изоляционного тела.13. The arrester according to claim 1, characterized in that the line along which the intermediate electrodes are placed with mutual displacement is oriented parallel to the longitudinal axis of the insulating body. 14. Разрядник по любому из пп.1-16, отличающийся тем, что внутри изоляционного тела или на его поверхности, противоположной по отношению к поверхности, на которую выходят разрядные камеры, расположен дополнительный электрод, соединенный с одним из основных электродов, причем длина дополнительного электрода составляет, по меньшей мере, половину расстояния между основными электродами, а электрическая прочность изоляции между дополнительным электродом и другим, не соединенным с ним основным электродом, больше, чем расчетное разрядное напряжение между основными электродами.14. The arrester according to any one of claims 1 to 16, characterized in that an additional electrode connected to one of the main electrodes is located inside the insulating body or on its surface opposite to the surface on which the discharge chambers extend, and the length of the additional the electrode is at least half the distance between the main electrodes, and the dielectric strength between the additional electrode and the other main electrode not connected to it is greater than the calculated discharge voltage between the main electrodes. 15. Разрядник по п.14, отличающийся тем, что изоляционное тело содержит полый компонент, а дополнительный электрод установлен внутри полого компонента.15. The arrester according to 14, characterized in that the insulating body contains a hollow component, and an additional electrode is installed inside the hollow component. 16. Разрядник по п.15, отличающийся тем, что полый компонент изоляционного тела и дополнительный электрод имеют круглое поперечное сечение.16. The arrester according to claim 15, characterized in that the hollow component of the insulating body and the additional electrode have a circular cross section. 17. Разрядник по п.16, отличающийся тем, что линия, вдоль которой, с взаимным смещением, размещены промежуточные электроды, имеет форму спирали.17. The spark gap according to claim 16, characterized in that the line along which the intermediate electrodes are placed with mutual displacement is in the form of a spiral. 18. Разрядник по п.15, отличающийся тем, что изоляционное тело дополнительно содержит ленту, зафиксированную на поверхности полого компонента, причем промежуточные электроды закреплены внутри указанной ленты.18. The spark gap according to claim 15, characterized in that the insulating body further comprises a tape fixed on the surface of the hollow component, the intermediate electrodes being fixed inside said tape. 19. Разрядник по п.18, отличающийся тем, что лента намотана по спирали на поверхность цилиндрического компонента.19. The spark gap according to claim 18, characterized in that the tape is wound in a spiral on the surface of the cylindrical component. 20. Разрядник по п.19, отличающийся тем, что дополнительный электрод представляет собой жилу отрезка электрического кабеля, а полый компонент изоляционного тела - изоляцию указанного отрезка электрического кабеля.20. The arrester according to claim 19, characterized in that the additional electrode is a core of a piece of electric cable, and the hollow component of the insulating body is the insulation of the specified piece of electric cable. 21. Разрядник по п.20, отличающийся тем, что полый компонент изоляционного тела имеет U-образную форму, длина дополнительного электрода выбрана равной длине полого компонента, первый основной электрод выполнен в виде металлической трубки, охватывающей полый компонент в его изогнутой части, а второй основной электрод механически соединен с одним или с обоими концами полого компонента и электрически соединен с дополнительным электродом, при этом промежуточные электроды расположены на одном или на обоих плечах изоляционного тела.21. The arrester according to claim 20, characterized in that the hollow component of the insulating body is U-shaped, the length of the additional electrode is chosen equal to the length of the hollow component, the first main electrode is made in the form of a metal tube covering the hollow component in its curved part, and the second the main electrode is mechanically connected to one or both ends of the hollow component and electrically connected to the additional electrode, while the intermediate electrodes are located on one or both shoulders of the insulating body. 22. Линия электропередачи, содержащая опоры с изоляторами, по меньшей мере, один находящийся под электрическим напряжением провод, связанный с изоляторами посредством крепежных устройств, и, по меньшей мере, один разрядник для грозозащиты элементов линии электропередачи, отличающаяся тем, что разрядник для грозозащиты выполнен в виде разрядника по любому из пп.1-21.22. Power line containing supports with insulators, at least one wire under electrical voltage connected to the insulators by means of fastening devices, and at least one spark gap for lightning protection of power line elements, characterized in that the spark gap for lightning protection is made in the form of a spark gap according to any one of claims 1 to 21. 23. Линия электропередачи по п.22, отличающаяся тем, что один основной электрод, по меньшей мере, одного указанного разрядника непосредственно или через искровой разрядный промежуток соединен с защищаемым элементом линии, а другой основной электрод непосредственно или через искровой разрядный промежуток соединен с землей.23. The power line according to item 22, wherein one main electrode of at least one of the specified spark gap is connected directly or through the spark gap to the protected element of the line, and the other main electrode is connected directly or through the spark gap to the ground. 24. Линия электропередачи по п.23, отличающаяся тем, что находящийся под напряжением провод расположен внутри изоляционного защитного слоя, первый основной электрод разрядника выполнен в виде прокусывающего зажима, установленного на изоляционном защитном слое и электрически соединенного с проводом, второй основной электрод разрядника расположен на поверхности изоляционного защитного слоя и электрически соединен с металлическим средством крепления провода к изолятору линии электропередачи, а изоляционное тело содержит полый компонент, при этом указанный полый компонент и дополнительный электрод разрядника выполнены соответственно в виде отрезка изоляционного защитного слоя и отрезка провода, расположенных между основными электродами, а промежуточные электроды разрядника закреплены внутри ленты, зафиксированной на поверхности полого компонента.24. The power line according to claim 23, wherein the energized wire is located inside the insulating protective layer, the first main electrode of the arrester is made in the form of a biting clip mounted on the insulating protective layer and electrically connected to the wire, the second main electrode of the arrester the surface of the insulating protective layer and is electrically connected to metal means for attaching the wire to the power line insulator, and the insulating body contains a hollow component , Said hollow component and the additional electrode surge arrester formed respectively in the form of a segment of the insulating protective layer and the conductor segment disposed between the main electrodes and the intermediate electrodes are secured within surge arrestor tapes fixed on the surface of the hollow component. 25. Линия электропередачи по п.22, отличающаяся тем, что изолятор линии установлен на разряднике, полый компонент изоляционного тела и дополнительный электрод которого имеют круглое поперечное сечение, причем дополнительный электрод выполнен в виде штыря изолятора, а изоляционное тело выполнено в виде изоляционного колпачка, при помощи которого изолятор закрепляется на штыре. 25. The power line according to claim 22, characterized in that the line insulator is mounted on the spark gap, the hollow component of the insulating body and the additional electrode of which have a circular cross section, the additional electrode being made in the form of an insulator pin, and the insulating body is made in the form of an insulating cap, by means of which the insulator is fixed on the pin.
RU2007131216/09A 2007-08-16 2007-08-16 Lightning protector and power transmission line equipped therewith RU2346368C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007131216/09A RU2346368C1 (en) 2007-08-16 2007-08-16 Lightning protector and power transmission line equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007131216/09A RU2346368C1 (en) 2007-08-16 2007-08-16 Lightning protector and power transmission line equipped therewith

Publications (1)

Publication Number Publication Date
RU2346368C1 true RU2346368C1 (en) 2009-02-10

Family

ID=40546868

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007131216/09A RU2346368C1 (en) 2007-08-16 2007-08-16 Lightning protector and power transmission line equipped therewith

Country Status (1)

Country Link
RU (1) RU2346368C1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457592C1 (en) * 2011-05-19 2012-07-27 Открытое Акционерное Общество "Нпо "Стример" Discharger, hv insulator with discharger and hv aerial power line using such insulator
EA016980B1 (en) * 2011-12-30 2012-08-30 Открытое Акционерное Общество "Нпо "Стример" Reinforced discharge arrester for lightning overvoltage protection of electrical equipment and insulator and electrical power transmission line equipped with such discharge arrester
EA017328B1 (en) * 2012-03-05 2012-11-30 Открытое Акционерное Общество "Нпо "Стример" Apparatus for lightning protection with spring-type electrodes and a power transmission line provided with such an apparatus
RU2510651C1 (en) * 2012-09-27 2014-04-10 Открытое Акционерное Общество "Нпо "Стример" Arrester with guide strips for protection of electric equipment from overvoltage at lightning and insulator of power line equipped with such arrester
RU2535197C1 (en) * 2013-06-10 2014-12-10 Открытое Акционерное Общество "Нпо "Стример" Multielectrode insulator-discharger and method of its fabrication
RU2548169C2 (en) * 2013-06-10 2015-04-20 Открытое Акционерное Общество "Нпо "Стример" Multiple-chamber insulator-discharger and method of its manufacture
RU2549361C2 (en) * 2013-06-10 2015-04-27 Открытое Акционерное Общество "Нпо "Стример" Multi-chamber insulator arrester with prefabricated discharge chambers
WO2015167359A1 (en) * 2014-04-30 2015-11-05 Открытое Акционерное Общество "Нпо "Стример" Discharging screen
WO2015167360A1 (en) * 2014-04-30 2015-11-05 Открытое Акционерное Общество "Нпо "Стример" Multi-electrode discharging screen
RU2584690C2 (en) * 2014-05-05 2016-05-20 Александр Викторович Левашов Arrester protecting high voltage power transmission lines against lightning overvoltage
EA023737B1 (en) * 2013-04-22 2016-07-29 Открытое Акционерное Общество "Нпо "Стример" Discharger with spacer, insulator-arrester and power transmission line
EA025691B1 (en) * 2014-08-25 2017-01-30 Открытое Акционерное Общество "Нпо "Стример" Cavity-type discharge arrester for lightning overvoltage protection of electrical equipment, and insulator and electrical power transmission line equipped with such discharge arrester
EA025903B1 (en) * 2014-10-16 2017-02-28 Открытое Акционерное Общество "Нпо "Стример" Discharge arrester for lightning overvoltage protection of electrical equipment or an electrical power transmission line, and insulator and electrical power transmission line equipped with such discharge arrester
RU188116U1 (en) * 2018-12-04 2019-03-29 Владимир Николаевич Хорохорин Spark arrester
RU2730173C1 (en) * 2019-12-31 2020-08-19 Акционерное общество "НПО "Стример" Multi-chamber arrester with protruding electrodes

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457592C1 (en) * 2011-05-19 2012-07-27 Открытое Акционерное Общество "Нпо "Стример" Discharger, hv insulator with discharger and hv aerial power line using such insulator
EA016980B1 (en) * 2011-12-30 2012-08-30 Открытое Акционерное Общество "Нпо "Стример" Reinforced discharge arrester for lightning overvoltage protection of electrical equipment and insulator and electrical power transmission line equipped with such discharge arrester
EA017328B1 (en) * 2012-03-05 2012-11-30 Открытое Акционерное Общество "Нпо "Стример" Apparatus for lightning protection with spring-type electrodes and a power transmission line provided with such an apparatus
CN103311809A (en) * 2012-03-05 2013-09-18 斯特里莫Npo股份公司 apparatus for lightning protection with spring-type electrodes and a power transmission line provided with such an apparatus
CN103311809B (en) * 2012-03-05 2017-03-01 斯特里莫Npo股份公司 The lightning protection device with spring type electrode and the power circuit being provided with this device
RU2510651C1 (en) * 2012-09-27 2014-04-10 Открытое Акционерное Общество "Нпо "Стример" Arrester with guide strips for protection of electric equipment from overvoltage at lightning and insulator of power line equipped with such arrester
EA023737B1 (en) * 2013-04-22 2016-07-29 Открытое Акционерное Общество "Нпо "Стример" Discharger with spacer, insulator-arrester and power transmission line
RU2535197C1 (en) * 2013-06-10 2014-12-10 Открытое Акционерное Общество "Нпо "Стример" Multielectrode insulator-discharger and method of its fabrication
RU2548169C2 (en) * 2013-06-10 2015-04-20 Открытое Акционерное Общество "Нпо "Стример" Multiple-chamber insulator-discharger and method of its manufacture
RU2549361C2 (en) * 2013-06-10 2015-04-27 Открытое Акционерное Общество "Нпо "Стример" Multi-chamber insulator arrester with prefabricated discharge chambers
WO2015167359A1 (en) * 2014-04-30 2015-11-05 Открытое Акционерное Общество "Нпо "Стример" Discharging screen
EA025205B1 (en) * 2014-04-30 2016-11-30 Открытое Акционерное Общество "Нпо "Стример" Multi-electrode discharging screen
WO2015167360A1 (en) * 2014-04-30 2015-11-05 Открытое Акционерное Общество "Нпо "Стример" Multi-electrode discharging screen
RU2584690C2 (en) * 2014-05-05 2016-05-20 Александр Викторович Левашов Arrester protecting high voltage power transmission lines against lightning overvoltage
EA025691B1 (en) * 2014-08-25 2017-01-30 Открытое Акционерное Общество "Нпо "Стример" Cavity-type discharge arrester for lightning overvoltage protection of electrical equipment, and insulator and electrical power transmission line equipped with such discharge arrester
EA025903B1 (en) * 2014-10-16 2017-02-28 Открытое Акционерное Общество "Нпо "Стример" Discharge arrester for lightning overvoltage protection of electrical equipment or an electrical power transmission line, and insulator and electrical power transmission line equipped with such discharge arrester
RU188116U1 (en) * 2018-12-04 2019-03-29 Владимир Николаевич Хорохорин Spark arrester
RU2730173C1 (en) * 2019-12-31 2020-08-19 Акционерное общество "НПО "Стример" Multi-chamber arrester with protruding electrodes

Similar Documents

Publication Publication Date Title
RU2346368C1 (en) Lightning protector and power transmission line equipped therewith
WO2010082861A1 (en) Lighting arrester and a power transmission line provided with such an arrester
RU2299508C2 (en) Current-carrying device for lightning protection of electrical equipment and power transmission lines equipped with such device
RU2470430C1 (en) Multi-chamber discharger, high-voltage insulator with multichamber discharger and high-voltage power transmission line using such insulator
RU111359U1 (en) DISCHARGE, HIGH VOLTAGE INSULATOR WITH DISCHARGE AND HIGH VOLTAGE ELECTRIC TRANSMISSION LINE USING THIS INSULATOR
RU2096882C1 (en) Power transmission line with pulse lightning arrester
RU171093U1 (en) ROOF MULTI-CAMERA DISCHARGE
RU2510651C1 (en) Arrester with guide strips for protection of electric equipment from overvoltage at lightning and insulator of power line equipped with such arrester
RU2666358C2 (en) Power transmission line with ground wire, protected by discharger
RU2730085C1 (en) Discharger with pressure chambers
RU2730173C1 (en) Multi-chamber arrester with protruding electrodes
RU2619765C1 (en) Arrester with pressure chambers
RU197315U1 (en) MULTI-CAMERA DISCHARGE WITH RIBS
RU50055U1 (en) CURRENT CONDUCTOR FOR ELECTRICAL PROTECTION OF ELECTRICAL EQUIPMENT AND ELECTRIC TRANSMISSION LINE SUPPLIED WITH SUCH DEVICE
RU2783384C2 (en) Discharger with multi-chamber washers
RU173089U1 (en) LONG SPARK DISCHARGE
RU2149488C1 (en) Lightning surge protective device for overhead power transmission lines
RU2121741C1 (en) Surge gap spark lightning arrester for electric power line
RU199041U1 (en) MULTI-CHAMBER ARRESTER WITH RIBS AND Cuts ALONG THE INSULATING BODY
RU199043U1 (en) MULTI-CHAMBER ARRESTER WITH SECTOR RIBS
RU2666905C2 (en) Lightning protector with open outputs from discharge chambers
KR101088686B1 (en) Arc inducing type driven rod apparatus having needles
RU2619909C1 (en) Multi-chamber arrester with general pressure chamber
RU2667510C2 (en) Arrester with common pressure chambers, arrester-insulator, arrester screen and electric transmission line
RU2133538C1 (en) Electric power line with gears for protection against lightning surges

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 4-2009 FOR TAG: (73)

PD4A Correction of name of patent owner